

Determinación de la meteorología y transporte de contaminantes en el aire en sitios con minería de oro artesanal y a pequeña escala en México

INFORME FINAL

Contrato INECC/RPADA-005/2021

Preparado para la Coordinación General de Contaminación y Salud Ambiental del Instituto Nacional de Ecología y Cambio Climático

Diciembre 2021

Directorio

Dra. María Amparo Martínez Arroyo Directora General del INECC

Dr. Luis Gerardo Ruiz Suárez Coordinación General de Contaminación y Salud Ambiental

Dr. Arturo Gavilán García Director de Investigación de Contaminantes, Sustancias, Residuos y Bioseguridad

M. en I. Tania Ramírez Muñoz Jefa del Departamento de Administración de Laboratorios

Elaboración

Dra. Patricia Domínguez Taylor Consultora externa

Tabla de contenido

Índice de Ilustraciones	7
Índice de Tablas	
Antecedentes	
Propiedades del Mercurio	
Mercurio y Medio Ambiente	
Mercurio en la salud humana	
Mercurio en Minería Artesanal	24
Objetivos	27
Servicio Meteorológico Nacional	28
Obtención de la meteorología de los municipios con actividad de	oro artesanal 30
Análisis de estaciones Meteorológicas en los estados que se dedi oro artesanal,	
Sinaloa	31
Durango	32
Zacatecas	34
Sonora	36
Chihuahua	39
Nayarit	41
Coahuila	42
Jalisco	43
Oaxaca	45
Guerrero	47
Michoacán	49
Baja California Sur	50
San Luis Potosí	50
Transporte de contaminantes en aire de los sitios en México en cabo la minería de oro artesanal y a pequeña escala	
Estados SGM	52
Estados Nava	52
Informe del Servicio Geológico Mexicano	53
Informe del Ing. Francisco Javier Jiménez Nava	53
Resultado del análisis de los informes	53
Determinación de cantidad de emisión	54
Hysplit NOAA	56
Modelo de trayectorias	57

Modelo de dispersión	60
Modelaciones	64
Resultados Modelaciones en los diferentes municipios	66
Sinaloa	66
Badiraguato	66
Sinaloa	66
Concordia	67
Cosalá	67
Choix	68
Elota	68
Escuinapa	69
El Fuerte	69
Mazatlán	70
San Ignacio	70
Durango	71
Coneto de Comonfort	71
Cuencamé	71
Durango	72
El Oro	72
General Simón Bolivar	73
Indé	73
Lerdo	74
Mapimí	74
San Bernardo	75
San Dimas	75
Zacatecas	76
Concepción del Oro	76
Chalchihuites	77
Gral. Francisco R. Murguía	77
Guadalupe	78
Jiménez de Teul	78
Morelos	79
Ojocaliente	79
Río Grande	80
Villa Hidalgo	80
Zacatecas, Zacatecas	81

Sonora	82
Altar	82
Arivechi	82
Bacerac	83
Benjamin Hill	83
Cumpas	84
General Plutarco Elías Calles, Sonora	84
Hermosillo	85
Nacozari de García	86
Imuris	86
Santa Ana	87
San Miguel de Horcasitas	87
Trincheras	88
Villa Hidalgo, Sonora	88
Chihuahua	89
Ahumada	89
Batopilas	89
Chinipas de Almada	90
Hidalgo del Parral	91
Janos	91
Madera	92
Moris	92
San Francisco del Oro	93
Urique	93
Uarachi	94
Nayarit	94
Acaponeta	94
Huijicori	95
Jala	95
La Yesca	96
Rosamorada	96
Ruiz	97
Santa María del Oro	97
Santiago Izcuintla	98
Coahuila	99
Candela	99

Castaños	99
Ocampo	100
Parras	100
Saltillo	101
Viesca	101
Jalisco	102
Ahualulco del Mercado	102
Ameca	102
Atenguillo	103
Chimaltitlán	103
Hostotipaquillo	104
Lagos de moreno	104
Mixtlán	105
Talpa de Allende	105
Jilotlán de los Dolores	106
Tequila	106
Oaxaca	107
Huajapan de León	107
Romero Avendaño	107
San Jerónimo Taviche	108
San Juan Lajarcia	109
San Juan Mazatlán	109
Santo Domingo Tonalá	110
Santa María Peñoles	110
San Miguel Peras	
San Miguel Tiquiapam	
San Pedro Quiatoni	112
Guerrero	112
Cocula	112
Coyuca de Catalán	113
Cuetzala del Progreso	113
Eduardo Neri	114
Pedro Ascensio Alquisieras	114
Pilcaya	115
Taxco	116
Zirandaro	116

Michoacán	117
Arteaga	117
Contepec	117
Lázaro Cárdenas	118
Madero	118
Maravatío	119
Sengui	119
Tecalcatepec	120
Tlalpujahua	120
Tumbiscatio	121
Baja California Sur	121
San Luis Potosí	122
Armadillo de los Infantes	122
Cerro San Pedro	122
Charcas	123
Guadalcazar	124
Salinas	124
San Luis Potosí	125
Soledad de Graciano	125
Vanegas	126
Villa de Ramos	126
Villa de Reyes	127
Conclusiones	128
Bibliografía	130
ANEVO 1	172

Índice de Ilustraciones

Ilustración 1. El mercurio en estado natural (Lenntech, 2021)17
Ilustración 2. Ciclo del Mercurio (ONU, 2019):18
Ilustración 3. Modelación de las Principales Actividades que general emisiones de
mercurio en el mundo (ONU, 2019)19
Ilustración 4.Suma de emisiones antropogénicas de Hg y de misiones de fondo de
mercurio en ríos (Kocman et al., 2017)20
Ilustración 5. Transporte y deposición del mercurio en océanos por fuentes
naturales y antropogénicas (ONU, 2019)2
llustración 6. Concentraciones de mercurio medidas en la biota de diferentes partes
del mundo (ONU, 2019)22
Ilustración 7.Liberación de mercurio por minería de oro artesanal y en pequeña
escala
Ilustración 8. Mapa de estaciones meteorológicas en México29
Ilustración 9. Mapa de estaciones meteorológicas en el Estado de Sinaloa32
Ilustración 10. Mapa de estaciones meteorológicas en el Estado de Durango34
llustración 11. Mapa de estaciones meteorológicas en el Estado de Zacatecas 36
Ilustración 12. Mapa de estaciones meteorológicas en el Estado de Sonora38
llustración 13. Mapa de estaciones meteorológicas en el Estado de Chihuahua40
Ilustración 14. Mapa de estaciones meteorológicas en el Estado de Nayarit42
llustración 15. Mapa de estaciones meteorológicas en el Estado de Coahuila43
Ilustración 16. Mapa de estaciones meteorológicas en el Estado de Jalisco45
Ilustración 17. Mapa de estaciones meteorológicas en el Estado de Oaxaca47
Ilustración 18. Mapa de estaciones meteorológicas en el Estado de Guerrero48
llustración 19. Mapa de estaciones meteorológicas en el Estado de Michoacán 50
Ilustración 20. Mapa de estaciones meteorológicas en el Estado de Baja California
Sur
Ilustración 21. Mapa de estaciones meteorológicas en el Estado de San Luis Potosí 52
llustración 22. Mapa de minas de oro y plata en México56
llustración 23. Parámetro alimentados en el Modelo de Trayectoria del Hysplit 59
llustración 24. Resultado de la modelación de trayectorias en Google Earth59
llustración 25. Parámetro alimentados en el Modelo de Dispersión del Hysplit6
llustración 26. Resultado de la modelación de la dispersión en el programa Hyspli
de un clúster 62

llustración 27. Resultado de la modelación de la dispersión en el programa Hysplit
con los gramos totales de mercurio por municipio63
Ilustración 28. Resultado de la modelación de trayectoria y dispersión en Google
Earth64
Ilustración 29. Trayectorias de los Municipios en Durango65
Ilustración 30. Modelación de trayectorias y dispersión por Hysplit en Badiraguato,
Sin66
Ilustración 31. Modelación de trayectorias y dispersión por Hysplit en Sinaloa, Sin 66
Ilustración 32. Modelación de trayectorias y dispersión por Hysplit en Concordia, Sin
67
Ilustración 33. Modelación de trayectorias y dispersión por Hysplit en Cosala, Sin 67
Ilustración 34. Modelación de trayectorias y dispersión por Hysplit en Choix, Sin68
Ilustración 35. Modelación de trayectorias y dispersión por Hysplit en Elota, Sin 68
Ilustración 36. Modelación de trayectorias y dispersión por Hysplit en Escuinapa,
Sin
Ilustración 37. Modelación de trayectorias y dispersión por Hysplit en El Fuerte, Sin.
69
Ilustración 38. Modelación de trayectorias y dispersión por Hysplit en Mazatlán, Sin.
70
Ilustración 39. Modelación de trayectorias y dispersión por Hysplit en San Ignacio,
Sin70
Ilustración 40. Modelación de trayectorias y dispersión por Hysplit en Coneto de
Comonfort, Dur
Ilustración 41. Modelación de trayectorias y dispersión por Hysplit en Cuencamé,
Dur71
Ilustración 42. Modelación de trayectorias y dispersión por Hysplit en Durango, Dur.
72
Ilustración 43. Modelación de trayectorias y dispersión por Hysplit en El Oro, Dur 72
Ilustración 44. Modelación de trayectorias y dispersión por Hysplit en Gral. Simón
Bolívar, Dur73
Ilustración 45. Modelación de trayectorias y dispersión por Hysplit en Indé, Dur 73
Ilustración 46. Modelación de trayectorias y dispersión por Hysplit en Lerdo, Dur74
Ilustración 47. Modelación de trayectorias y dispersión por Hysplit en Mapimí, Dur.
74

Ilustración 48. Modelación de trayectorias y dispersión por Hysplit en San Bernardo
Dur
Ilustración 49. Modelación de trayectorias y dispersión por Hysplit en San Dimas
Dur
Ilustración 50. Modelación de trayectorias y dispersión por Hysplit en Concepción
del Oro, Zac76
Ilustración 51. Modelación de trayectorias y dispersión por Hysplit en Chalchihuites
Zac77
Ilustración 52. Modelación de trayectorias y dispersión por Hysplit en Gral. Francisco
R. Murguía, Zac7
Ilustración 53. Modelación de trayectorias y dispersión por Hysplit en Guadalupe
Zac78
Ilustración 54. Modelación de trayectorias y dispersión por Hysplit en Jiménez de
Teúl, Zac78
Ilustración 55. Modelación de trayectorias y dispersión por Hysplit en Morelos, Zac
Ilustración 56. Modelación de trayectorias y dispersión por Hysplit en Ojo Caliente
Zac
Ilustración 57. Modelación de trayectorias y dispersión por Hysplit en Río Grande
Zac80
Ilustración 58. Modelación de trayectorias y dispersión por Hysplit en Villa Hidalgo
Zac80
Ilustración 59. Modelación de trayectorias y dispersión por Hysplit en Zacatecas
Zac8
Ilustración 60. Modelación de trayectorias y dispersión por Hysplit en Altar, Son 82
Ilustración 61. Ilustración 48. Modelación de trayectorias y dispersión por Hysplit er
Arivechi, Son82
Ilustración 62. Modelación de trayectorias y dispersión por Hysplit en Bacerac, Son
83. Moderación de trayectorias y dispersión por myspint en bacerac, son
Ilustración 63. Modelación de trayectorias y dispersión por Hysplit en Benjamín Hill
Son
Ilustración 64. Modelación de trayectorias y dispersión por Hysplit en Cumpas, Son
Uniter a ión CE. Madala sión de travactorio y disposaión por Unanit en Cral Distance
Ilustración 65. Modelación de trayectorias y dispersión por Hysplit en Gral. Plutarco
FIRS CAUSS NOT

Ilustración 66. Modelación de trayectorias y dispersión por Hysplit en Hermosillo
Son 85
llustración 67. Modelación de trayectorias y dispersión por Hysplit en Nacozari de
García, Son
Ilustración 68. Modelación de trayectorias y dispersión por Hysplit en Imuris, Son. 86
Ilustración 69. Modelación de trayectorias y dispersión por Hysplit en Santa Ana
Son8'
llustración 70. Modelación de trayectorias y dispersión por Hysplit en San Miguel de
Horcasitas, Son8
Ilustración 71. Modelación de trayectorias y dispersión por Hysplit en Trincheras
Son88
llustración 72. Modelación de trayectorias y dispersión por Hysplit en Villa Hidalgo
Son88
Ilustración 73. Modelación de trayectorias y dispersión por Hysplit en Ahumada
Chih89
Ilustración 74. Modelación de trayectorias y dispersión por Hysplit en Batopilas
Chih89
Ilustración 75. Modelación de trayectorias y dispersión por Hysplit en Chinipas de
Almada, Chih90
Ilustración 76. Modelación de trayectorias y dispersión por Hysplit en Hidalgo de
Parral, Chih9
Ilustración 77. Modelación de trayectorias y dispersión por Hysplit en Janos, Chih9
Ilustración 78. Modelación de trayectorias y dispersión por Hysplit en Madera, Chih
Ilustración 79. Modelación de trayectorias y dispersión por Hysplit en Moris, Chih. 92
Ilustración 80. Modelación de trayectorias y dispersión por Hysplit en San Francisco
del Oro, Chih9
Ilustración 81. Modelación de trayectorias y dispersión por Hysplit en Urique, Chih.9
Ilustración 82. Modelación de trayectorias y dispersión por Hysplit en Urachi, Chih
94
Ilustración 83. Modelación de trayectorias y dispersión por Hysplit en Acaponeta
Nay94
Ilustración 84. Modelación de trayectorias y dispersión por Hysplit en Huijicori, Nay
Ilustración 85. Modelación de trayectorias y dispersión por Hysplit en Jala, Nay 9

Ilustración 86. Modelación de trayectorias y dispersión por Hysplit en La Yesca, Nay
Ilustración 87. Modelación de trayectorias y dispersión por Hysplit en Rosamorada
Nay96
Ilustración 88. Modelación de trayectorias y dispersión por Hysplit en Ruíz, Nay97 Ilustración 89. Modelación de trayectorias y dispersión por Hysplit en Santa María
del Oro, Nay98
Ilustración 90. Modelación de trayectorias y dispersión por Hysplit en Santiago
Ilustración 91. Modelación de trayectorias y dispersión por Hysplit en Candela, Coah
Ilustración 92. Modelación de trayectorias y dispersión por Hysplit en Castaños Coah99
Ilustración 93. Modelación de trayectorias y dispersión por Hysplit en Ocampo
Ilustración 94. Modelación de trayectorias y dispersión por Hysplit en Parras, Coah
Ilustración 95. Modelación de trayectorias y dispersión por Hysplit en Saltillo, Coah.
Ilustración 96. Modelación de trayectorias y dispersión por Hysplit en Viesca, Coah
Ilustración 97. Modelación de trayectorias y dispersión por Hysplit en Ahualulco del Mercado, Jal
Ilustración 98. Modelación de trayectorias y dispersión por Hysplit en Ameca, Jal. 102
Ilustración 99. Modelación de trayectorias y dispersión por Hysplit en Atenguillo, Jal103
Ilustración 100. Modelación de trayectorias y dispersión por Hysplit en Chimaltitlán
Ilustración 101. Modelación de trayectorias y dispersión por Hysplit er
Ilustración 102. Modelación de trayectorias y dispersión por Hysplit en Lagos de Moreno, Jal104
Ilustración 103. Modelación de trayectorias y dispersión por Hysplit en Mixtlán, Jal

Ilustración 104. Modelación de trayectorias y dispersión por Hysplit en Talpa de
Allende, Jal105
Ilustración 105. Modelación de trayectorias y dispersión por Hysplit en Jilotlán de
Los Dolores, Jal106
Ilustración 106. Modelación de trayectorias y dispersión por Hysplit en Tequila, Jal
Ilustración 107. Modelación de trayectorias y dispersión por Hysplit en Huajapan de León, Oax107
Ilustración 108. Modelación de trayectorias y dispersión por Hysplit en Romero
Avendaño, Oax 108
Ilustración 109. Modelación de trayectorias y dispersión por Hysplit en San Jerónimo
Taviche, Oax 108
Ilustración 110. Modelación de trayectorias y dispersión por Hysplit en San Juar
Lajarcia, Oax109
Ilustración 111. Modelación de trayectorias y dispersión por Hysplit en San Juar
Mazatlán, Oax 109
Ilustración 112. Modelación de trayectorias y dispersión por Hysplit en Santo
Domingo Tonalá, Oax110
Ilustración 113. Modelación de trayectorias y dispersión por Hysplit en Santa María
Peñoles, Oax110
Ilustración 114. Modelación de trayectorias y dispersión por Hysplit en San Migue Peras, Oax11
Ilustración 115. Modelación de trayectorias y dispersión por Hysplit en San Migue
Tiquiapam, Oax
Ilustración 116. Modelación de trayectorias y dispersión por Hysplit en San Pedro
Quiatoni, Oax
Ilustración 117. Modelación de trayectorias y dispersión por Hysplit en Cocula, Gro.113
Ilustración 118. Modelación de trayectorias y dispersión por Hysplit en Coyuca de
Catalán, Gro.
Ilustración 119. Modelación de trayectorias y dispersión por Hysplit en Cuetzala de
Progreso, Gro114
Ilustración 120. Modelación de trayectorias y dispersión por Hysplit en Eduardo Neri
Gro114
Ilustración 121. Modelación de trayectorias y dispersión por Hysplit en Pedro
Ascencio Alquisieras, Gro115

Ilustración 122. Modelación de trayectorias y dispersión por Hysplit en Pilcaya, Gro
115
Ilustración 123. Modelación de trayectorias y dispersión por Hysplit en Taxco, Gro. 116
Ilustración 124. Modelación de trayectorias y dispersión por Hysplit en Zirandaro,
Gro116
Ilustración 125. Modelación de trayectorias y dispersión por Hysplit en Arteaga,
Mich117
Ilustración 126. Modelación de trayectorias y dispersión por Hysplit en Contepec
Mich117
Ilustración 127. Modelación de trayectorias y dispersión por Hysplit en Lázaro
Cárdenas, Mich118
Ilustración 128. Modelación de trayectorias y dispersión por Hysplit en Madero, Mich.
118
Ilustración 129. Modelación de trayectorias y dispersión por Hysplit en Maravatío,
Mich119
Ilustración 130. Modelación de trayectorias y dispersión por Hysplit en Sengui, Mich.
119
Ilustración 131. Modelación de trayectorias y dispersión por Hysplit en Tecalcatepec
Mich120
Ilustración 132. Modelación de trayectorias y dispersión por Hysplit en Tlalpujahua,
Mich120
Ilustración 133. Modelación de trayectorias y dispersión por Hysplit en Tumbiscatio
Mich121
Ilustración 134. Modelación de trayectorias y dispersión por Hysplit en Baja
California Sur121
Ilustración 135. Modelación de trayectorias y dispersión por Hysplit en Armadillo de
los Infantes, SLP122
Ilustración 136. Modelación de trayectorias y dispersión por Hysplit en Cerro San
Pedro, SLP123
Ilustración 137. Modelación de trayectorias y dispersión por Hysplit en Charcas, SLP
123
Ilustración 138. Modelación de trayectorias y dispersión por Hysplit en Guadalcazar,
SLP124
Ilustración 139. Modelación de trayectorias y dispersión por Hysplit en Salinas, SLP.
124

Ilustración 140. Modelación de trayectorias y dispersión por Hysplit en San Luis
Potosí, SLP125
llustración 141. Modelación de trayectorias y dispersión por Hysplit en Soledad de
Graciano, SLP125
llustración 142. Modelación de trayectorias y dispersión por Hysplit en Vanegas, SLP.
126
llustración 143. Modelación de trayectorias y dispersión por Hysplit en Villa de
Ramos, SLP126
llustración 144. Modelación de trayectorias y dispersión por Hysplit en Villa de
Reyes, SLP127

Índice de Tablas

Tabla 1. Cantidades de mercurio emitidas por minería a pequeña escala a l	nivel
mundial(Kocman et al., 2017)	20
Tabla 2. Municipios y estaciones funcionando en Sinaloa	31
Tabla 3. Municipios y estaciones funcionando en Durango	33
Tabla 4. Municipios y estaciones funcionando en Zacatecas	34
Tabla 5. Municipios y estaciones funcionando en Sonora	36
Tabla 6. Municipios y estaciones funcionando en Chihuahua	39
Tabla 7. Municipios y estaciones funcionando en Nayarit	41
Tabla 8. Municipios y estaciones funcionando en Coahuila	42
Tabla 9. Municipios y estaciones funcionando en Jalisco	43
Tabla 10. Municipios y estaciones funcionando en Oaxaca	45
Tabla 11. Municipios y estaciones funcionando en Guerrero	47
Tabla 12. Municipios y estaciones funcionando en Michoacán	49
Tabla 13. Municipios y estaciones funcionando en San Luis Potosí	51
Tabla 2. Estados con extracción de oro artesanal de cada informe	52
Tabla 3. Municipios que extraen oro artesanal con número de personas	que
participan y emisiones de mercurio que generan	56

Antecedentes

Las Naciones Unidas preocupadas por los efectos nocivos en la salud del mercurio y por su presencia en altas concentraciones en diferentes países, propuso el tratado internacional llamado Convenio de Minamata, el cual tiene como fin proteger la salud humana y al medio ambiente de las emisiones y liberaciones antropogénicas de este elemento y de sus compuestos.

El origen de este Conviene es del año de 2003, cuando se presentó el trabajo de la Evaluación Mundial del Mercurio, en el 22° periodo de sesiones del Programa de las Naciones Unidas para el Medio Ambiente, el cual demostró que el mercurio tiene efectos adversos a nivel mundial y que eran necesario el uso de medidas internacionales.

Debido a los resultados alarmantes de contaminación de mercurio, en el año 2005 se crea la Asociación Mundial sobre el Mercurio del Programa de Naciones Unidas para el Medio Ambiente, con siglas PNUMA, cuyas áreas principales son (PNUMA, 2014):

- Reducción del uso de mercurio en la extracción de oro artesanal y en pequeña escala.
- Control del mercurio emitido en la combustión del carbón.
- Reducción del mercurio en el sector cloro-álcali.
- Reducción de mercurio en diferentes productos.
- Investigación del transporte atmosférico del mercurio y su destino en los compartimientos ambientales.
- Gestión de desechos con mercurio.
- Suministro y almacenamiento de mercurio.
- Reducción del mercurio en la industria del cemento (ONU, 2017).

Después de varios debates, para el año 2009 se inician las negociaciones de un convenio mundial, con la participación de instituciones intergubernamentales y no gubernamentales.

En el año de 2013 se logra el acuerdo del Convenio de Minamata, el cual se firma octubre del mismo año y el 16 de agosto de 2017 entra en vigor a nivel mundial, siendo en septiembre del 2017 la Primera Conferencia en Ginebra del Convenio.

Este Convenio recibe su nombre de la intoxicación por mercurio que se encontró en 1956 en la Bahía de Minamata, en donde dos hermanas de edades de 2 y 5 años fueron diagnosticadas de envenenamiento por mercurio presentando efectos irreversibles, que antes no se habían encontrado en el mundo. Este problema ha ocurrido en otras partes del mundo en años posteriores y se le denomina como La Enfermedad de Minamata (ONU, 2017).

El propósito del Convenio es analizar el ciclo de vida del mercurio y ayudar a los países a buscar mejores prácticas y cambiar a alternativas tecnológicas libres de mercurio. Buscan eliminar el uso del mercurio en diferentes equipos electrónicos o buscar su sustitución con el fin de eliminar su circulación y con esto evitar la acumulación de este en el ambiente.

Propiedades del Mercurio

El mercurio es el único metal líquido que existe en la naturaleza a temperatura ambiente, tiene un color blanco plateado, es inodoro a temperatura ambiente y tiene como propiedad que se volatiliza fácilmente, ya que ebulle a 357°C. Otra de sus características importantes es que forma amalgamas con algunos minerales, entre ellos el oro, la plata y el platino (Lenntech, 2021).

Ilustración 1. El mercurio en estado natural (Lenntech, 2021)

La emisión del mercurio de forma natural puede ser por emisiones de origen geogénico, por quema de biomasa, por acumulación en océanos, cuerpos de agua, suelos y vegetación.

Las emisiones antropogénicas son a través de la quema de productos fósiles, minería, fundición, combustión de residuos sólidos y por la aplicación de fertilizantes en la agricultura y en las aguas residuales. También por su uso en aplicaciones y en varios procesos productivos como

catalizador, en aparatos eléctricos y electrónicos de medición, en la extracción de metales, en el uso en termómetros, barómetros, en lámparas de vapor de mercurio y en los electrodos de referencia de calomel en electroquímica.

Mercurio y Medio Ambiente

El mercurio liberado al ambiente ya sea por emisiones directas antropogénicas o naturales, va a tener como destino final el suelo y las aguas superficiales. Este elemento no se elimina de la naturaleza, a lo largo del tiempo va aumentando su concentración por las actividades antropogénicas y puede moverse por la naturaleza.

Las emisiones antropogénicas son por mucho mayores que las naturales, lo que ocasiona que se vaya acumulando a lo largo del tiempo, y su destino son los océanos en donde por evaporación puede volver a llegar a la atmósfera y regresando a suelos y ríos a través de la lluvia, las cantidades de mercurio emitidas por sus diferentes fuentes y su deposición, se puede ver a continuación (ONU, 2019):

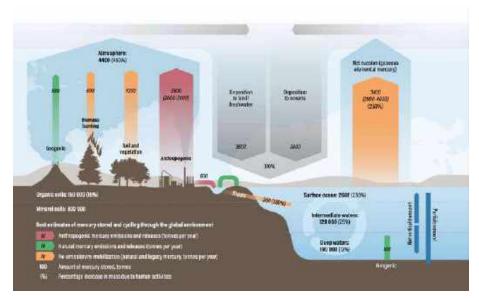


Ilustración 2. Ciclo del Mercurio (ONU, 2019):

Las principales emisiones antropogénicas según el estudio de la ONU (ONU, 2019), son la generación de energía, las fuentes industriales, los residuos y el uso de mercurio en el oro artesanal o en pequeña escala. Esas emisiones se

han modelado a nivel mundial y se ha encontrado que para México las emisiones principales corresponden a la minería en pequeña escala, de oro artesanal y por fuentes industriales:

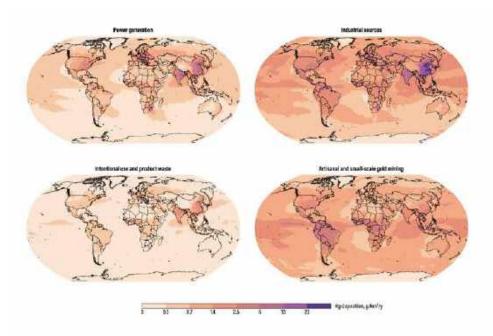


Ilustración 3. Modelación de las Principales Actividades que general emisiones de mercurio en el mundo (ONU, 2019)

Como ya se mencionó, una vez en el ambiente, el mercurio es muy persistente y es nocivo. Al encontrarse en la atmósfera, puede viajar largas distancias y llegar a lugares lejanos. Siendo su destino final los océanos. La localización de la liberación de mercurio en cuerpos de agua y su transporte a los océanos a partir de diferentes actividades humanas a nivel mundial, se encuentra en el siguiente mapa, siendo México en la región norte del país un importante aportador de mercurio en sus efluentes al océano.

El mercurio de fondo se libera de suelos erosionados o de origen de sedimentos, pero el inventario de emisiones a nivel mundial en ríos es el siguiente:

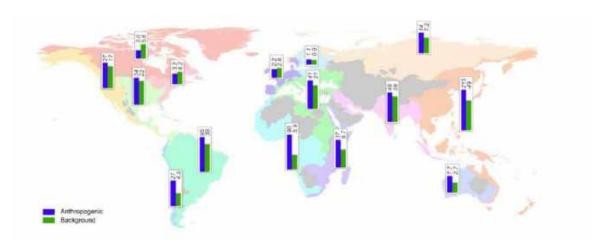


Ilustración 4.Suma de emisiones antropogénicas de Hg y de misiones de fondo de mercurio en ríos (Kocman et al., 2017)

La liberación de mercurio a los ríos de los ecosistemas en el mundo, provienen en su mayoría de las actividades antropogénicas, de las cuales la que presenta mayor importancia es a partir de la minería de oro artesanal o a pequeña escala.

Tabla 1. Cantidades de mercurio emitidas por minería a pequeña escala a nivel mundial(Kocman et al., 2017)

Fuente	Promedio de liberación Mg/ año
Fondo terrestre	170 – 300
Origen an	tropogénico
Fuentes de origen	50 - 600
Minería por oro artesanal y en	500 – 1260
pequeña escala	

Se considera que el 50% de las liberaciones de mercurio es directamente al agua, y en los océanos se presentan diferentes reacciones y deposición y de re suspensión (ONU, 2019).

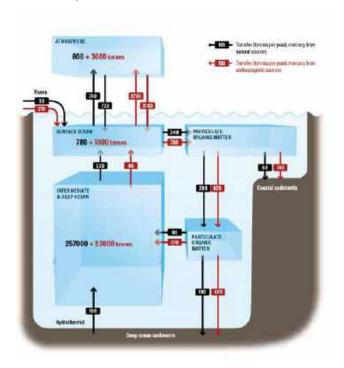


Ilustración 5. Transporte y deposición del mercurio en océanos por fuentes naturales y antropogénicas (ONU, 2019)

El mercurio en la naturaleza se encuentra como compuesto inorgánico en forma de sulfuro de mercurio II, conocido como cinabrio, del cual se extrae, o de forma orgánica formando al metil mercurio. El mercurio puro emitido es transformado por las bacterias formando metil mercurio. Éste último es muy importante ya que puede sufrir un proceso de acumulación en peces y mariscos, en donde a través de la cadena alimenticia sufre un proceso de bioamplificación.

Pero los estudios han demostrado que el mercurio también afecta a diferentes especies de los ecosistemas y se acumula en la biota, los estudios

de muestreos de diferentes lugares en el mundo se han analizado, encontrando su dispersión en la biota por todo el planeta (ONU, 2019).

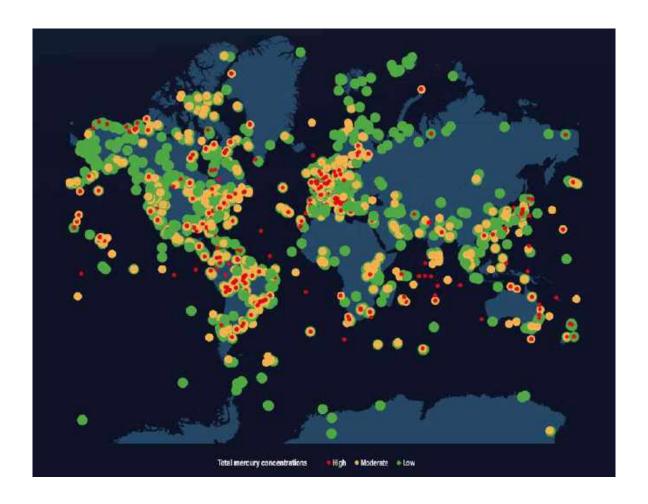


Ilustración 6. Concentraciones de mercurio medidas en la biota de diferentes partes del mundo (ONU, 2019)

Mercurio en la salud humana

El mercurio es una sustancia que representa un problema de salud pública mundial para la Organización Mundial de la Salud ya que, al no eliminarse del ambiente, es un riesgo para la población.

Una vez que el mercurio es transformado por las bacterias a metil mercurio, pude entrar al cuerpo humano a través de los alimentos, siendo la fuente de exposición principal la oral a través de su consumo de pescados y mariscos contaminados con metil mercurio. Otra fuente puede ser por inhalación de vapores, al realizar trabajos específicos (OMS, 2017a, 2017b).

Algunos factores que determinan los efectos del mercurio en la salud son: la dosis, la forma de mercurio, la edad (la etapa fetal es más vulnerable), el tiempo y vía de exposición.

La exposición intrauterina del metil mercurio por consumo materno de pescados o mariscos es el daño al cerebro y al sistema nervioso en pleno desarrollo del feto, causando alteración del desarrollo neurológicos que puede afectar el pensamiento cognitivo, la memoria, la capacidad de concentración, daño en el lenguaje, en las aptitudes motoras y espaciovisuales finas del niño.

En cuanto a la exposición crónica por la ingestión de pescados y mariscos contaminados en poblaciones que subsisten de la pesca se ha observado leve retraso mental en 1.5 a 17 de cada mil niños.

El mercurio y metil mercurio son tóxicos y dañan el sistema nervioso central y periférico. Por inhalación de vapor de mercurio además del ataque al sistema nervioso, también ataca al sistema inmunológico, al aparato digestivo, a los pulmones y riñones, pudiendo presentarse consecuencias fatales.

Otros efectos del mercurio son temblores, insomnio, pérdida de memoria, efectos neuromusculares, cefalea o disfunciones cognitivas y motoras (OMS, 2017a. 2017b)

Por todos los efectos mencionados anteriormente, tanto la ONU como la OMS están preocupados en buscar la forma de eliminar al mercurio del ambiente y acabar con la minería de mercurio y su uso en la extracción de oro artesanal y de pequeña escala, ya que en ella es donde se encuentran

expuestas las personas a altas concentraciones por la inhalación de vapores de mercurio.

Mercurio en Minería Artesanal

Uno de los principales fines del Convenio de Minamata es eliminar al mercurio de su uso en la minería artesanal. Esta minería como su nombre lo indica se basa en usar técnicas ancestrales y uno de los principales emisores es América Latina, así que la PNUMA se ha enfocado en eliminar la práctica a través de apoyo a los diferentes países para la eliminación de este.

En América Latina, el mercurio se emplea en la extracción de oro y plata desde su antigüedad, a través de la minería artesanal. El mercurio es muy útil porque permite formar una amalgama que separa al oro de los otros metales y minerales que se encuentran contaminándolo durante su proceso de extracción.

Este tipo de minería, que se conoce como minería artesanal es una fuente importante de ingresos para los mineros. A nivel mundial participan entre 10 y 15 millones de personas, de las que 4.5 millones son mujeres y también se considera que participan 1 millón son niños, esta actividad se presenta sobre todo en África, América Latina y el Caribe (UNEP, 2008).

Liberaciones estimadas de Hg provenientes de la minería de oro artesanal y en pequeña escala a los sistemas terrestres tanto agua y suelo, con contribuciones por país a nivel mundial presentan de las mayores contribuciones para el ambiente en los diferentes países del mundo, principalmente en Asia, África y América Latina (IPEN, 2017).

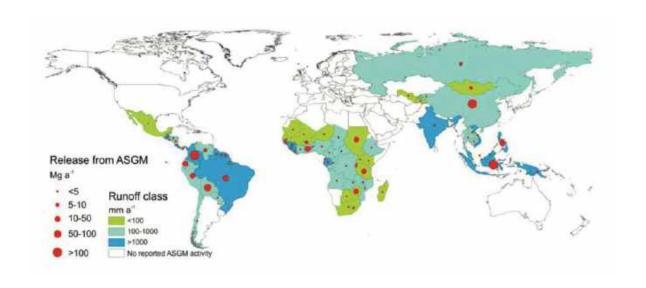


Ilustración 7.Liberación de mercurio por minería de oro artesanal y en pequeña escala

El principal problema que genera este tipo de minería es que la eliminación del mercurio amalgamado con el oro, que lo hacen por medio del proceso de volatilización, aprovechando el bajo punto de ebullición del mercurio y generando como consecuencia vapores de mercurio, a los que los mineros y sus familias se exponen, estando en contacto con elevadas concentraciones (PNUMA, 2014).

En más de 50 países alrededor del mundo se utiliza al mercurio en este tipo de minería. Varios factores que han intervenido para que se realice esta práctica es el aumento en el precio del oro y que las comunidades dedicadas a esta práctica son de escasos recursos.

La minería artesanal y pequeña escala produjo el 15 % del oro mundial durante 2018, con un total de 550 toneladas (Escala, 2019).

Como ya se observó en los mapas de modelaciones de emisiones de mercurio a nivel mundial, las principales emisiones de mercurio al ambiente en Latinoamérica y el Caribe proviene de la minería de oro artesanal. Entre 2007 y 2009 se produjeron 13 toneladas de oro artesanal en México, y su producción ha ido en aumento, encontrándose concentrado en solamente

unos estados del país. Esta minería son los principales consumidores de mercurio. En el caso de la extracción de mercurio, se sabe que hay más de 1000 mineros en las ciudades de Camargo, San Gaspar, Bucareli y Plazuela, con más de 40,000 personas que participan de forma indirecta (Marshall et al. 2021) distribuidas en 189 minas de mercurio.

La minería de oro artesanal en México aporta el 2.9% de la producción total minero- metalúrgica. Esta minería es rudimentaria y se da de manera ilegal, por lo que los mineros al no contar con la última tecnología y la protección necesaria tienen un promedio de vida corta: esta minería se denomina así por usar procedimientos rústicos que general el uso de materiales alta mente contaminantes para la separación del oro, como lo es el mercurio.

En un estudio realizado en 2017, se encontró que la producción de mercurio en México es aproximadamente de 102.22 toneladas, las cuales se llevan a cabo en la Sierra Gorda de Querétaro, en diferentes minas localizadas en lugares de difícil acceso, y la suma de las diferentes minas, puede alcanzar una cifra considerable de mercurio producido en el país (Kocman, 2017).

Las emisiones de mercurio durante su producción en Querétaro, presentas unas concentraciones detectadas en la cercanía de la mina de 9360 ng/m³ hasta 62,940 ng/m³ entre distancias de 0.5 a 6 m, a 1 km de distancia de la mina la concentración detectada fue de 307 ng/m³ durante febrero 2017 y estas concentraciones elevadas permanecían aún elevada cerca de los hornos aún después de 24 h de la producción, la concentración de fondo encontrada en el aire fue de 2 a 5 ng/m³ (Marshall et al., 2021).

En el caso de emisiones de mercurio por su uso en la producción de oro artesanal, hasta ahora solamente existe un estudio que indica que la exposición ocupacional es de 7026 \pm 6857 μ g/m³ durante la volatilización del mercurio; mientras que la exposición de transeúntes es de 1412 \pm 2870 μ g/m³. Las personas que trabajan en el área de volatilización exceden el

límite máximo permisible, que es de 100 μ g/m³, y en 11% la dosis considerada como Peligrosa a la Vida y la Salud, IDLH. Aún los trabajadores que no se encuentran directamente en el área de eliminación de mercurio, exceden el límite máximo permisible (Black et al., 2017).

Para conocer los sitios y la cantidad de personas que participan en la producción de oro artesanal, el INECC encargó un estudio al Servicio Geológico Mexicano, titulado *Generar Información Cualitativa y Cuantitativa de las Fuentes Minero-Metalúrgicas en México*, en donde se realizó un análisis de la producción de oro artesanal en México. En este estudio, se concluyen los posibles municipios en donde se concentra la producción de oro artesanal o por gambusinaje en México (SGM, 2017).

Esta actividad del oro artesanal es no regulada y en la mayoría de los casos es informal, en lugares de difícil acceso, como zonas serranas, cañadas y barrancas, coexistiendo con prácticas de estupefacientes. Sin embargo, la minería pequeña o artesanal que produce 0.3 a 3 kg de oro al día son los mayores contaminantes, en México un estudio realizado en el 2014, indica que la relación de mercurio consumido con respecto al oro producido en México es de 8 (Seccatore et al., 2014), sin embargo los estudios realizados por el INECC y SMG indica que la relación es de 3.

Objetivos

El objetivo del presente trabajo es desarrollar un análisis de la meteorología y transporte de contaminantes en aire de los sitios en México en donde se lleve a cabo la minería de oro artesanal y a pequeña escala empleando mercurio como agente amalgamante e identificando las posibles poblaciones afectadas en las zonas circundantes.

En el primer informe parcial se proporciona la información de las estaciones meteorológicas en los municipios de cada estado en que se encuentra

reportada la presencia de extracción de oro artesanal. La información obtenida es del Servicio Meteorológico Nacional.

Servicio Meteorológico Nacional

En México, el Servicio Meteorológico Nacional es el organismo que proporciona roda la información del estado del tiempo a escala nacional y local. Este organismo depende de la Comisión Nacional del Agua (CONAGUA), que pertenece a la Secretaría del Medio Ambiente y Recursos Naturales.

Dentro de sus funciones se encuentra la vigilancia continua de los fenómenos meteorológicos que pueden afectar la economía y la pérdida de vidas humanas. De igual forma, contiene el acopio de la información climatológica nacional, por lo que cuenta con una red sinóptica integrada por 79 observatorios meteorológicos que transmite en tiempo real la información de las condiciones atmosférica, también cuenta con 16 estaciones de radio sondeo que tienen como fin el cuidar la observación de las capas altas de la atmósfera, contiene una red de 13 radares meteorológicos distribuidos por todo el territorio nacional y estación terrena receptora de imágenes de satélite meteorológicos GOES-8, la cual recibe imágenes cada 30 minutos (SMN, 2021a, 2021c).

En el presente estudio se extrajo la información meteorológica del SMN de las páginas del gobierno y del mapa que se presenta a continuación (SMN, 2021a)..

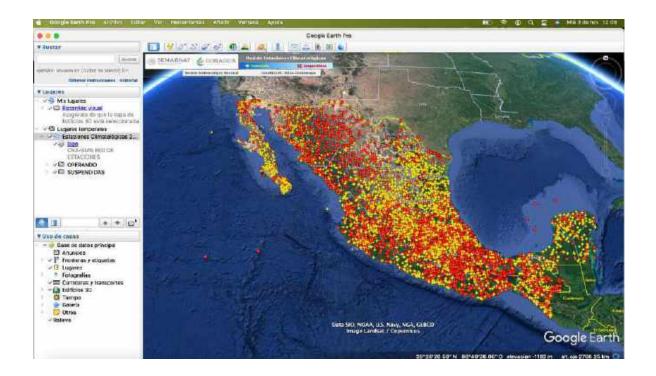


Ilustración 8. Mapa de estaciones meteorológicas en México

De este mapa creado por CONAGUA y SEMARNAT, se extrajo la información meteorológica de los diferentes municipios de los estados en donde se realiza la extracción de oro artesanal, también se analizó el número de estaciones funcionando (en amarillo) y de estaciones suspendidas (rojo).

Obtención de la meteorología de los municipios con actividad de oro artesanal

La información que se va a utilizar para identificar y modelar las poblaciones afectadas es a partir de la investigación realizada en 2017 el Servicio Geológico Mexicano para el Instituto Nacional de Ecología y Cambio Climático y para SEMARNAT, el cual se titula "Generar Información Cualitativa y Cuantitativa de las Fuentes Minero-Metalúrgicas en México" con número de contrato INECC/RPA-001/2017.

Con esta información, se procedió a obtener la información meteorológica de cada municipio, se utilizó como fuente de información las estaciones meteorológicas de CONAGUA y el Sistema Meteorológico Nacional, de cada municipio se sacó:

- la información con coordenadas Geográficas,
- se analizó el número de estaciones funcionando,
- se seleccionó una estación de la que se obtuvo los registros de temperatura mensual media anual de 1980 a 2010,
- se obtuvo la información de precipitación mensual anual de 1980 a 2010,
- y sus coordenadas de localización,
- se obtuvo información de la velocidad de viento,
- se obtuvo la información de la dirección de viento.

Toda la información generada de cada municipio se encuentra en el Anexo 1, a partir de esta información se va a realizar una modelación con el fin de obtener resultados de posible población afectada (los_municipios.mx, 2021; SMN, 2021b)., La información de la meteorología se encuentra en el Anexo 1, el análisis de la meteorología por estado se encuentra en el Primer informe parcia.

Análisis de estaciones Meteorológicas en los estados que se dedican a minería de oro artesanal,


Sinaloa

En el estado de Sinaloa los municipios donde se encontró la actividad gambusina fueron los siguientes, indicando las estaciones totales y las que se encuentran funcionando dentro de cada uno de ellos:

Tabla 2. Municipios y estaciones funcionando en Sinaloa

Estado	Municipio	Estaciones funcionando
	Badiraguato	5 estaciones de 12 funcionando
Sinaloa	Concordia	1 estación de 5 funcionando
	Cosalá	2 estaciones de 6 funcionando
	Culiacán	6 estaciones de 21 funcionando
	Choix	4 estaciones de 10 funcionando
	Elota	1 estación de 4 funcionando
	Escuinapa	1 estación de 3 funcionando
	El Fuerte	3 estaciones de 18 funcionando
	Mazatlán	3 estaciones de 12 funcionando
	Mocorito	1 estación de 3 funcionando
	Rosario	5 estaciones de 12 funcionando
	San Ignacio	1 estación de 5 funcionando
	Sinaloa	2 estaciones de 6 funcionando

En el siguiente mapa se observan las estaciones meteorológicas presentes en el estado de Sinaloa. Este mapa fue creado por SEMARNAT y CONAGUA en Google Earth Pro, en amarillo se encuentran las estaciones que están funcionando y en color rojo las que se encuentran suspendidas.

llustración 9. Mapa de estaciones meteorológicas en el Estado de Sinaloa

En este estado la mayoría de las estaciones se encuentran suspendidas, pero se logró encontrar en cada municipio por lo menos una estación meteorológica funcionando.

Durango

En el estado de Durango se puede observar un menor número de estaciones meteorológicas que en el de Sinaloa, y muchas de las cuales se encuentran suspendidas. En este estado hubo municipios en los que todas las estaciones presentes se encuentran suspendidas, aún con este inconveniente, se logró obtener la información de cada uno de los 28 municipios.

Tabla 3. Municipios y estaciones funcionando en Durango

Estado	Municipio	Estaciones funcionando
	Coneto de Comonfort	1 estación funcionando
	Cuencamé	1 estación de 8 funcionando
	Durango	11 estaciones de 22 funcionando
	General Simón Bolivar	1 estación de 3 funcionando
	Guanaceví	2 estaciones de 5 funcionando
	Indé	2 estaciones suspendidas
	Lerdo	2 estaciones de 4 funcionando
	Mapimí	1 estación de 7 funcionando
	Nombre de Dios	1 estación funcionando
	Ocampo	3 estaciones de 4 funcionando
	El Oro	2 estaciones suspendidas
Durango	Pánuco de Coronado	2 estaciones suspendidas
J	Peñón Blanco	1 estación de 4 funcionando
	Poanas	1 estación de 2 funcionando
	Pueblo Nuevo	2 estaciones de 7 funcionando
	San Bernardo	2 estaciones suspendidas
	San Dimas	4 estaciones de 5 funcionando
	San Juan de Guadalupe	1 estación de 2 funcionando
	San Pedro del Gallo	1 estación de 2 funcionando
	Santa Clara	1 estación suspendida
	Santiago Papasquiaro	2 estaciones de 6 funcionando
	Súchil	2 estaciones de 4 funcionando
	Tamazula	2 estaciones de 4 funcionando
	Tepehuanes	1 estación de 6 funcionando, sin
	i oponiumos	datos
	Tlahualilo	3 estaciones suspendidas
	Topia	1 estación de 4 funcionando
	Vicente Guerrero	1 estación funcionando
	Nuevo Ideal	1 estación de 2 funcionando

En el siguiente mapa del estado de Durango, se puede observar que la mayoría de las estaciones meteorológicas se encuentran suspendidas en este estado.

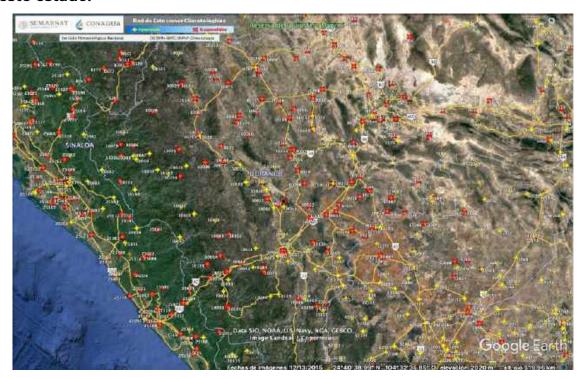


Ilustración 10. Mapa de estaciones meteorológicas en el Estado de Durango

La información que se obtuvo de los municipios en donde están suspendidas, que son Indé, El Oro, Pánuco del Colorado, San Bernardo, Santa Clara y Tlahualilo, es información vieja que se quedó registrada dentro del Servicio Meteorológico Nacional.

Zacatecas

En el estado de Zacatecas se tienen 22 municipios donde se realiza la práctica de gambusinaje y de obtención de oro artesanal.

Tabla 4. Municipios y estaciones funcionando en Zacatecas

Estado	Municipio	Estaciones funcionando
	General Francisco R.	2 estaciones de 4 funcionando

	Murguía	
	General Pánfilo Natera	1 estación sin datos
	Guadalupe	2 estaciones funcionando de 2
	Jiménez del Teul	1 estación funcionando de 1
	Juan Aldama	1 estación funcionando de 1
	Mazapil	11 estaciones de 13 funcionando
	Melchor Ocampo	1 estación de 1 funcionando
Zacatecas	Morelos	1 estación de 1 funcionando
	Ojocaliente	3 estaciones de 3 funcionando
	Pánuco	2 estaciones de 2 funcionando, sólo 1
	rando	con datos
	Pinos	4 estaciones de 5 funcionando
	Río Grande	1 de 2 estaciones funcionando
	El Salvador	2 estaciones de 2 funcionando, sólo 1
	21 34174401	con datos
	Sombrerete	8 de 10 estaciones funcionando
	Vetagrande	1 estación funcionando de 1
	Villa de Cos	1 estación de 3 funcionando
	Villa Hidalgo	1 estación de 1 funcionando
	Zacatecas	5 estaciones de 6 funcionando
	Trancoso	1 estación de 1 funcionando
	Concepción del Oro	1 de 2 estaciones funcionando
	Chalchihuites	1 de 2 estaciones funcionando
	Fresnillo	5 estaciones de 5 funcionando

Este es uno de los estados en donde se encontraron mayor número de estaciones meteorológicas funcionando por municipio, lo cual se puede apreciar en el mapa de CONAGUA y SEMARNAT que crearon en Google Earth Pro.

Ilustración 11. Mapa de estaciones meteorológicas en el Estado de Zacatecas

Sonora

El estado de Sonora es el que presenta el mayor número de municipios en donde se realiza la actividad de extracción y manejo del oro artesanal, los cuales se calcula que son 44. Aún con el gran numero de municipios, solamente 7 de ellos no cuentan con estaciones meteorológicas, 5 por estar suspendidas y 2 en las que no existen estaciones meteorológicas.

Tabla 5. Municipios y estaciones funcionando en Sonora

Estado	Municipio	Estaciones
	Álamos	9 estaciones de 17 funcionando
	Altar	1 estación de 2 funcionando
	Arivechi	1 estación de 2 funcionando
	Arizpe	3 estaciones de 3 funcionando
Sonora	Atil	1 estación de 1 funcionando
	Bacarona	1 estación suspendida
	Bacerac	1 estación de 1 funcionando

Bacoachi	1 estación de 2 funcionando
Baviácora	1 estación de 2 funcionando
Bavispe	1 estación de 3 funcionando
Benjamín Hill	No hay estación, la más cercana es en
вепјатіп пііі	Opodepe
Caborca	No hay estación, la más cercana es en
Caborca	Piquitito
Cajeme	20 estaciones de 27 funcionando
La Colorada	4 estaciones de 8 funcionando
Cucurpe	1 estación de 3 funcionando
Cumpas	1 estación de 2 funcionando
Fronteras	4 estaciones suspendidas
Hermosillo	14 estaciones funcionando de 23
Huachinera	2 estaciones de 2 funcionando
Huásabas	1 estación funcionando de 1
Imuris	4 estaciones de 6 funcionando
Magdalena	4 estaciones de 6 funcionando
Moctezuma	1 estación de 1 funcionando
Nacozari de García	1 estación de 5 funcionando
Onavas	2 estaciones funcionando, 1 con datos
Oquitoa	Más cercana Altar
Pitiquito	2 estaciones de 5 funcionando
Puerto Peñasco	2 estaciones de 3 funcionando
Rayón	1 estación de 1 funcionando
Rosario	1 estación de 4 funcionando
San Javier	1 estación suspendida
San Miguel de	
Horcasitas	3 estaciones de 3 funcionando
San Pedro de la Cueva	2 estaciones suspendidas
Santa Ana	1 estación de 4 funcionando
Sáric	Estación suspendida más cercana con datos Atil
	uatos Atii

Favons	1 estación de 6 funcionando
Soyopa	r estación de 6 funcionarido
Suaqui Grande	2 estaciones suspendidas
Trincheras	2 estaciones funcionando
Tubutama	l estación funcionando con pocos datos
Ures	1 estación de 3 funcionando
Villa Hidalgo	1 estación de 2 funcionando
Villa Pesqueira	1 estación de 2 funcionando con pocos
	datos
Yécora	1 estación de 4 funcionando
Gral. Plutarco Elías	
Calles	1 estación de 3 funcionando

Aún así, el estado tiene una basta red de estaciones meteorológicas, en las Ciudades en donde se encuentra mejor el monitoreo es en Hermosillo y en Cajeme. En Hermosillo se cuenta con 14 estaciones de 23 funcionando, mientras que en Cajeme es mayor el número de estaciones meteorológicas funcionando, llegando a 20 estaciones de 27 funcionando. Lo anterior se puede observar en el mapa de estaciones presentes en el Estado de Sonora que se encuentra a continuación:

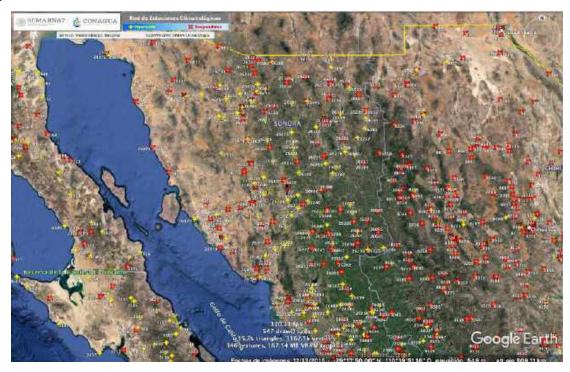


Ilustración 12. Mapa de estaciones meteorológicas en el Estado de Sonora

Chihuahua

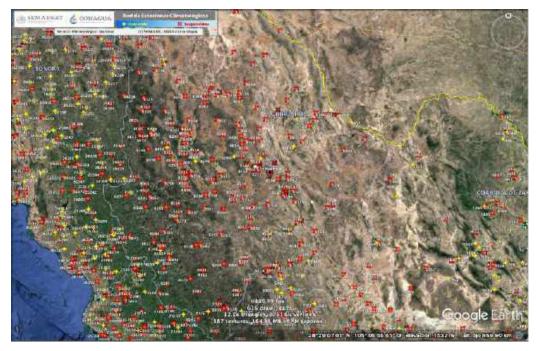

En el estado de Chihuahua se encontró que de los 20 municipios que tienen actividades de gambusinaje, 6 tienen estaciones suspendidas y una de ellas no cuenta con estación meteorológica. En el municipio de Cusihuarichi y San Francisco del Oro, al hacer la revisión se encontró que las estaciones están suspendidas y se observó la presencia de empresas mineras importantes.

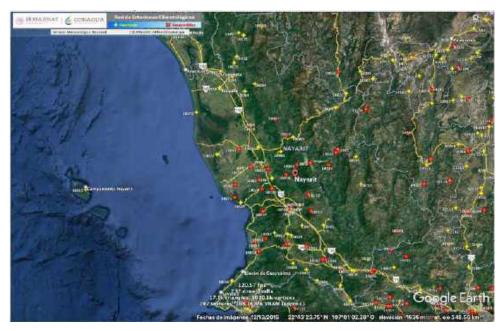
Tabla 6. Municipios y estaciones funcionando en Chihuahua

Estado	Municipio	Estaciones
	Ahumada	7 estaciones suspendidas
	Allende Ascensión	1 estación de 10 funcionando, se incluyeron municipios de Aldama y Ascención
Chihuahua	Batopilas	1 estación de 5 funcionando
	Cusihuarichi	2 estaciones suspendidas con datos viejos, mineras cerca
	Chínipas	1 estación de 3 funcionando
	Guadalupe y Calvo	1 estación de 11 funcionando
	Guazapares	No hay estación
	Hidalgo del Parral	1 estación de 4 funcionando
	Janos	3 estaciones suspendidas y sin datos
	López	1 estación de 2 funcionando
	Madera	1 estación de 13 funcionando
	Maguarichi	1 estación suspendida y sin casi datos
	Matamoros	1 estación suspendida y sin casi datos
	Moris	1 estación de 2 funcionando con

	mineras importantes presentes
Nuevo Casas Grandes	2 estaciones funcionando de 7, sólo 1 con datos
Ocampo	4 estaciones suspendidas
San Fco. Del Oro	2 estaciones suspendidas, hay minera junto a la ciudad
Santa Bárbara	1 estación suspendida, junto a San Francisco del Oro
Urique	1 estación de 4 funcionando
Uruachi	1 estación de 4 funcionando, pero sin datos

En el mapa de estaciones meteorológicas se observa la gran cantidad de estaciones meteorológicas suspendidas, en algunos casos se tomaron los datos de la estación del municipio de al lado para considerar contar con datos necesarios.

llustración 13. Mapa de estaciones meteorológicas en el Estado de Chihuahua


Nayarit

El estado de Nayarit cuenta con 8 municipios con actividad minera por oro artesanal, en este estado se encontró sólo un municipio sin estación meteorológica funcionando, que es en Jala.

Tabla 7. Municipios y estaciones funcionando en Nayarit

Estado	Municipio	Estaciones
	Acaponeta	3 estaciones de 3 funcionando
	Huajicori	5 estacionen funcionando, 1 sin datos
	Jala	No hay estaciones, se consideró la más cercana
	Jaia	Ahuatlán
	Rosamorada	1 estación de 3 funcionando
Nayarit	Ruíz	3 de 5 estaciones funcionando
	St. María del	
	Oro	1 estación funcionando
	Santiago	
	Izcuintla	1 estación de 3 funcionando
	La Yesca	2 estaciones de 3 funcionando, sólo 1 con valores

Sin embargo, en el mapa de las estaciones presentes en el estado, se pueden observar áreas sin ninguna estación meteorológica en zona de montañas.

llustración 14. Mapa de estaciones meteorológicas en el Estado de Nayarit

Coahuila

En Coahuila cada municipio de los 6 en donde se realiza gambusinaje se tienen estaciones meteorológicas que se encuentran funcionando. En la Viesca, aunque las estaciones indican que están funcionando, no se cuentan con los datos de las diferentes variables meteorológicas.

Tabla 8. Municipios y estaciones funcionando en Coahuila

Estado	Municipio	Estaciones
	Candela	1 estación de 2 funcionando
	Castaños	5 estaciones de 6 operando
Coahuila	Ocampo	4 estaciones de 8 funcionando
	Parras	2 estaciones de 5 funcionando
	Saltillo	2 estaciones de 3 funcionando, sólo 1 con
		valores
	Viesca	3 estaciones de 6 funcionando, sin datos

En el mapa de estaciones meteorológicas del estado, se puede observar que como en Nayarit, las zonas de montañas presentan pocas estaciones en amplias extensiones

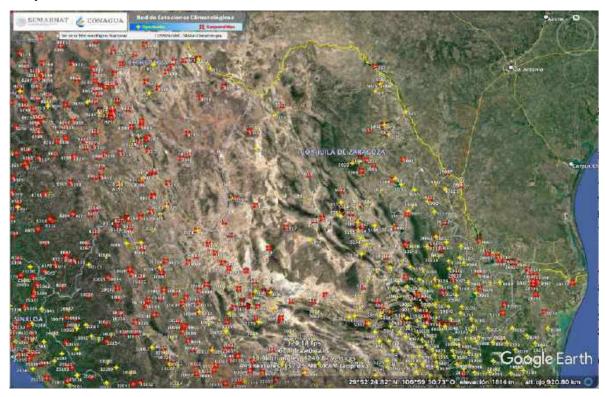


Ilustración 15. Mapa de estaciones meteorológicas en el Estado de Coahuila

Jalisco

El estado de Jalisco cuenta con 17 municipios que realizan la extracción de oro artesanal, sin embargo 4 de ellas tienen estaciones suspendidas: Chimaltitlán, Etzatlán, San Sebastián del Oeste y Tecalitlán, mientras que, en Lagos de Moreno, es el municipio con mayor número de estaciones funcionando que son 7 de 10.

Tabla 9. Municipios y estaciones funcionando en Jalisco

Estado	Municipio	Estaciones
Jalisco	Ahualulco de	
	Mercado	1 estación de 2 funcionando
	Ameca	1 estación

Atenguillo	1 estación de 2 funcionando
Bolaños	1 estación de 2 funcionando
Cabo Corrientes	1 estación de 2 funcionando
Chimaltitán	1 estación suspendida
Etzatlán	3 estaciones suspendidas
Guachinango	1 estación de 2 funcionando
Hostotipaquillo	1 estación de 4 funcionando
Jilotlán de los Dolores	1 estación de 3 funcionando
Lagos de Moreno	7 estaciones de 10 funcionando
Mascota	2 estaciones de 3 funcionando, sólo 1
	con valores
Mixtlán	2 estaciones funcionando
San Sebastián del	
Oeste	1 estación suspendida
Talpa de Allende	2 estaciones de 3 funcionando
Tecalitlán	2 estaciones suspendidas
Tequila	1 estación funcionando

En el mapa de Jalisco se puede observar, que existen muchas estaciones meteorológicas, sin embargo, la mayoría que se encuentra sin funcionar es en zonas montañosas.

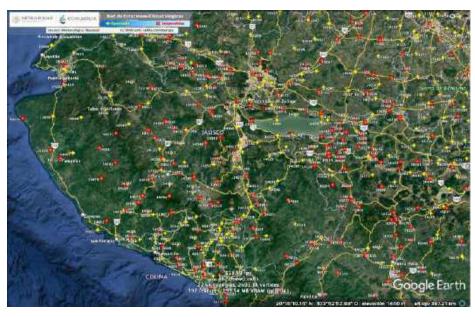


Ilustración 16. Mapa de estaciones meteorológicas en el Estado de Jalisco

Oaxaca

El estado de Oaxaca es otro de los principales en donde se presenta la práctica de extracción de oro artesanal contando con 32 municipios. Sin embargo, también fue el estado en donde se presentó la mayor falta de estaciones meteorológicas, ya que 15 de estos municipios tienen suspendidas sus operaciones, y en 12:

Tabla 10. Municipios y estaciones funcionando en Oaxaca

Estado	Municipio	Estaciones
	Coicoyán de las Flores	1 estación suspendida
	Heroica Ciudad de	
	Huajuapan de León	1 estación de 6 funcionando
	Matías Romero Avendaño	4 suspendidas
	Ocotlán de Morelos	1 estación suspendida
	San Antonio Huitepec	1 estación suspendida

	San Baltazar Chichicápam	1 estación suspendida más cercana San Jerónimo Taviche
	San Bartolo Yautepec	1 estación suspendida
	San Bernardo Mixtepec	No hay estaciones, la más cercana
	·	esta después de montañas
Oaxaca	San Carlos Yautepec	1 estación funcionando
	San Dionisio Ocotepec	No hay estación
		No hay estación la más cercana es
	San Jerónimo Silacayoapilla	la Heroica Ciiudad de Huajapan de
		León
	San Jerónimo Taviche	1 estación suspendida
	San Juan Cotzocón	1 estación suspendida
	San Juan Lajarcia	1 estación suspendida
	San Juan Lalana	No hay estación
	San Juan Mazatlán	1 estación suspendida
	San Juan Tamazola	No hay estación
	San Marcos Arteaga	1 estación suspendida
	San Miguel Peras	No hay estación
	San Miguel Tilquiápam	No hay estación
	San Pedro Quiatoni	1 estación suspendida
	San Pedro Taviche	No hay estación
	San Pedro Totolápam	2 estaciones suspendidas
	Santa Ana del Valle	No hay estación
	Satan Catarina Minas	No hay estación
	Santa María Peñoles	No hay estación
	Santiago Yaveo	1 estación suspendida
	Santo Domingo Tonalá	1 estación suspendida
	Teotitlán del Valle	No hay estación
	Tezoatlán de Segura y Luna	1 estación suspendida
	Tlacolula de Matamoros	1 estación suspendida
	Villa Díaz Ordaz	1 estación con pocos datos

Esta falta de estaciones meteorológicas es fácilmente observable en el mapa del estado, en donde se puede apreciar su poca presencia y que la mayoría de ellas se encuentran suspendidas.

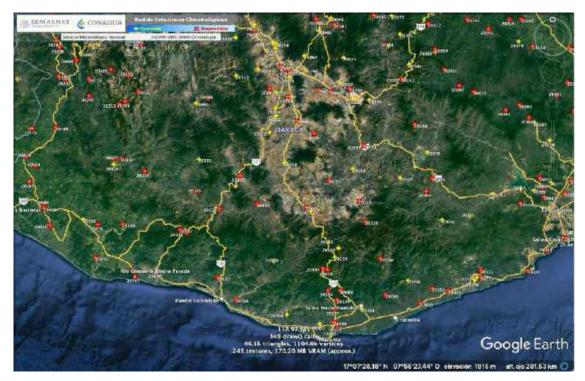


Ilustración 17. Mapa de estaciones meteorológicas en el Estado de Oaxaca

Guerrero

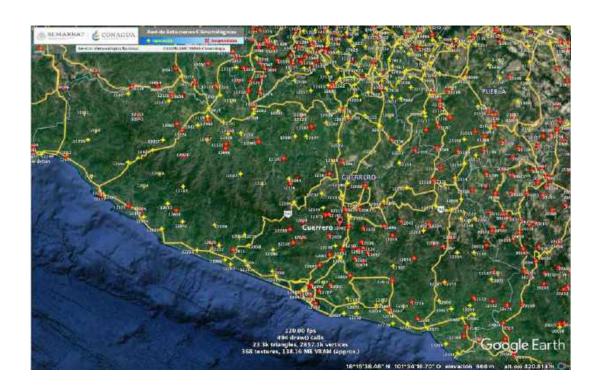

El estado de Guerrero presentó en todos los municipios reportados en donde se realiza la práctica de extracción de oro artesanal, por lo menos una estación meteorológica funcionando, Coyuca de Catalán fue el lugar con mayor numero de estaciones funcionando que es de 6.

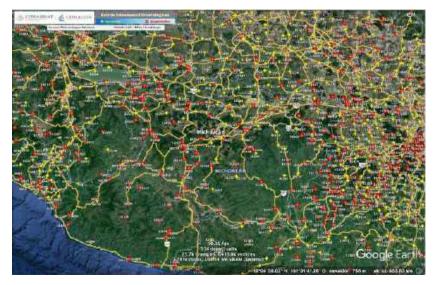
Tabla 11. Municipios y estaciones funcionando en Guerrero

Estado	Municipio	Estaciones
Guerrero	Cocula	1 estación funcionando
	Coyuca de Catalán	6 estaciones de 10 funcionando

Cuetzala del Progreso	1 estación de 2 funcionando
Pedro Ascencio	1 estación funcionando
Pedro Ascencio Alquisiras	1 estación funcionando
Pilcaya	3 estaciones funcionando
Taxco de Alarcón	2 estaciones de 4 funcionando
Tetipac	1 estación funcionando
Zirándaro	2 estaciones de 3 funcionando
Eduardo Neri	1 estación funcionando

En el mapa del estado de Guerrero se puede observar que hay estaciones funcionando repartidas por todo el estado, lo cual no se presenta en los estados de Chihuahua y Nayarit.

llustración 18. Mapa de estaciones meteorológicas en el Estado de Guerrero


Michoacán

El estado de Michoacán, que cuenta con 9 municipios en donde se practica el gambusinaje, al igual que en el estado de Oaxaca, se presentan muchas estaciones meteorológicas suspendidas, tal es el caso de Arteaga, Madero, Lázaro Cárdenas y Tumbiscatio; mientras que en Tlalpujahua no existe ninguna estación meteorológica:

Tabla 12. Municipios y estaciones funcionando en Michoacán

Estado	Municipio	Estaciones		
Michoacán	Arteaga	4 estaciones suspendidas		
	Contepec	1 estación de 3 funcionando		
	Madero	3 estaciones suspendidas		
	Maravatío	2 estaciones de 5 funcionando		
	Lázaro Cárdenas	3 estaciones suspendidas		
	Senguio	1 estación de 2 funcionando		
	Tepalcatepec	1 estación de 4 funcionando y con pocos datos		
	Tlalpujahua	No hay estación		
	Tumbiscatio	2 estaciones suspendidas más cercana Arteaga		

Al igual que en otros estados como Nayarit y Chihuahua, en el mapa de estaciones meteorológicas del estado, se encuentran amplias extensiones sin estaciones y se puede observar que la mayoría se encuentran suspendidas.

Baja California Sur

En Baja California, el único municipio con actividad de gambusinaje es el de La Paz, el cual cuenta con dos estaciones meteorológicas, de las cuales solamente una se encuentra funcionando.

En este estado se puede ver en su mapa que existen estaciones meteorológicas esparcidas de forma homogénea, la mayoría de las cuales se encuentran funcionando.

Ilustración 20. Mapa de estaciones meteorológicas en el Estado de Baja California Sur

San Luis Potosí

El estado de San Luis Potosí es otro de los lugares en donde se tienen la mayoría de sus estaciones funcionando en los 10 municipios en donde se realiza la extracción de minería de oro artesanal. Únicamente en el municipio de Cerro de San Pedro no existe estación.

Tabla 13. Municipios y estaciones funcionando en San Luis Potosí

Estado	Municipio	Estaciones		
	Armadillo de los Infante	1 estación funcionando		
	Cerro de San Pedro	No hay estación		
	Charcas	6 estaciones de 7 funcionando		
	Guadalcázar	4 estaciones funcionando		
	Salinas	4 estaciones funcionando		
	San Luis Potosí	5 estaciones funcionando		
	Soledad de Graciano			
	Sánchez	2 estaciones de 3 funcionando		
	Vanegas	1 estación funcionando		
San Luis Potosí	Villa de Ramos	3 estaciones de 4 funcionando		
	Villa de Reyes	2 estaciones de 3 funcionando		

En el mapa de estaciones meteorológicas de San Luis se puede observar que casi todas se encuentran funcionando y que al igual que en Baja California Sur están distribuidas de manera homogénea.

Transporte de contaminantes en aire de los sitios en México en donde se lleve a cabo la minería de oro artesanal y a pequeña escala

Para realizar las modelaciones se revisaron dos informes que se habían realizado para el INECC dentro del Convenio de Minamata. Uno de ellos del Servicio Geológico Mexicano y el otro realizado por el Ing. Francisco Javier Jiménez Nava, el principal problema que se encontró fue la diferencia de estados en los que se encuentra la presencia de oro artesanal:

Estados SGM	Estados Nava		
BCS	Aguascalientes		
Chihuahua	Baja california		
Coahuila	Chihuahua		
Durango	Durango		
Guerrero	Estado de México		
Jalisco	Guanajuato		
Michoacán	Querétaro		
Nayarit	Hidalgo		
Oaxaca	Jalisco		
San Luis Potosí	Michoacán		
Sinaloa	Nayarit		
Sonora	Oaxaca		
Zacatecas	Querétaro		
	San Luis Potosí		
	Sonora		
	Zacatecas		

Tabla 14. Estados con extracción de oro artesanal de cada informe.

Así que se procedió a analizar la información de cada informe:

Informe del Servicio Geológico Mexicano

Para determinar el número y localización de minas, se realizaron visitas de campo y se recolectaron muestras de los minerales, posteriormente, para determinar el número de personas dedicadas al gambusinaje se determinó a partir del uso de un polígono de tamaño 10 km x 10 km de celda , quedando el territorio mexicano dividido en 214 renglones con 301 columnas que dieron 64,414 polígonos de 100 km².

De este, se obtuvieron los clúster que son los pequeños grupos de mineros que utilizan técnicas tradicionales de extracción de mineral, de éstos, 2,701 registraron presencia de minas, lo que equivale a 270,100.00 km2, en cada uno de los 2,701 clústers existen entre 1 y 10 minas.

Informe del Ing. Francisco Javier Jiménez Nava

Este informe titulado: "Determinación de la Línea Base para el Desarrollo del Plan de Acción Nacional de Minería de Oro Artesanal y a Pequeña Escala en México", en este último documento se utilizó en la localización de la minería artesanal, con el análisis de:

- 1. Exploración de la plataforma GeoInfoMex
- 2. Revisión de los documentos denominados Panorama Estatal Minero
- 3. Análisis espacial de capas vectoriales

De ahí con información del SGM utilizaron las capas de aprovechamiento de oro que tenían como descriptor abandonada o manifestación pequeña de mineral in situ y posteriormente la información se pasó al mapa de Cuencas 250 CNA en donde se identificación 110 cuencas.

Resultado del análisis de los informes

Con la información analizada, se encontró que en el caso del presente estudio de modelación y para fines prácticos convenía usar la información generada por el SGM, ya que contaba con los municipios y además contenía el número de personas que trabajan en cada estado, mientras que en el informe del Ing. Nava no se especificaban los municipios, solamente los que se encuentran en mayor proporción en cada cuenca, y al mismo tiempo no maneja número de personas que trabajan por municipios.

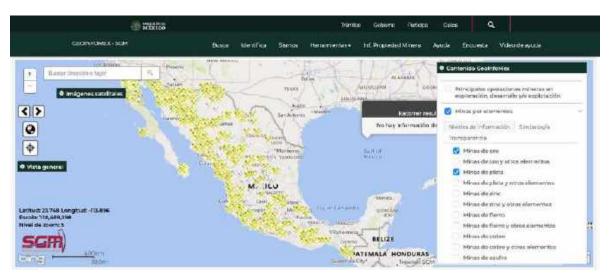
A partir de la información recabada, se conoce que trabajan por clúster entre 5 a 7 personas. Cada clúster consume 10 kg de mercurio al mes, en una tauta procesan entre 500 a 800 kg de mineral al día, del cual se contiene entre 10 y 30 g/ton de oro y del que se recupera entre 50 a 60% del oro total. Al material de molienda de la cantidad de oro se le añade 10 veces la cantidad de mercurio. En un turno de 12 horas se muelen 500 kg de mineral, del que se obtienes entre 10 a 15 g de oro, obteniendo de 45 a 150 g de oro a la semana, de la cual la cantidad se encuentra en proporción 2 a 1 en la formación de la amalgama (SGM, 2017).

Una vez que se tiene la amalgama se quema en un crisol, o en una especie de mufla o incluso en un comal, en algunos casos se usa una especie de retorta para condensar y recuperar parte de los vapores del mercurio. Cabe señalar que esta actividad sólo se realiza 8 meses al año, el resto del tiempo las personas se dedican a la agricultura o a alguna otra actividad que les dé dinero, por lo general no se lleva a cabo en época de lluvias o con la crecida del río.

Determinación de cantidad de emisión

Con la información obtenida, se sabe que al día se producen 15 g de oro, por lo que se utilizaron 150 gramos de mercurio. En estos 150 gramos, se sabe que el factor de emisión del mercurio al aire de minería artesanal es de 0.77, lo cual se indica en el informe de la UNEP de 2019, aunque ya se había reportado un valor similar desde 1988 (Pfeiffer & de Lacerda, 1988; UNEP, 2019)

Por lo que considerando que diario se utilizan 150 g de mercurio, con el factor de 0.77, la emisión por clúster sería de 115.5 g de mercurio que se volatiliza. Lo cual segúne studio produce una exposición de 7026 \pm 6857 μ g/m³ de exposición en promedio ponderado de tiempo de quemado a cielo abierto.


Con estos datos de gramos de mercurio emitido y utilizando la información generada por el Servicio Geológico Mexicano, se procedió a sacar el número de clúster que se encuentran por municipio, considerando 5 trabajadores por cada uno y las emisiones totales de mercurio por municipio. Esta fue una primera aproximación, ya que se distribuyó de forma homogénea a las personas que trabajan en la extracción de oro artesanal en cada municipio por estado, lo cual se encuentra representado en la siguiente tabla:

Estados	Número de municipios	Promedio del Número de pesonas que trabajan por estado	Personas por municipio	Núm. de clústers que emiten	Total de emisión en g/ día de Hg por municipio
Sinaloa	13	3959.5	304.57	60.9	7045.5
Durango	28	2739	97.82	19.56	2259.18
Zacatecas	22	2956	124.5	24.9	2887.5
Sonora	44	1759	39.977	8	924
Chihuahua	21	1336	63.61	12.7	1466.85
Nayarit	8	1270	158.75	31.75	3667.125
Coahuila	6	422	70.33	14	1617
Jalisco	17	774	45.52	9.1	1051.05
Oaxaca	32	778	24.3	4.86	561.33
Guerrero	9	1945	216.11	43.22	4991.91
Michoacán	9	1985	220.55	44.11	5094.7
BCS	1	60	60	12	1386
San Luis	10	666	66.6	13.32	1538.46

Potosí			

Tabla 15. Municipios que extraen oro artesanal con número de personas que participan y emisiones de mercurio que generan.

Con esta información, ahora se procedió a buscar la localización del lugar en donde se puede realizar la minería de oro artesanal en cada municipio. Considerando que se encuentran en barrancas, en ríos (caso del Río Sonora) y en minas abandonadas. Por lo que a partir del mapa del banco de datos del SGM (https://www.sgm.gob.mx/GeoInfoMexGobMx/), se localizaron las minas vigentes, si no había en el municipio, se procedió a seleccionar un punto entre montañas o cerca del río (Anexo 1) y con las coordenas geográficas se procedió a realizar la modelación de diez municipios de cada estado.

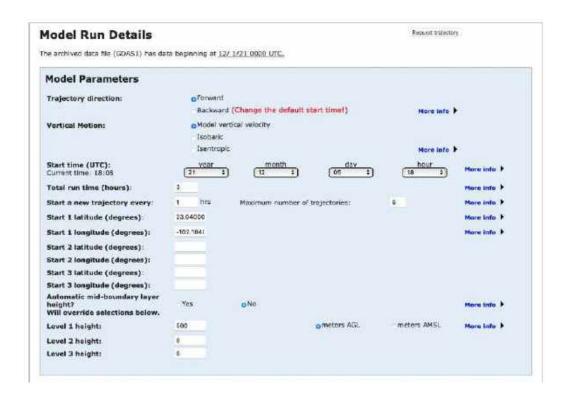
llustración 22. Mapa de minas de oro y plata en México

Hysplit NOAA

Para la modelación se seleccionó el modelo HYSPLIT que es Hybrid Single Particle Langragian Integrated Trajectory Model, el cual es un sistema para el cálculo de trayectoria de dispersión de contaminantes y partículas simples en el aire, proyecta la dispersión y las simulaciones complejas de deposición. Este modelo fue desarollado por el Air Resources Laboratory de

la NOAA que es la National Oceanic and Atmospheric Administration de Estados Unidos, y la oficina de meteorología de Australia, e incluye algoritmos de advección, ecuaciones de estabilidad, puede calcular la trayectoria de los contaminantes a partir de una base de datos de meteorología obtenida de información satelital GDAS que es de 1 grado de diferencia a nivel global y es de 2006 al presente

Al modelo se le introduce la latitud y longitud del sitio, después se selecciona la semana que se quiere modelar, para este estudio se consideró el mes de secas calientes, se trabajó el año 2020 por tratarse de un año seco, el cual permitió confiar en la selección de los meses.


Primero se trabajó el modelo de trayectorias corriéndolas en el mes de seca caliente, el cual para cada sitio se seleccionó de la información meteorológica que se obtuvo en el informe parcial, considerando el mes de menor precipitación y mayor temperatura. La mayoría de los cuales fueron los meses de abril y parte de mayo, en pocos casos fue marzo y en el norte se trabajó en pocos lugares se trabajo en septiembre y octubre.

Modelo de trayectorias

El modelo de trayectoria utiliza trayectorias simultáneas o multiples, con un modelo de velocidad vertital, utilizando el medio día como hora de partida, con un tiempo de 3 horas, cada hora sacando una trayectoria para alcanzar un total 6 trayectorias, trabajando una altura de 100 m emisión con la salida presente en Google Earth.

La malla de dispersión del modelo está diseñada para que sea identica a la de los datos meteorológicos, en los cuales se tiene el soporte de tres mapas de proyecciones: Estereográfico Polar, Mecator y Conformal de Lambert, que usan una series de transformaciones rutinarias.

El método utilizado en este estudio es el más sencillo y no considera la geografía del terreno, ni la altura de la capa de mezcla, ya que nos e cuenta con la información de la meteorología, porque como ya se entregó en el informe pasado, había lugares en donde no se tenía ni la información básica de la meteorología del municipio. De cada municipio estudiado se tomaron en cuentra las trayectorias durante un mes, lo cual se puede observar en la siguiente figura:

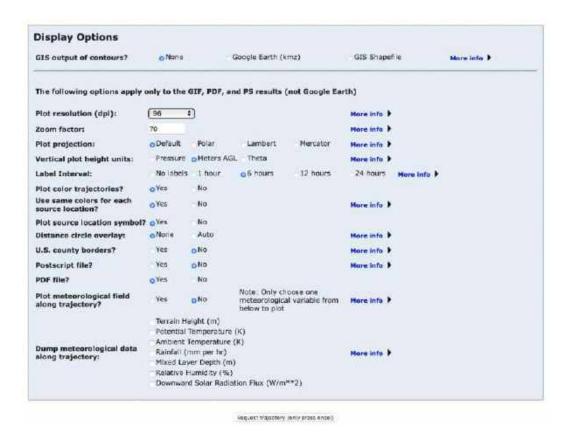


Ilustración 23. Parámetro alimentados en el Modelo de Trayectoria del Hysplit.

Una vez seleccionado los valores se pide la trayectoria, de la que su salida se da en Google Earth:

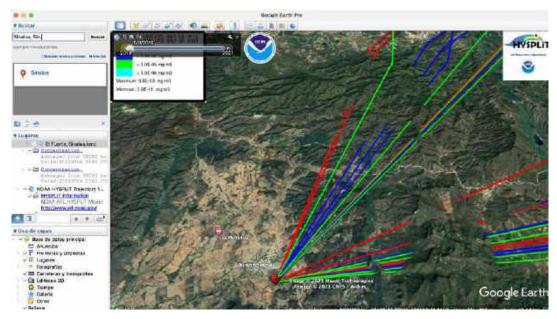


Ilustración 24. Resultado de la modelación de trayectorias en Google Earth

Modelo de dispersión

Para el modelo de dispersión se calcula con una bocanada que se expande, realizando una emisión puntual, que se calcula de un modelo Lagrangian. Primero se selcciona la semana de estudiocon los datos de le meteorología básica se ha procesado e interpolado, se continua con el modelo de advección o emisión de una bocanada a partir de los vectores de velocidad del punto de partida:

$$P'(t+\Delta t) = P(t) + V(P,t) \Delta t$$

Y de la posición final:

$$P(t+\Delta t) = P(t) + 0.5 [V(P,t+\Delta t)] \Delta t$$

El paso de integración Δt puede variar para la simulación, que en nuestro caso fue de 2 horas, el tiempo en que tardar en evaporar al mercurio. La velocidad máxima de transporte Umax se determina de la velocidad de transporte de horas anteriores, con ciclos de 1 hora:

Umax(celda/unidades min-1) \(\Delta t(\text{min}) < 0.75 \) (unidades de malla)

El modelo de dispersión también considera la liberación del contaminante en intervalos regulares de tiempo durante el tiempo de liberación, por lo que cada bocanada contiene una fracción de la masa del contaminante y el tamaño, tanto vertical como horizontal se expande en el tiempo en una atmósfera turbulenta. Se considero únicamente volatilización y no deposición, de ahí que se escogiera época caliente seca para un mejor reflejo de lo que ocurre en la realidad.

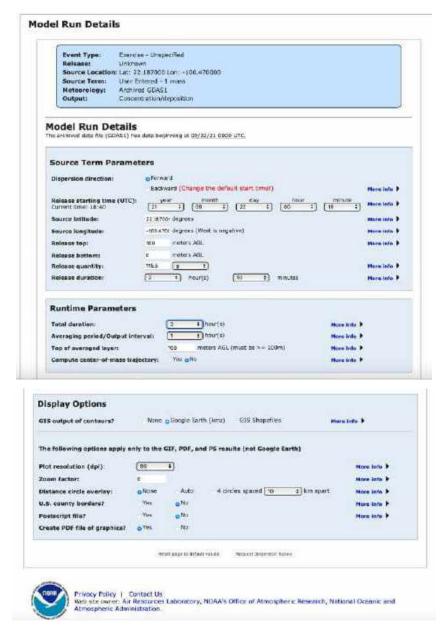
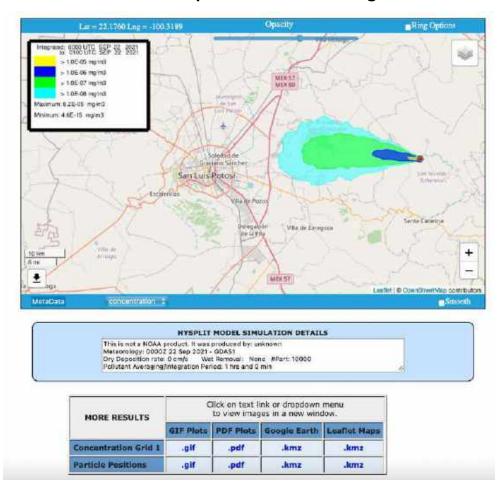



Ilustración 25. Parámetro alimentados en el Modelo de Dispersión del Hysplit.

En cada corrida de dispersión de mercurio se realizó con 2 valores, los 115.5 g que se calcularon de la información de la SGM y de la cual se obtuvieron

valores de dispersión de 10⁻⁵ a 10⁻⁸ mg/m³.

llustración 26. Resultado de la modelación de la dispersión en el programa Hysplit de un clúster

y luego se realizó una corrida con la concentración calculada del total de emision de mercurio en cada municipio, únicamente para conocer las concentraciones que se pueden alcanzar en ese lugar, pero en esta se consideró que los clústers se localizar en un mismo sitio del municipio, lo cual creó una bocanada de mayor concentración con concentraciones de 10^{-3} a 10^{-6} mg/m³

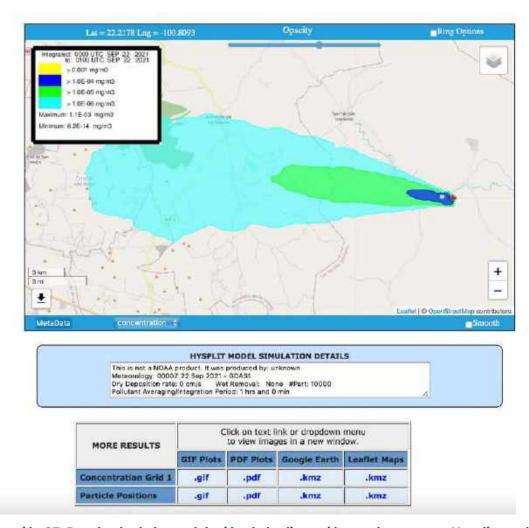


Ilustración 27. Resultado de la modelación de la dispersión en el programa Hysplit con los gramos totales de mercurio por municipio

Todas las modelaciones tuvieron su salida final en Google Earth y quedando la trayectoria señalada encima de la trayectoria de dispersión del mercurio con sus concentraciones:

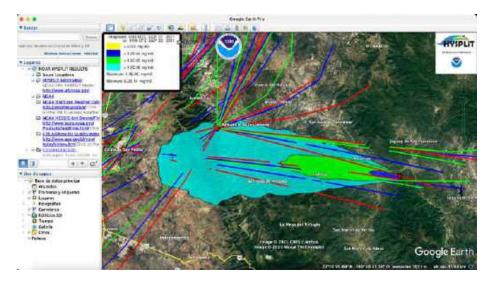


Ilustración 28. Resultado de la modelación de trayectoria y dispersión en Google Earth

Modelaciones

El estado más contaminado por mercurio es Sinaloa, en donde existen casi 4000 personas que trabajan el oro artesanal, lo que genera una emisión de gramos de mercurio al día de 7045.5 g, luego en emisiones sigue Guerreo con 4991.91 g y Nayarit con 3667.125 g de mercurio., los cuales si se trabajan en dispersiones abarcan casi todo el estado, por la alta emión de mercurio.

Los estados que presentaron mayor número de modelaciones por la cantidad de municipios que participan, fueron los estados de Sonora con 44 municipios, Oaxaca con 32 municipios, Durango con 28 municipios y Zacatecas con 22 municipios. Al tener mayor número de municipios, las generaciones de mercurio en gramos fueron menores.

En las modelaciones en estos estados se llegaron a traslaparse las trayectorias y por lo mismo las bajas concentraciones, lo cual se puede observar en el mapa del Estado de Zacatecas, lo cual nos indica que la dispersión se presenta en bajas concentraciones a lo largo del estado

Ilustración 29. Trayectorias de los Municipios en Durango

En los estados en donde se presentó el traslape de trayectorias y de municipios que emiten mercurio, por encontrarse muy cerca uno de otro, no se realizó la modelación.

En los estados de San Luis Potosí, Zacatecas y Jalisco se encontró que la dispersión de mercurio llega a la capital de los estados, siendo mayor el problema en la Ciudad de San Luis Potoí, en donde tres municipios que se encuentran en los alrededores de la ciudad la contaminan por diferentes puntos cardinales, siendo estos municipios San Luis Potosí, Soledad de Graciano y Cerro de San Pedro.

En cuanto a las modelaciones en general, se encontró que muchas se quedan entre las montañas en los municipios más aislados, pero en muchos casos contaminaban ríos, sobre todo en Sonora y Chihuahua; y en otros estados sobre poblados, como es el caso de Michoacán y Oaxaca.

En todos los estados se encontró que en diferentes municipios la dispersión de mercurio llega a los campos de cultivo.

Resultados Modelaciones en los diferentes municipios

Sinaloa

Badiraguato

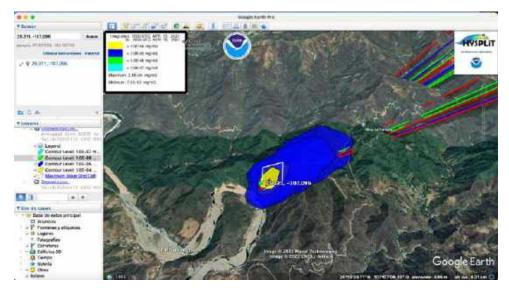


Ilustración 30. Modelación de trayectorias y dispersión por Hysplit en Badiraguato, Sin

Se modelaron los meses de abril y mayo la concentración de mercurio llega al Río Embarcadero.

Sinaloa

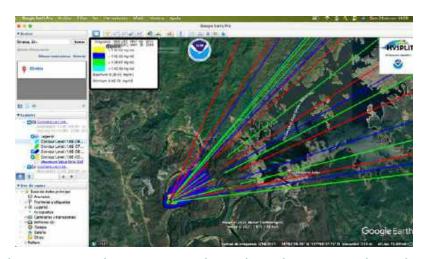


Ilustración 31. Modelación de trayectorias y dispersión por Hysplit en Sinaloa, Sin

Se modelaron mes entre abril y mayo, las dispersiones contaminan el Río Sinaloa y las bajas concentraciones a la presa Lic, Gustavo Díaz Ordaz.

Concordia

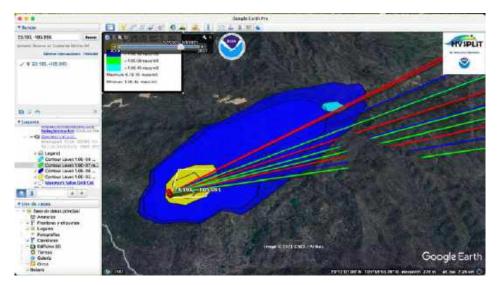


Ilustración 32. Modelación de trayectorias y dispersión por Hysplit en Concordia, Sin

En este caso se empleó el mes de abril y mayo, la dispersión de contaminantes queda entre las montañas.

Cosalá

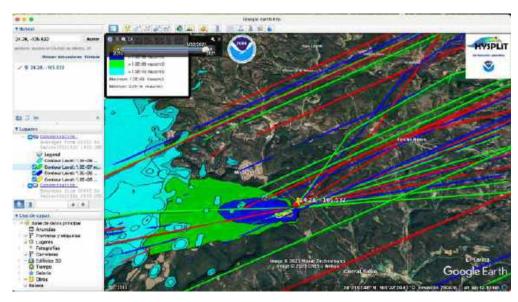


Ilustración 33. Modelación de trayectorias y dispersión por Hysplit en Cosala, Sin

Presenta trayectorias muy variadas, se queda entre las montañas, bajas concentraciones, se modelaron los meses de abril y mayo, puede llegar a contaminar el Río San Lorenzo.

Choix

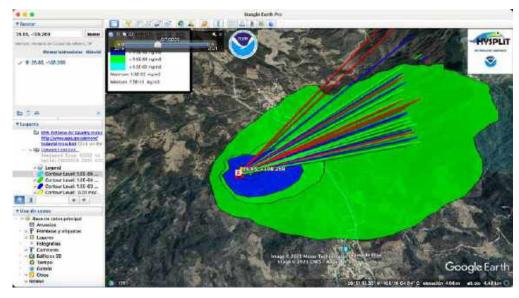


Ilustración 34. Modelación de trayectorias y dispersión por Hysplit en Choix, Sin.

Contamina la ciudad de Choix las concentraciones de 10⁻⁴ mg/m³, para la modelación se utilizaron los meses de abril y mayo.

Elota

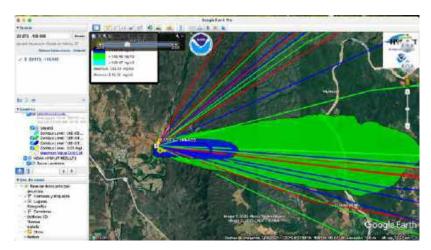


Ilustración 35. Modelación de trayectorias y dispersión por Hysplit en Elota, Sin.

Concentraciones de 10-4 llegan a contaminar al Río Elota, se modelaron los meses de septiembre octubre.

Escuinapa

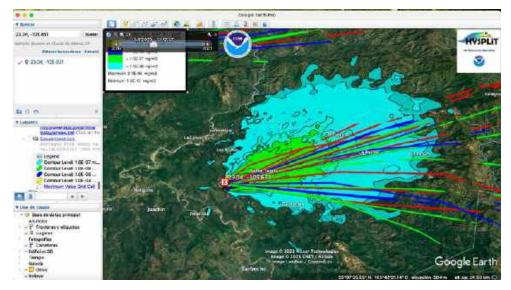


Ilustración 36. Modelación de trayectorias y dispersión por Hysplit en Escuinapa, Sin.

Se utilizaron los meses de abril y mayo, la dispersión de mercurio queda entre las montañas

El Fuerte

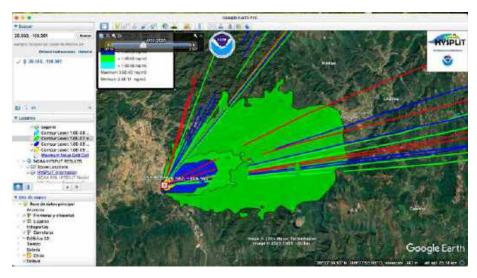


Ilustración 37. Modelación de trayectorias y dispersión por Hysplit en El Fuerte, Sin.

Se modelaron los meses de abril y mayo, se ve afectado por el mercurio la ciudad de Chinabampo en cualquier concentración y algunos campos de cultivo.

Mazatlán

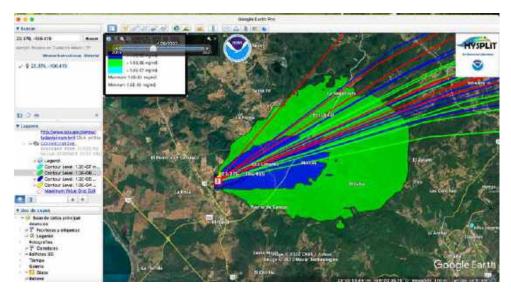


Ilustración 38. Modelación de trayectorias y dispersión por Hysplit en Mazatlán, Sin.

Las emisiones por las trayectorias que presentan, contaminan únicamente campos de cultivo, se utilizaron los meses de abril mayo.

San Ignacio

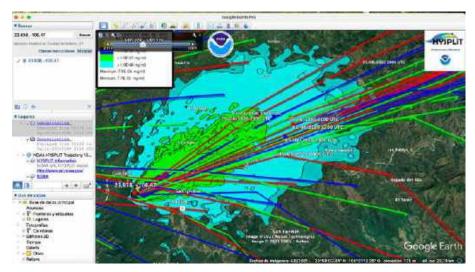


Ilustración 39. Modelación de trayectorias y dispersión por Hysplit en San Ignacio, Sin.

Se modelaron los meses de abril y mayo, se ve contaminado por el mercurio el Río Piaxtla, contamina campos de cultivo y bajas concentraciones 10^{-7} a 10^{-6} mg/m³ llegan a San Ignacio.

Durango

Coneto de Comonfort

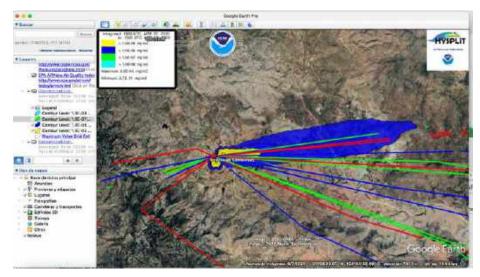


Ilustración 40. Modelación de trayectorias y dispersión por Hysplit en Coneto de Comonfort,

Dur.

Las concentraciones de mercurio contaminan la Ciudad de Coneto de Comonfort a cualquier concentración. Se consideraron los meses de abril y mayo.

Cuencamé

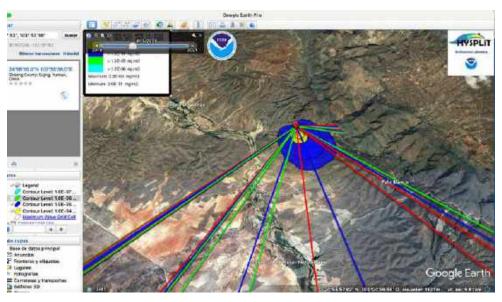


Ilustración 41. Modelación de trayectorias y dispersión por Hysplit en Cuencamé, Dur.

La mayoría de las emisiones se dan entre montañas, sin embargo pueden contaminar el arroyo Cuencamé, las modelaciones se hicieron en los meses de abril y mayo.

Durango

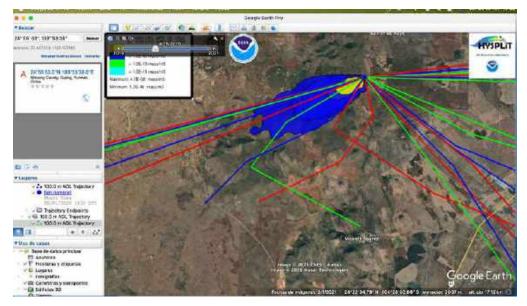


Ilustración 42. Modelación de trayectorias y dispersión por Hysplit en Durango, Dur.

Afecta campos de cultivo, no llega a ciudades, aunque tiene trayectorias casi para todos los puntos, se utilizaron los meses de abril y mayo.

El Oro

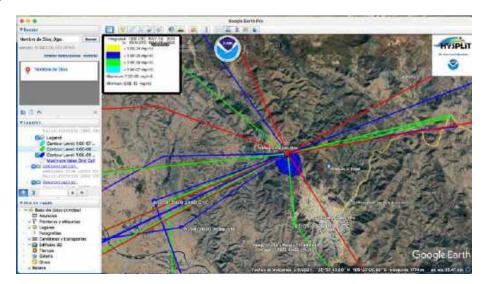


Ilustración 43. Modelación de trayectorias y dispersión por Hysplit en El Oro, Dur.

La dispersión de las emisioens de mercurio está entre montañas y su salida es el inicio del poblado de Santa María del Oro, aunque en concentraciones bajas abarca casi todo el poblado 10⁻⁶ y 10⁻⁷ mg/m³.

General Simón Bolivar

Indé

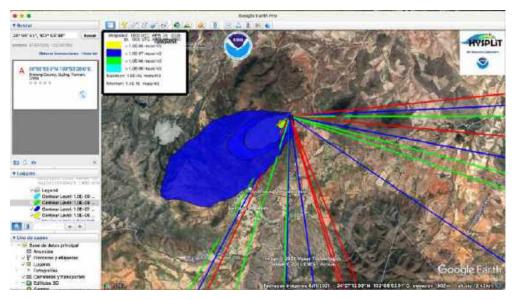


Ilustración 44. Modelación de trayectorias y dispersión por Hysplit en Gral. Simón Bolívar, Dur.

La trayectoria de dispersión es muy variable, puede llegar a campos de cultivo y a San José de los Reyes, se utilizaron los meses de abril y mayo.

There 75.794 - 105.51 Where 95.00 Table 37.50 Table 3

Ilustración 45. Modelación de trayectorias y dispersión por Hysplit en Indé, Dur.

No afecta, se encuentra entre montañas, dispersión variable, casi todos los puntos cardinales, se modeló con los meses de abril y mayo.

Lerdo

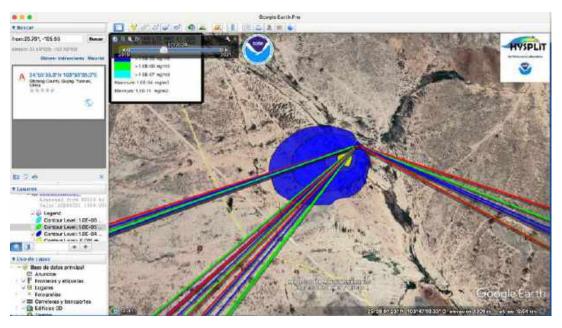


Ilustración 46. Modelación de trayectorias y dispersión por Hysplit en Lerdo, Dur.

Se utilizó los meses de abril y mayo, se queda en las montañas, no afecta cuerpos de agua.

Mapimí

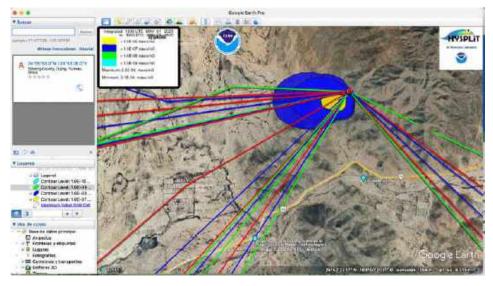


Ilustración 47. Modelación de trayectorias y dispersión por Hysplit en Mapimí, Dur.

La emisión se queda en las montañas, cerca de Mapimí y de la incubadora Citra, a bajas concentraciones 10⁻⁶ y 10⁻⁷ mg/m³ llega a la incubadora con cambio de dirección de viento. Se trabajaron meses de abril y mayo.

San Bernardo

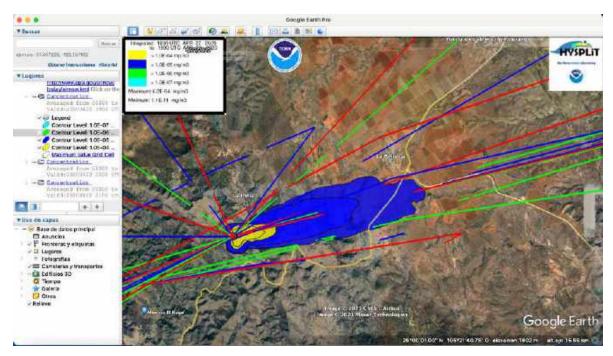


Ilustración 48. Modelación de trayectorias y dispersión por Hysplit en San Bernardo, Dur.

Bajas concentraciones llegan a los campos de cultivo, se trabajó con los meses de abril y mayo.

San Dimas

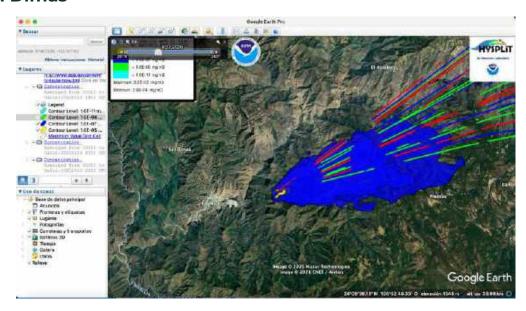


Ilustración 49. Modelación de trayectorias y dispersión por Hysplit en San Dimas, Dur.

Se trabajó con los meses de abril y mayo, no afecta, se queda en las montañas.

Zacatecas

Concepción del Oro

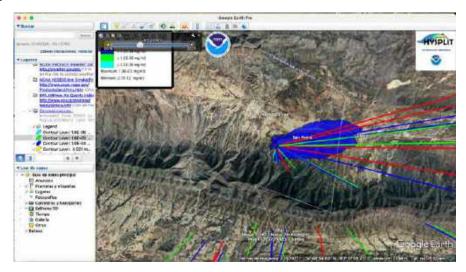


Ilustración 50. Modelación de trayectorias y dispersión por Hysplit en Concepción del Oro, Zac.

La dispersión de mercurio llega a lugar deshabitado sin campos de cultivo, se trabajaron los meses de abril y mayo.

Chalchihuites

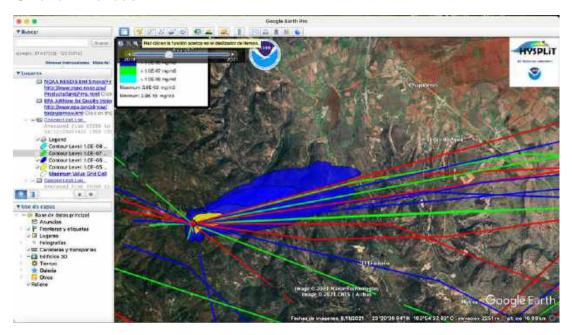


Ilustración 51. Modelación de trayectorias y dispersión por Hysplit en Chalchihuites, Zac.

La dispersión de mercurio se queda entre las montañas, se trabajaron los meses de abril y mayo.

Gral. Francisco R. Murguía

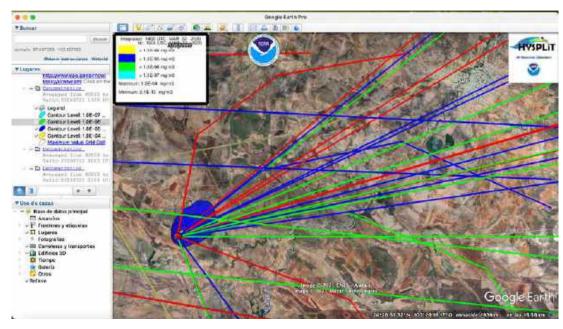


Ilustración 52. Modelación de trayectorias y dispersión por Hysplit en Gral. Francisco R.

Murguía, Zac.

La modelación indicó que Contamina campos de cultivos. Se trabajaron los meses de marzo y abril.

Guadalupe

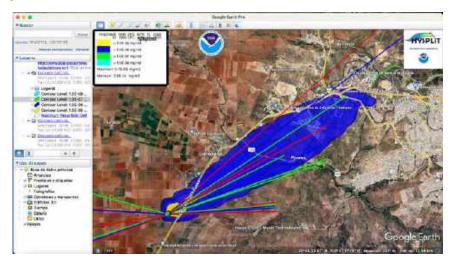


Ilustración 53. Modelación de trayectorias y dispersión por Hysplit en Guadalupe, Zac.

Las concentraciones de mercurio Llega mercurio a la ciudad de Zacatecas, se trabajó el mes de abril.

Jiménez de Teul

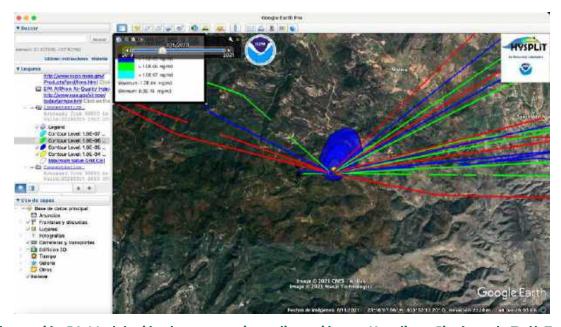


Ilustración 54. Modelación de trayectorias y dispersión por Hysplit en Jiménez de Teúl, Zac.

Las emisiones de mercurio se quedan entre las montañas, no afecta cuerpos de agua, se modeló el mes de mayo.

Morelos

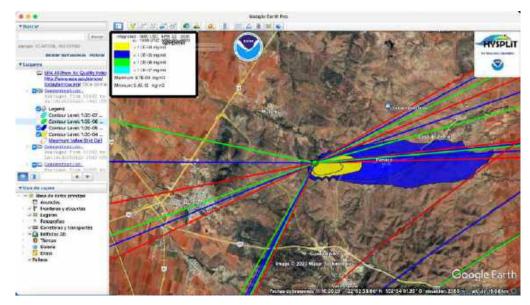


Ilustración 55. Modelación de trayectorias y dispersión por Hysplit en Morelos, Zac.

La dispersión llega a la ciudad de Pánuco y a campos de cultivos, se utilizó el mes de mayo porque no hay datos disponibles.

Ojocaliente

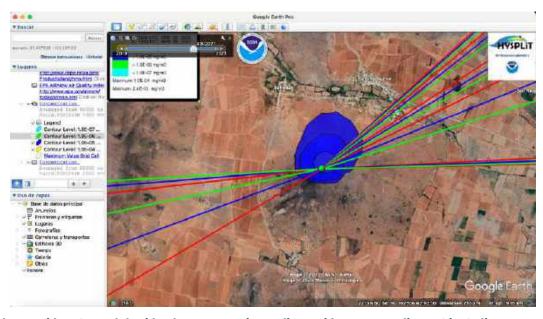


Ilustración 56. Modelación de trayectorias y dispersión por Hysplit en Ojo Caliente, Zac.

Altas concentraciones de mercurio se quedan al inicio de Se queda al inicio de Rancho Viejo y Tahonas, se modeló con el mes de abril.

Río Grande

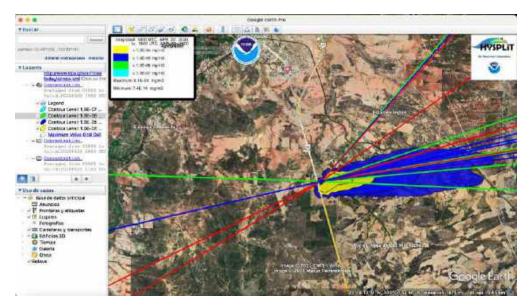


Ilustración 57. Modelación de trayectorias y dispersión por Hysplit en Río Grande, Zac.

Las emisiones de mercurio van sobre campos de cultivo, se modeló con el mes de abril.

Villa Hidalgo

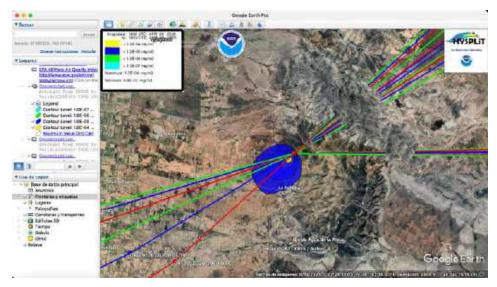


Ilustración 58. Modelación de trayectorias y dispersión por Hysplit en Villa Hidalgo, Zac.

La dispersión a altas concentraciones, 10-3 a 10-5 llega a la Ciudad de La Ballena y a campos de cultivo, se modeló utilizando el mes de abril.

Zacatecas, Zacatecas

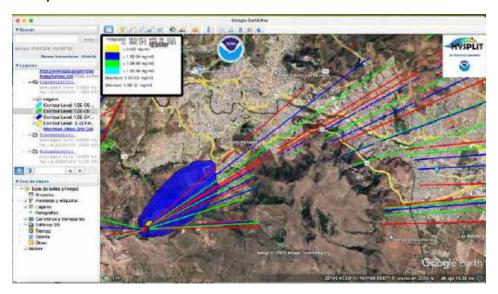


Ilustración 59. Modelación de trayectorias y dispersión por Hysplit en Zacatecas, Zac.

Las concentraciones de $10^{-4} \mu g/m^3$ contaminan la cd. De Zacatecas, menores concentraciones llegan dentro de la ciudad, se modeló mes de marzo y abril.

Sonora

Altar

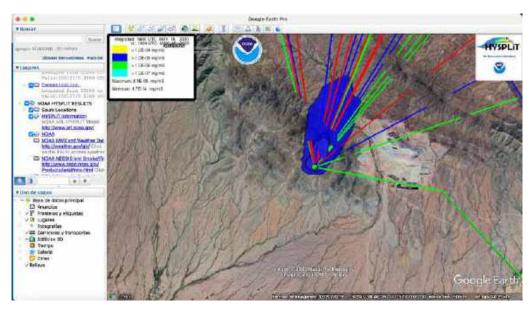


Ilustración 60. Modelación de trayectorias y dispersión por Hysplit en Altar, Son.

Se modeló con el mes de mayo, no afecta la dispersión de mercurio está entre las montañas.

Arivechi

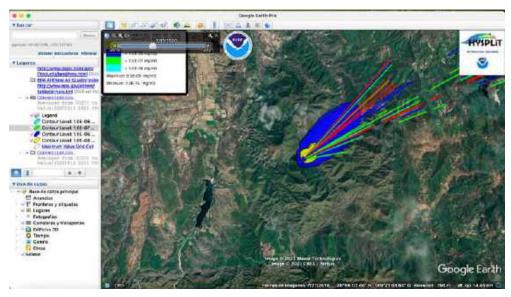


Ilustración 61. Ilustración 48. Modelación de trayectorias y dispersión por Hysplit en Arivechi, Son.

Se modeló el mes de mayo, la dispersión queda entre las montañas, no afecta.

Bacerac

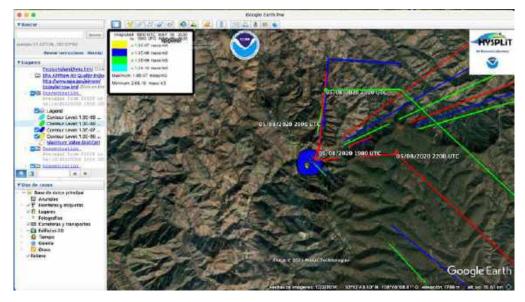


Ilustración 62. Modelación de trayectorias y dispersión por Hysplit en Bacerac, Son.

La dispersión se queda entre las montañas, se modeló el mes de mayo. Benjamin Hill

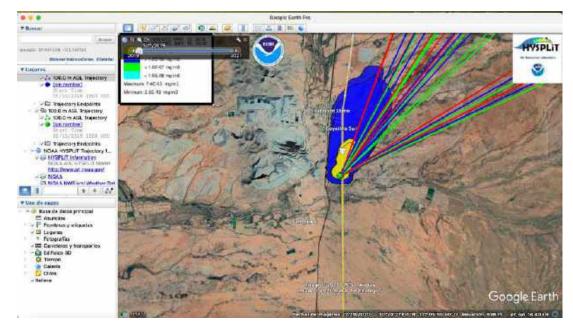


Ilustración 63. Modelación de trayectorias y dispersión por Hysplit en Benjamín Hill, Son.

En este caso el punto seleccionado quedó junto a una mina, y la dispersión llegó a Estación Llano y Coyotito del Sur, la minera quedaría contaminada por el mercurio, se modeló el mes de mayo.

Cumpas

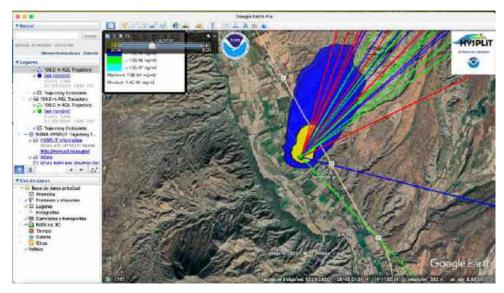
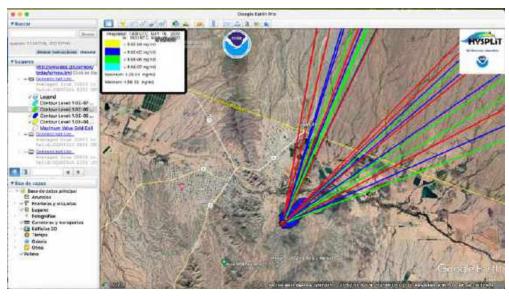



Ilustración 64. Modelación de trayectorias y dispersión por Hysplit en Cumpas, Son.

La dispersión de mercurio afecta a los campos de cultivo y a San José, se utilizó el mes de mayo.

General Plutarco Elías Calles, Sonora

llustración 65. Modelación de trayectorias y dispersión por Hysplit en Gral. Plutarco Elías Calles, Son.

La dispersión del mercurio llega a los campos de cultivos, podría llegar a Sonoyta y Lukeville, en este caso se escogió el mes de mayo, el más común en Sonora, porque no se tenían datos reportados ya que las estaciones estaban suspendidas.

Hermosillo

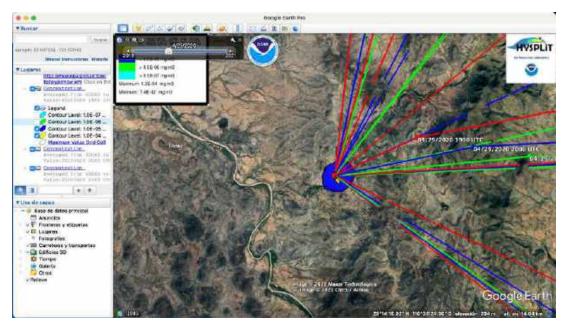


Ilustración 66. Modelación de trayectorias y dispersión por Hysplit en Hermosillo, Son.

Se encontró que la dispersión afecta un hotel Casas de las Encinas Romandia, se modeló con el mes de mayo.

Nacozari de García

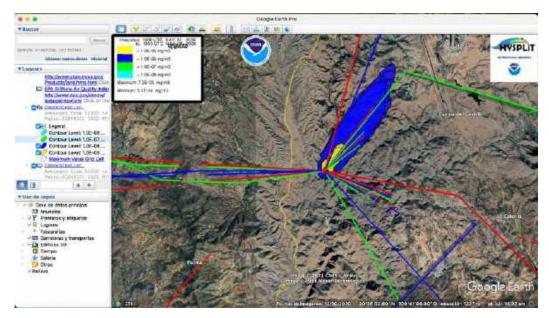


Ilustración 67. Modelación de trayectorias y dispersión por Hysplit en Nacozari de García, Son.

Según las trayectorias, se puede ir en varias direcciones, pero en todas se queda en las montañas.

Imuris

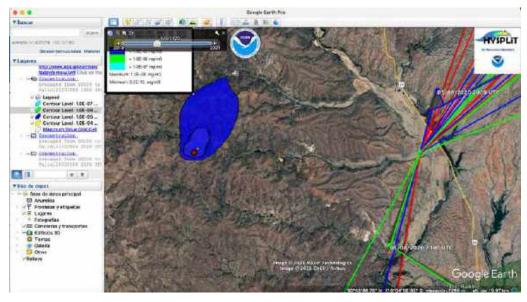


Ilustración 68. Modelación de trayectorias y dispersión por Hysplit en Imuris, Son.

Se modeló el mes de mayo, afecta efluentes del Río Sonora, a Industrias y campos de cultivo.

Santa Ana

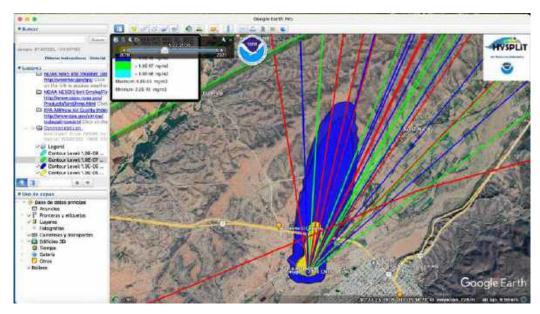


Ilustración 69. Modelación de trayectorias y dispersión por Hysplit en Santa Ana, Son.

Se ve afectado Santa Ana, el de Santa Martha y campos de cultivos, se modeló con el mes de mayo.

San Miguel de Horcasitas

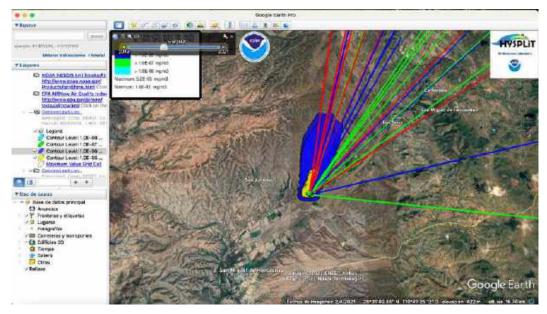


Ilustración 70. Modelación de trayectorias y dispersión por Hysplit en San Miguel de Horcasitas, Son.

La dispersión afecta al Río San Miguel y a campos de cultivo, se modeló con el mes de mayo.

Trincheras

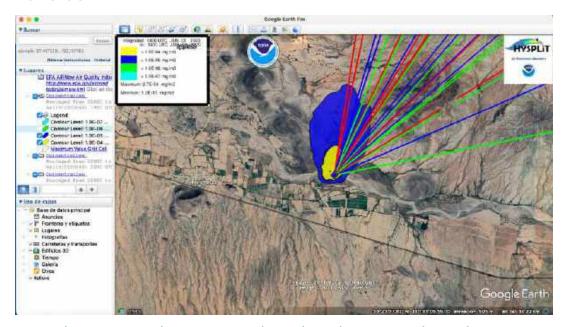


Ilustración 71. Modelación de trayectorias y dispersión por Hysplit en Trincheras, Son.

La dispersión de mercurio afecta campos de cultivo, el Río Concepción y al río Trincheras, se modeló el mes de mayo.

Villa Hidalgo, Sonora

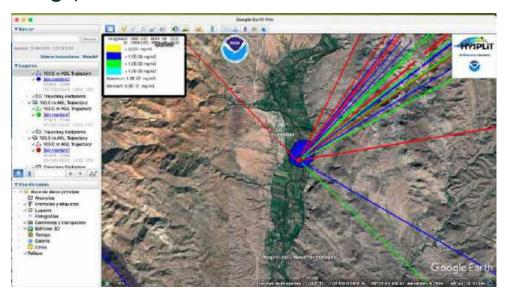


Ilustración 72. Modelación de trayectorias y dispersión por Hysplit en Villa Hidalgo, Son.

Se modelaron los meses de abril y mayo. La dispersión de mercurio afecta campos de cultivo y puede afectar a Villa Hidalgo y Oputo.

Chihuahua

Ahumada

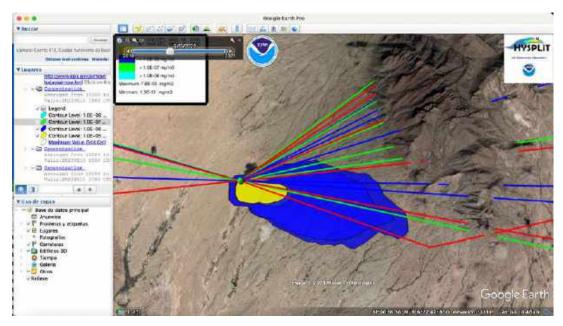


Ilustración 73. Modelación de trayectorias y dispersión por Hysplit en Ahumada, Chih.

Las emisiones de mercurio se quedan entre las montañas, se modeló con los meses de marzo y abril.

Batopilas

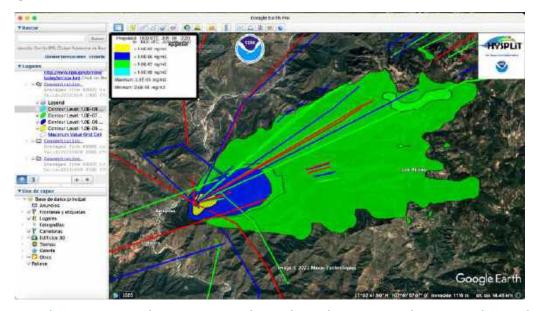


Ilustración 74. Modelación de trayectorias y dispersión por Hysplit en Batopilas, Chih.

Las emisiones de mercurio contaminan Batopilas y al Río Batopilas, se modeló el mes de abril.

Design from the Board Program and the Committee of the

Chinipas de Almada

Ilustración 75. Modelación de trayectorias y dispersión por Hysplit en Chinipas de Almada, Chih.

Bajas concentraciones de mercurio en la dispersión llegan a Chinipas de Almada, también se contaminan los Ríos Fuerte y Mayo. Se modeló con el mes de mayo.

Hidalgo del Parral

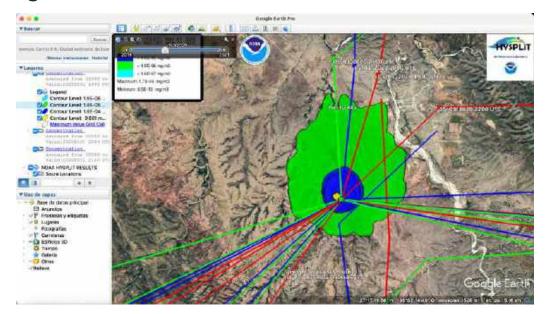


Ilustración 76. Modelación de trayectorias y dispersión por Hysplit en Hidalgo del Parral, Chih.

Se modeló la dispersión de mercurio coon el mes de marzo, llega contaminación a Presilla Alta.

Janos

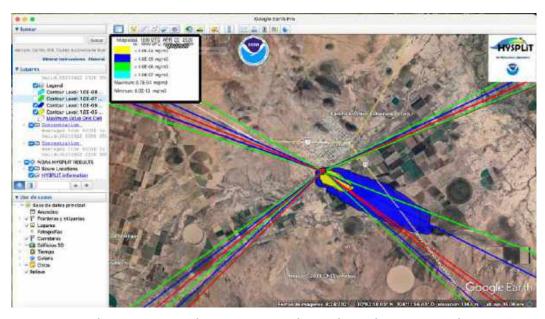


Ilustración 77. Modelación de trayectorias y dispersión por Hysplit en Janos, Chih.

Las estaciones meteorológicas estaban suspendidas, se modeló con el mes de abril y se encontró que se ven contaminados campos de cultivo y ciudad de Janos.

Madera

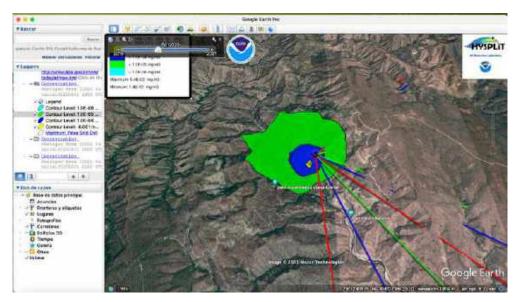


Ilustración 78. Modelación de trayectorias y dispersión por Hysplit en Madera, Chih.

La emisión de mercurio contamina el río Papigochi, a la Zona Arqueológica de Cueva Grande y puede llegar al balneario de Huapoca. Se modeló con el mes de mayo.

Moris

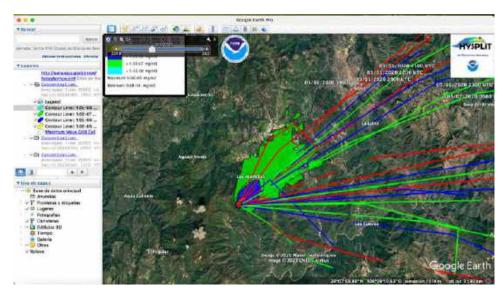


Ilustración 79. Modelación de trayectorias y dispersión por Hysplit en Moris, Chih.

La dispersión de mercurio se queda entre las montañas, en pequeñas concentracionesllega a contaminar el Río Mayo, se modeló con los meses de abril y mayo.

San Francisco del Oro

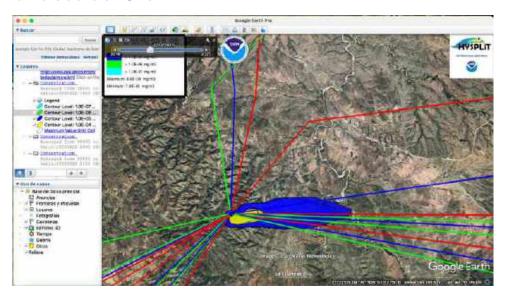


Ilustración 80. Modelación de trayectorias y dispersión por Hysplit en San Francisco del Oro, Chih.

La dispersión se queda entre las montañas, pero alcanza al Río Conchos, no se tenían datos del meteorológico, se trabajó con el mes de mayo.

Urique

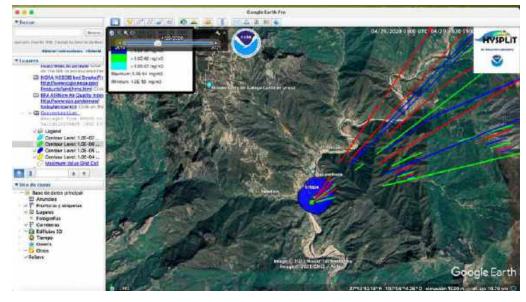


Ilustración 81. Modelación de trayectorias y dispersión por Hysplit en Urique, Chih.

Se utilizó el mes de abril en la modelación, la emisión de mercurio afecta a una población minera y contamina Puebla y al río Urique.

Uarachi

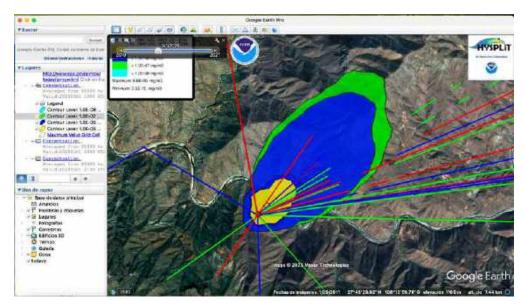


Ilustración 82. Modelación de trayectorias y dispersión por Hysplit en Urachi, Chih.

Se utilizó el mes de abril y mayo, ya que las estaciones están suspendidas. La dispersión se queda entre las montañas, pero llega al Río Sacramento.

Nayarit

Acaponeta

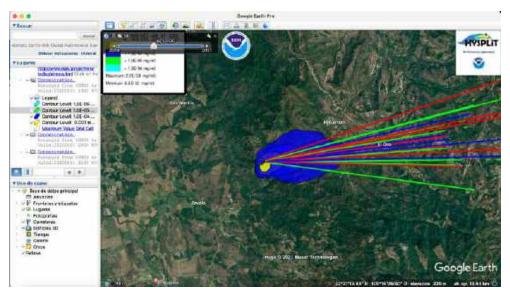


Ilustración 83. Modelación de trayectorias y dispersión por Hysplit en Acaponeta, Nay.

Se modeló con el mes de abril, Bajas concentraciones de mercurio contaminan a El Oro y El Carrizo.

Huijicori

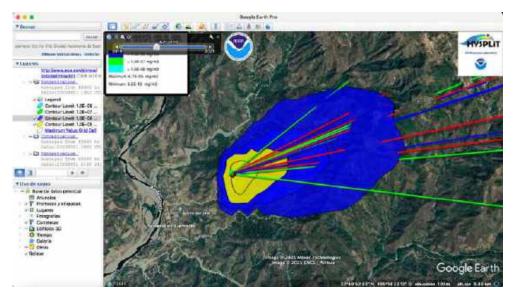


Ilustración 84. Modelación de trayectorias y dispersión por Hysplit en Huijicori, Nay.

Se modeló con los meses de abril y mayo, contamina a las montañas y en bajas concentraciones al Río Acaponeta y Mineral de cucharas. Jala

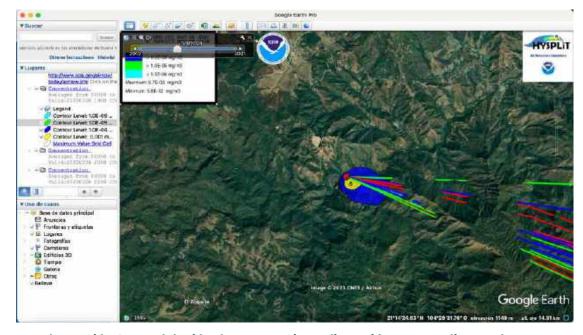


Ilustración 85. Modelación de trayectorias y dispersión por Hysplit en Jala, Nay.

No hay estaciones, se modeló con la información de la más cercana que es Ahuatlán, la emisión de mercurio se queda entre las montañas, no afecta.

La Yesca

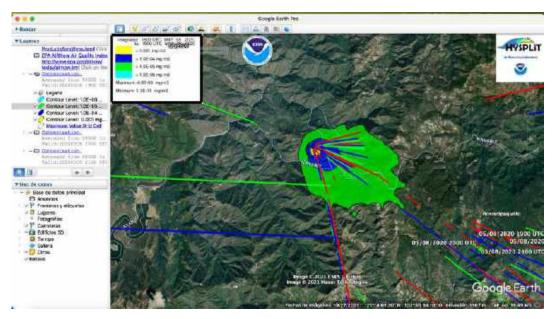


Ilustración 86. Modelación de trayectorias y dispersión por Hysplit en La Yesca, Nay.

Se modeló con la información del mes de abril, la emisión de mercurio se queda entre las montañas, no afecta.

Rosamorada

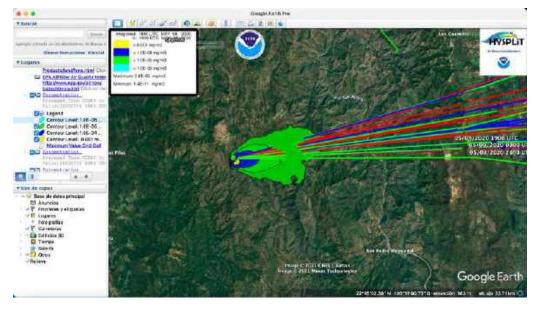


Ilustración 87. Modelación de trayectorias y dispersión por Hysplit en Rosamorada, Nay.

Para la modelación se utilizó la información del mes de abril, la emisión de mercurio se queda entre las montañas, no afecta.

Ruiz

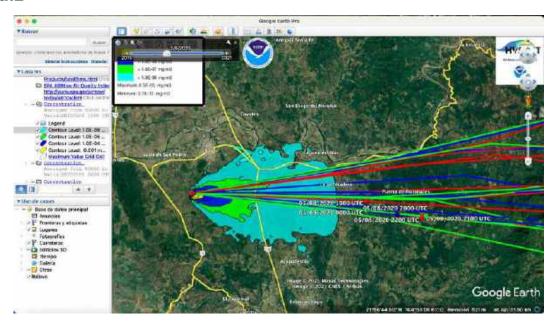


Ilustración 88. Modelación de trayectorias y dispersión por Hysplit en Ruíz, Nay.

Concentraciones muy pequeñas llegan a Ruiz, Juan Escutia y al Río San Pedro, también se ven afectados campos de cultivos. Se modeló con el mes de abril

Santa María del Oro

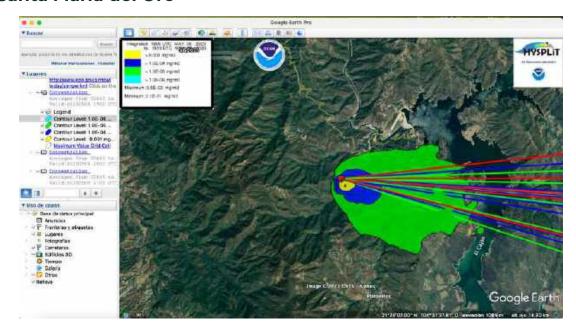


Ilustración 89. Modelación de trayectorias y dispersión por Hysplit en Santa María del Oro, Nay.

Las emisiones de mercurio contaminan al agua de la presa El Cajón en una concentración de 10-5 mg/m3. Se modeló con los meses de marzo y abril.

Santiago Izcuintla

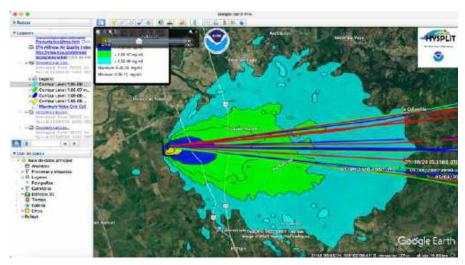


Ilustración 90. Modelación de trayectorias y dispersión por Hysplit en Santiago Izcuincla, Nay.

Se modeló con el mes de abril, las emisiones de mercurio afectan al Río Santiago y a Estación Nanchi, muy bajas concentraciones llegan a Estación Llago y a Hornos de Tabasco.

Coahuila

Candela

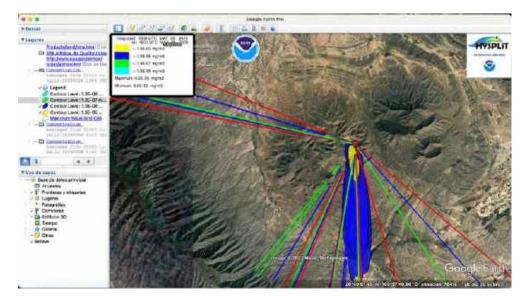


Ilustración 91. Modelación de trayectorias y dispersión por Hysplit en Candela, Coah.

Se modeló con el mes de marzo, la contaminación de mercurio queda entre las montañas, no afecta.

Castaños

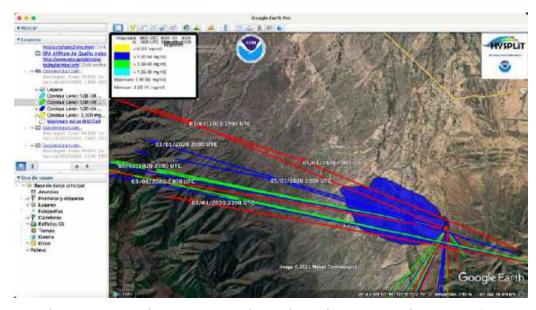


Ilustración 92. Modelación de trayectorias y dispersión por Hysplit en Castaños, Coah.

Se modeló con el mes de marzo, la contaminación de mercurio queda entre las montañas, no afecta.

Ocampo

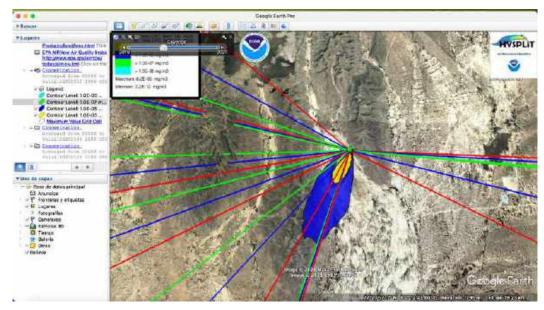


Ilustración 93. Modelación de trayectorias y dispersión por Hysplit en Ocampo, Coah.

Se puede observar que se presentan fuertes vientos, pero aún así la dispersión de mercurio se queda entre las montañas. Se utilizó el mes de marzo para modelar.

Parras

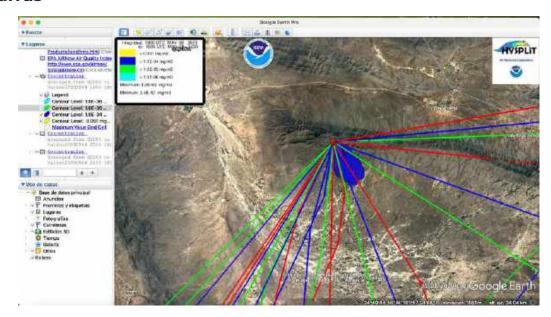


Ilustración 94. Modelación de trayectorias y dispersión por Hysplit en Parras, Coah.

Se modeló el mes de marzo, se queda entre las montañas, no afecta.

Saltillo

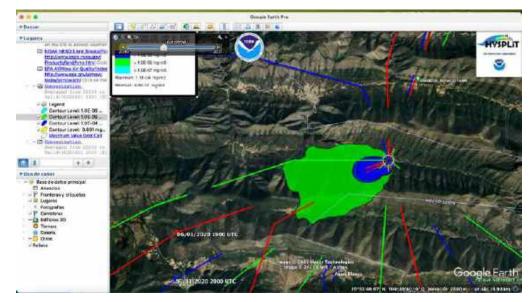


Ilustración 95. Modelación de trayectorias y dispersión por Hysplit en Saltillo, Coah.

Se modeló el mes de marzo, se queda entre las montañas, no afecta.

Viesca

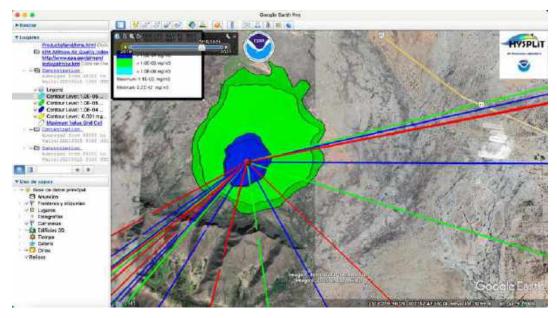


Ilustración 96. Modelación de trayectorias y dispersión por Hysplit en Viesca, Coah.

En la dispersión bajas concentraciones de 10⁻⁶ a 10⁻⁷ mg/m³ pueden llegar a la Viesca.

Jalisco

Ahualulco del Mercado

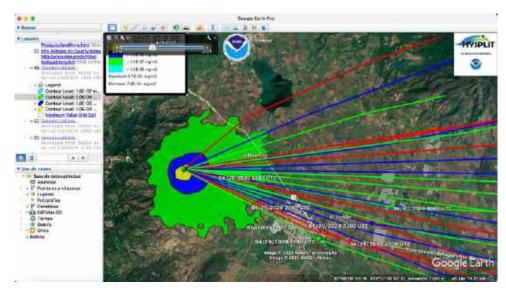


Ilustración 97. Modelación de trayectorias y dispersión por Hysplit en Ahualulco del Mercado, Jal.

Se modeló en los meses de marzo y abril. Afecta campos de cultivo y bajas concentraciones llegan a Ahualulco del Mercado y La Estancita. Ameca

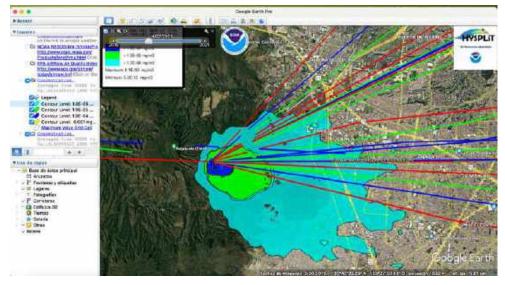


Ilustración 98. Modelación de trayectorias y dispersión por Hysplit en Ameca, Jal.

Se modeló los meses de marzo y abril, bajas concentraciones llegan a Guadalajara $10^{-7}\,\text{mg/m}^3$.

Atenguillo

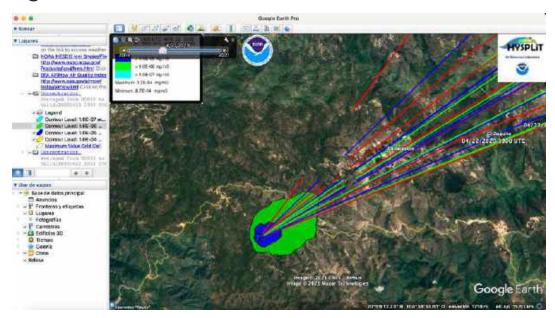


Ilustración 99. Modelación de trayectorias y dispersión por Hysplit en Atenguillo, Jal.

Se modeló con el mes de marzo y abril, las emisiones de mercurio se quedan entre las montañas, contamina al Rancho El Encanto.

Chimaltitlán

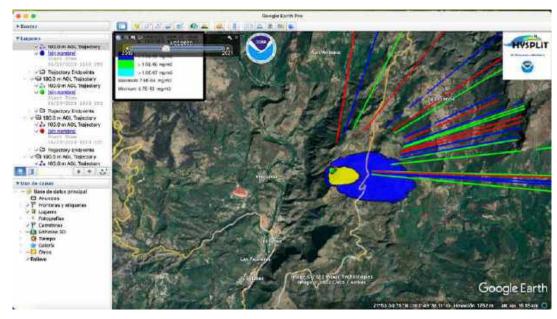


Ilustración 100. Modelación de trayectorias y dispersión por Hysplit en Chimaltitlán, Jal.

Se modeló el mes de marzo, la dispersión de mercurio se queda en las montañas, pero bajas concentraciones 10-6 mg/m3 llegan a La Lechería.

Hostotipaquillo

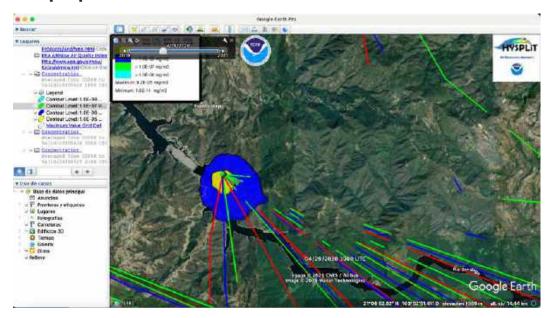


Ilustración 101. Modelación de trayectorias y dispersión por Hysplit en Hostotipaquillo, Jal.

La dispersión de mercurio Contamina al Río Santiago, se modeló en los meses de marzo y abril.

Lagos de moreno

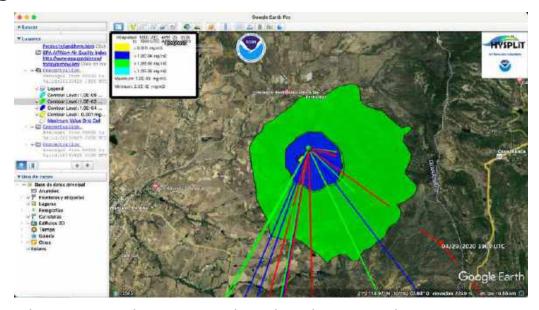


Ilustración 102. Modelación de trayectorias y dispersión por Hysplit en Lagos de Moreno, Jal.

La dispersión de mercurio llega al poblado de Bernalejo y a campos de cultivo, se modeló el mes de marzo.

Mixtlán

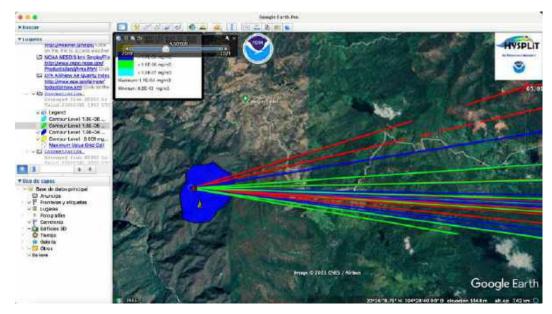


Ilustración 103. Modelación de trayectorias y dispersión por Hysplit en Mixtlán, Jal.

Se modeló en los meses de marzo y abril, la dispersión de mercurio se queda entre las montañas, no afecta.

Talpa de Allende

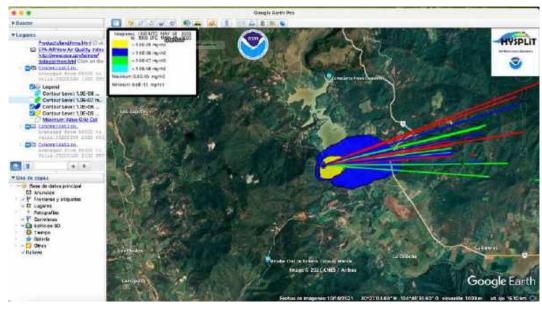


Ilustración 104. Modelación de trayectorias y dispersión por Hysplit en Talpa de Allende, Jal.

Se modeló el mes de abril, la dispersión de mercurio contamina campos de cultivo y agua de la Presa Corrinchis.

Jilotlán de los Dolores

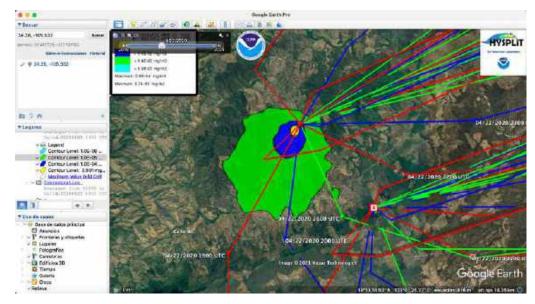


Ilustración 105. Modelación de trayectorias y dispersión por Hysplit en Jilotlán de Los Dolores, Jal.

Se modeló en el mes de abril, por sus trayectorías se puede contaminar con la dispersión de mercurio al Río San Francisco.

Tequila

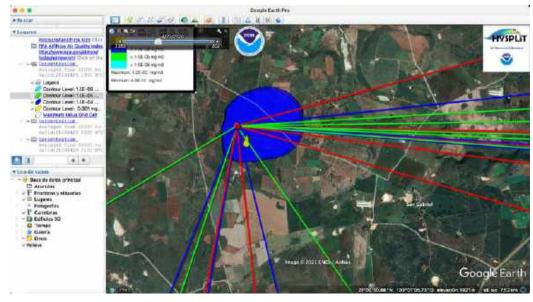


Ilustración 106. Modelación de trayectorias y dispersión por Hysplit en Tequila, Jal.

Se modeló los meses de marzo y abril, contamina la dispersión de mercurio a campos de cultivos, puede llegar a Juchitán.

Oaxaca

Huajapan de León

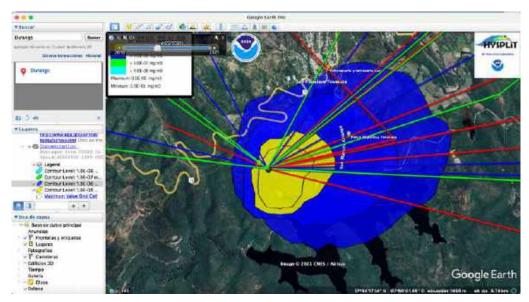


Ilustración 107. Modelación de trayectorias y dispersión por Hysplit en Huajapan de León, Oax.

Se modeló en el mes de marzo, se presentan fuertes vientos, la dispersión de mercurio contamina contamina San Francisco Yosocuta y el lago de la zona.

Romero Avendaño

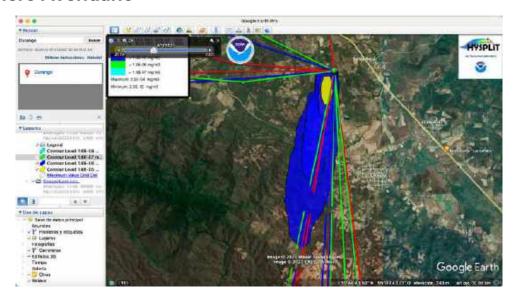


Ilustración 108. Modelación de trayectorias y dispersión por Hysplit en Romero Avendaño, Oax.

Se modeló en el mes de marzo, se presentan fuertes vientos, la dispersión de mercurio contamina Chivela y Santa Rosa San Jerónimo Taviche

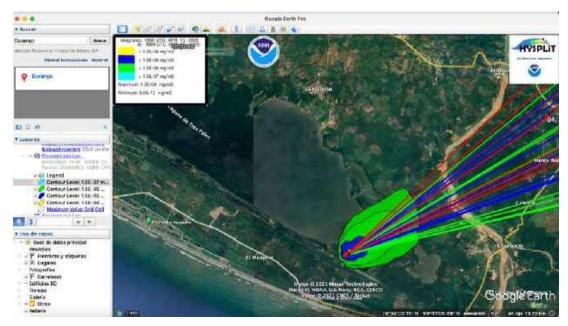


Ilustración 109. Modelación de trayectorias y dispersión por Hysplit en San Jerónimo Taviche, Oax.

La dispersión de mercurio contamina la Laguna de Los Tres Palos, se modeló el mes de marzo.

San Juan Lajarcia

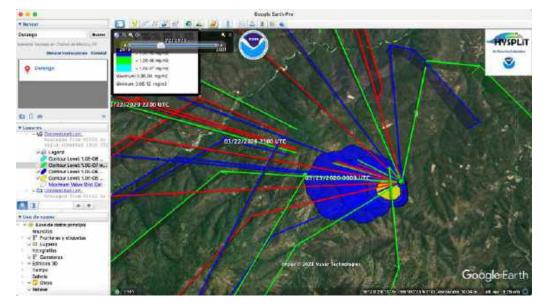


Ilustración 110. Modelación de trayectorias y dispersión por Hysplit en San Juan Lajarcia, Oax

Se modeló el mes de marzo, aunque no se tenían datos de estaciones, la dispersión se queda entre las montañas.

San Juan Mazatlán

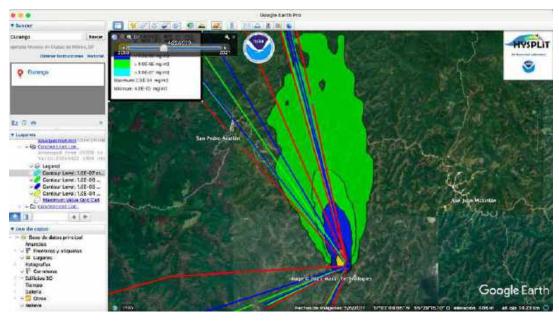


Ilustración 111. Modelación de trayectorias y dispersión por Hysplit en San Juan Mazatlán, Oax.

Fuertes vientos, se modeló el mes de abril, la dispersión de mercurio se queda en las montañas.

Santo Domingo Tonalá

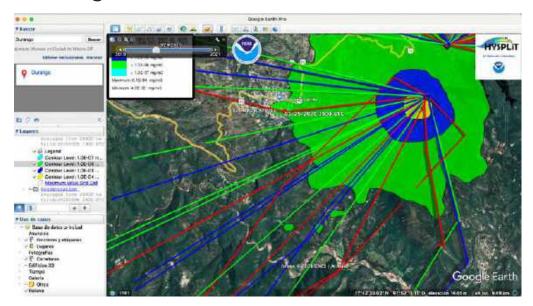


Ilustración 112. Modelación de trayectorias y dispersión por Hysplit en Santo Domingo Tonalá, Oax.

Casi no hay viento, se modeló el mes de marzo, la dispersión de mercurio llega a San Marcos Arteaga.

Santa María Peñoles

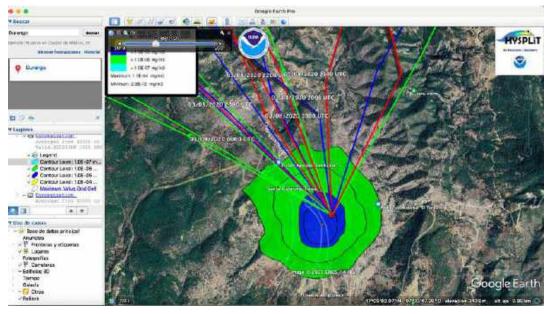


Ilustración 113. Modelación de trayectorias y dispersión por Hysplit en Santa María Peñoles, Oax.

Se modeló el mes de marzo, la dispersión de mercurio contamina Santa Catarina Ticuá.

San Miguel Peras

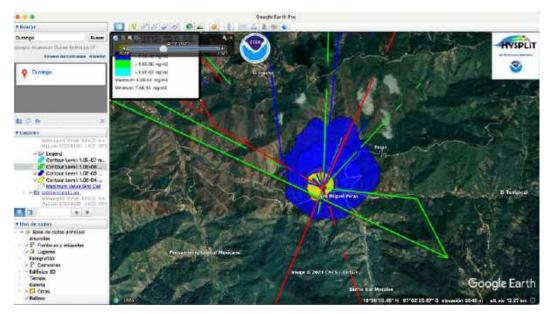
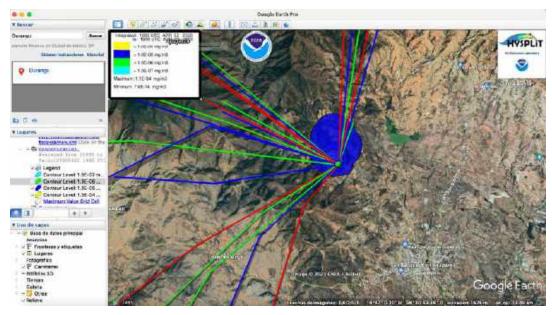



Ilustración 114. Modelación de trayectorias y dispersión por Hysplit en San Miguel Peras, Oax.

Se consideró el mes de marzo y aquí la dispersión de mercurio contamina San Miguel Peras.

San Miguel Tiquiapam

llustración 115. Modelación de trayectorias y dispersión por Hysplit en San Miguel Tiquiapam, Oax

La dispersión se queda entre las montañas, se utilizó el mes de marzo por no tener datos de meteorología.

San Pedro Quiatoni

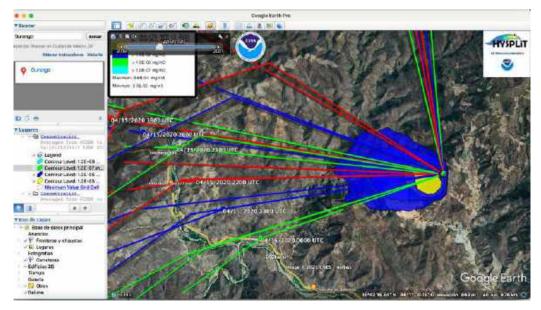
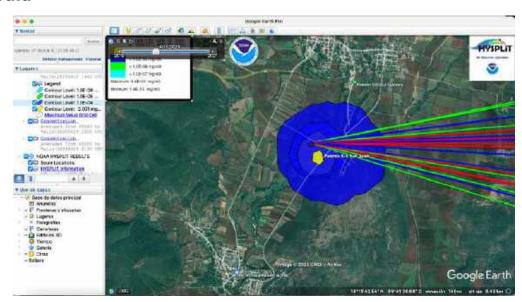



Ilustración 116. Modelación de trayectorias y dispersión por Hysplit en San Pedro Quiatoni, Oax.

Se utilizó el mes de marzo en la modelación, la dispersión de mercurio se queda en las montañas y contamina una mina.

Guerrero

Cocula

Se modeló con los meses de marzo. Y abril, la contaminación por la dispersión de mercurio contamina campos de cultivo y el Puente Río San Juan.

Coyuca de Catalán

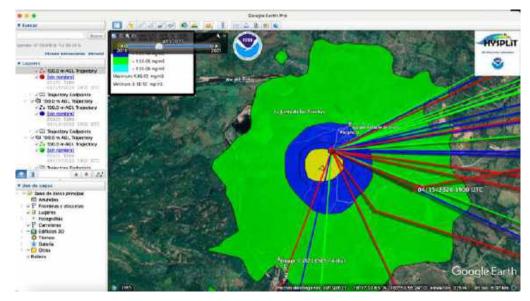


Ilustración 118. Modelación de trayectorias y dispersión por Hysplit en Coyuca de Catalán, Gro.

Se utilizó el mes de abril, la dispersión de mercurio contamina el Río del Oro y campos de cultivo.

Cuetzala del Progreso

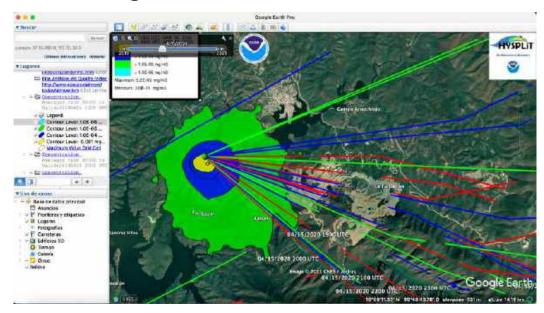


Ilustración 119. Modelación de trayectorias y dispersión por Hysplit en Cuetzala del Progreso, Gro.

La dispersión de mercurio contamina al Río Balsas, se modeló con el mes de marzo.

Eduardo Neri

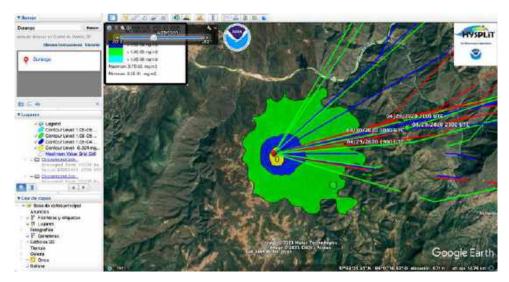


Ilustración 120. Modelación de trayectorias y dispersión por Hysplit en Eduardo Neri, Gro.

Se utilizó al mes de marzo en la modelación, la dispersión de mercurio puede contaminar en bajas concentraciones al Río Balsas.

Pedro Ascensio Alquisieras

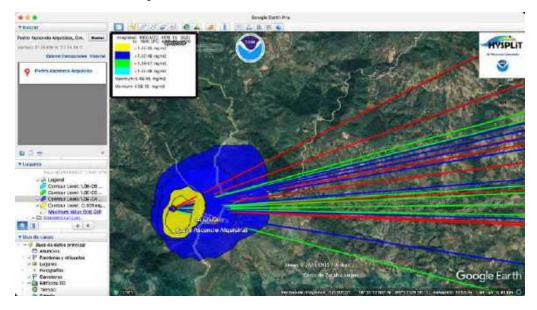


Ilustración 121. Modelación de trayectorias y dispersión por Hysplit en Pedro Ascencio Alquisieras, Gro.

La dispersión de mercurio contamina a Ixcapuzalco, se modeló con el mes de marzo.

Pilcaya

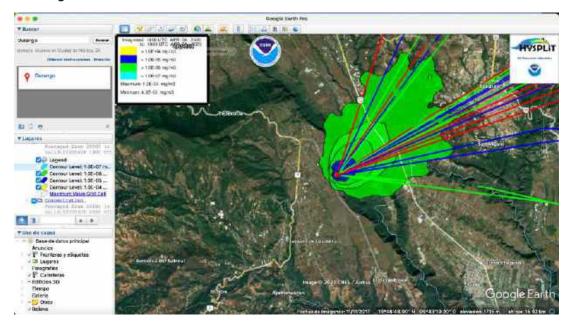


Ilustración 122. Modelación de trayectorias y dispersión por Hysplit en Pilcaya, Gro.

Se modeló con el mes de marzo, la dispersión de mercurio contamina campos de cultivo y a la ciudad de Tonatico.

Taxco

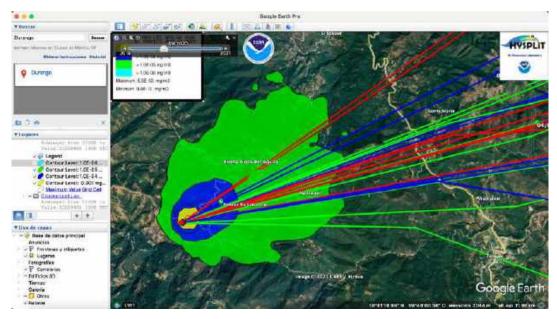


Ilustración 123. Modelación de trayectorias y dispersión por Hysplit en Taxco, Gro.

Se modeló con el mes de abril, la dispersión de mercurio contamina los poblados de Noxtepec y Buena Vista del Águila.

Zirandaro

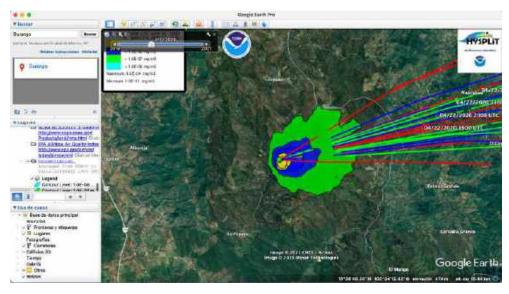


Ilustración 124. Modelación de trayectorias y dispersión por Hysplit en Zirandaro, Gro.

Se modeló con el mes de marzo, la dispersión de mercurio contamina Río Frío de los Fresnos.

Michoacán

Arteaga

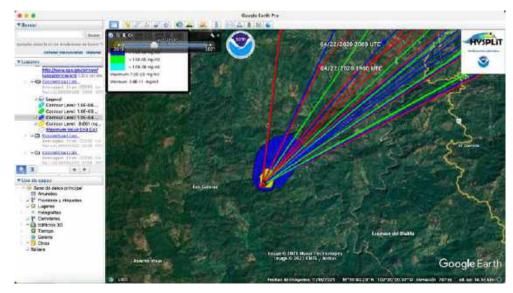


Ilustración 125. Modelación de trayectorias y dispersión por Hysplit en Arteaga, Mich.

La dispersión de mercurio se queda entre las montañas. Se modeló con el mes de abril.

Contepec

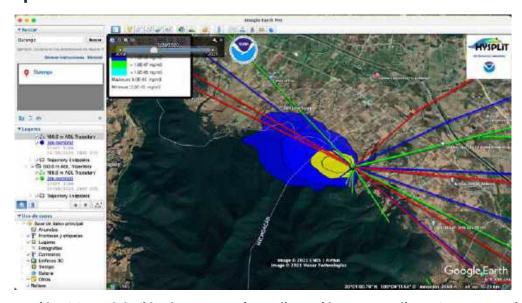


Ilustración 126. Modelación de trayectorias y dispersión por Hysplit en Contepec, Mich.

La dispersión de mercurio llega a campos de cultivo y a San José Ixtapa y San José de los Reyes. Se modeló con el mes de marzo.

Lázaro Cárdenas

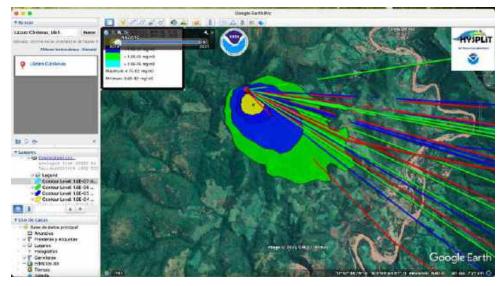
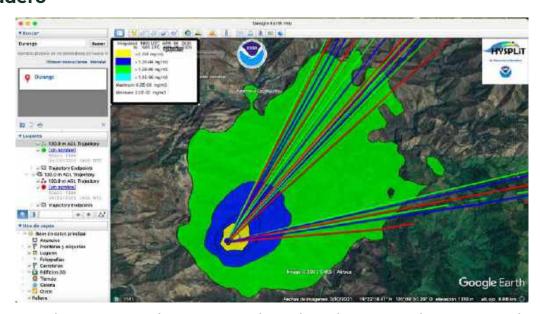



Ilustración 127. Modelación de trayectorias y dispersión por Hysplit en Lázaro Cárdenas, Mich.

Como se puede observar la contaminación se queda entre las montañas, se modeló el mes de abril.

Madero

llustración 128. Modelación de trayectorias y dispersión por Hysplit en Madero, Mich.

La dispersión de mercurio llega en bajas concentraciones a la Ranchería Cocohuichi. Se modeló el mes de abril.

Maravatío

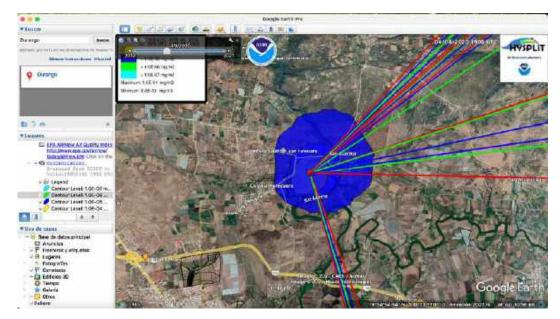


Ilustración 129. Modelación de trayectorias y dispersión por Hysplit en Maravatío, Mich.

La dispersión de mercurio llega a Yurécuaro, al Río Lerma, muy poco a Maravatío, y a campos de cultivo. Se seleccionó el mes de marzo por ser el más seco.

Sengui

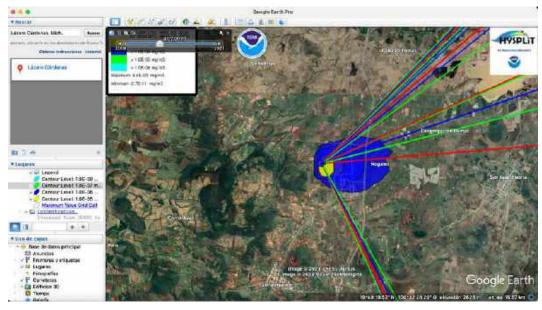


Ilustración 130. Modelación de trayectorias y dispersión por Hysplit en Sengui, Mich.

Se modeló el mes de marzo, en este caso la contaminación de mercurio contaminan campos de cultivo, a San Vicente el Grande y en bajas concentraciones 10⁻⁷ mg/m³ Tzintzingareo.

Tecalcatepec

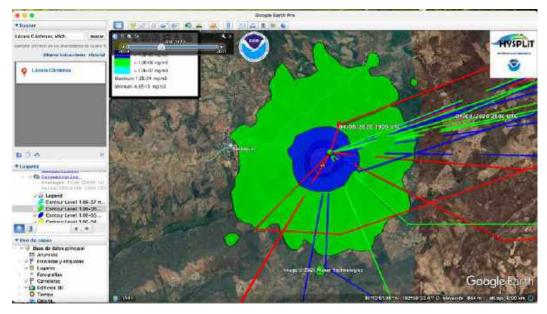


Ilustración 131. Modelación de trayectorias y dispersión por Hysplit en Tecalcatepec, Mich.

Bajas concentraciones de la dispersión de mercurio a Tandinguan. Se modeló el mes de marzo.

Tlalpujahua

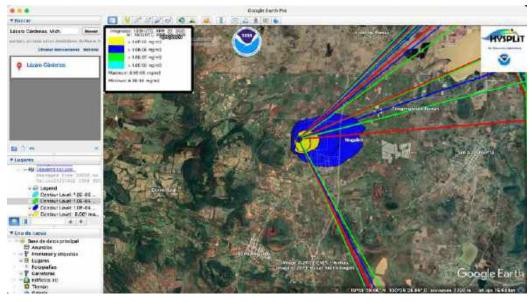


Ilustración 132. Modelación de trayectorias y dispersión por Hysplit en Tlalpujahua, Mich.

Se modeló seleccionando el mes de marzo, ya que no se cuenta con información. Las dispersiones de mercurio contaminan San Juan Huertas y a campos de cultivo, en bajas concentraciones llega al Ejido Pomas.

Tumbiscatio

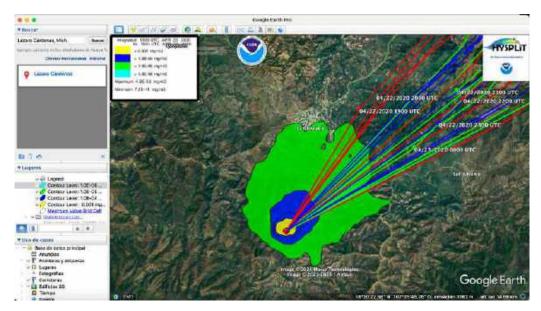


Ilustración 133. Modelación de trayectorias y dispersión por Hysplit en Tumbiscatio, Mich.

Tampoco se tienen estaciones meteorológicas funcionando al igual que en otros casos en Michoacán, se seleccionó el mes de marzo para la modelación. La dispersión llega a Llega a Tumbiscatío.

Baja California Sur

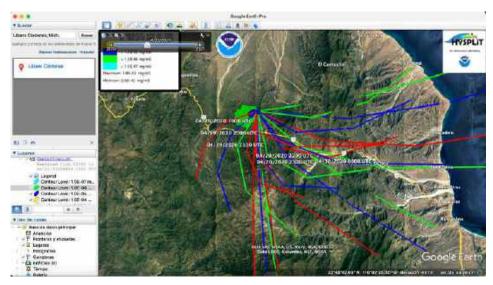


Ilustración 134. Modelación de trayectorias y dispersión por Hysplit en Baja California Sur.

Para la modelación se seleccionaron los meses de mayo y junio, las concentraciones de la dispersión de mercurio se quedan entre las montañas.

San Luis Potosí

Armadillo de los Infantes

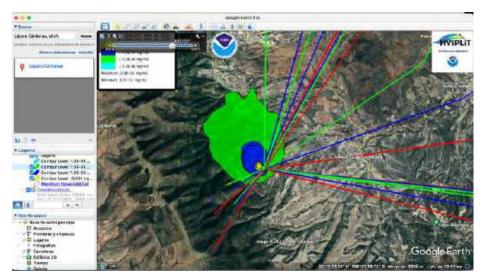
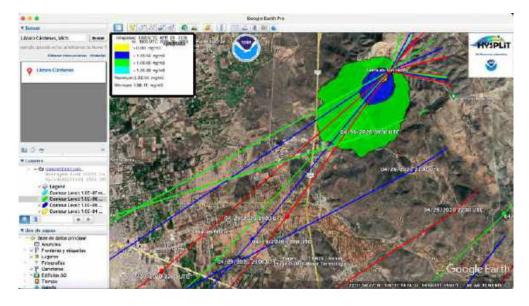



Ilustración 135. Modelación de trayectorias y dispersión por Hysplit en Armadillo de los Infantes, SLP.

La dispersión de mercurio se queda entre las montañas. Se seleccionó el mes de marzo para modelar.

Cerro San Pedro

No había datos de estaciones, se modeló con mes de marzo, la dispersión de mercurio se queda afuera de la ciudad de San Luis Potosí.

Charcas

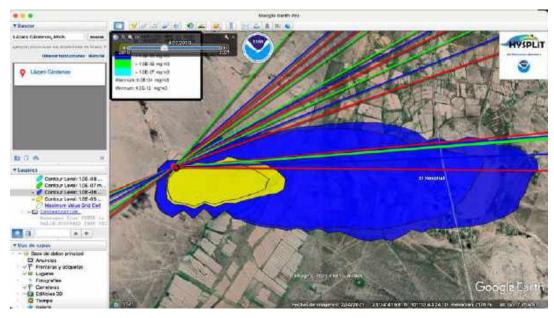


Ilustración 137. Modelación de trayectorias y dispersión por Hysplit en Charcas, SLP.

Se utilizó el mes de marzo en la modelación, se dan fuertes vientos, la contaminación por mercurio llega a campos de cultivo y a El Hospital.

Guadalcazar

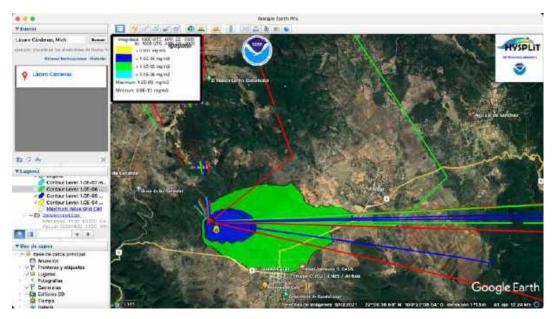


Ilustración 138. Modelación de trayectorias y dispersión por Hysplit en Guadalcazar, SLP.

La dispersión de mercurio contamina campos de cultivo y Guadalcázar en concentraciones de 10⁻⁶ mg/m³. Se modeló el mes de marzo. Salinas

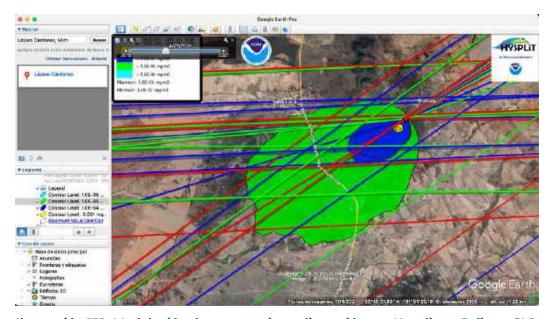


Ilustración 139. Modelación de trayectorias y dispersión por Hysplit en Salinas, SLP.

La dispersión por mercurio llega en concentraciones de 10-5 mg/m3 a San Francisco y a campos de cultivo. Se modeló el mes de marzo.

San Luis Potosí

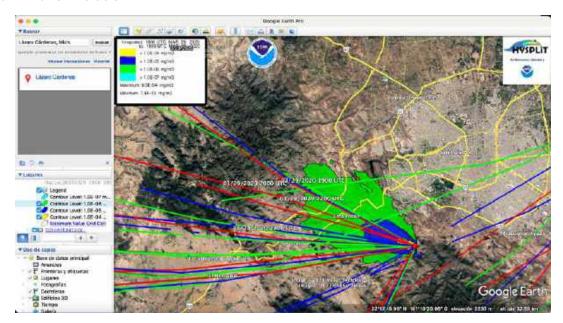


Ilustración 140. Modelación de trayectorias y dispersión por Hysplit en San Luis Potosí, SLP.

Se modeló el mes de marzo por la temperatura. El mercurio emitido se contamina la ciudad de San Luis Potosí del lado oeste. Soledad de Graciano

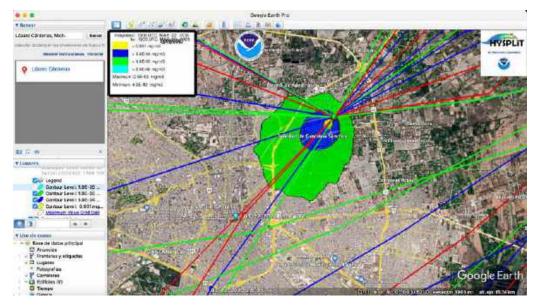


Ilustración 141. Modelación de trayectorias y dispersión por Hysplit en Soledad de Graciano, SLP.

Al igual que en el anterior, se modeló el mes de marzo por la temperatura. El mercurio emitido se contamina la ciudad de San Luis Potosí del lado este.

Vanegas

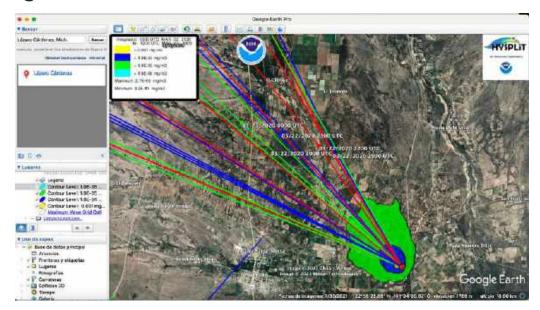


Ilustración 142. Modelación de trayectorias y dispersión por Hysplit en Vanegas, SLP.

La dispersión por mercurio contamina a campos de cultivo. Se modeló el mes de marzo.

Villa de Ramos

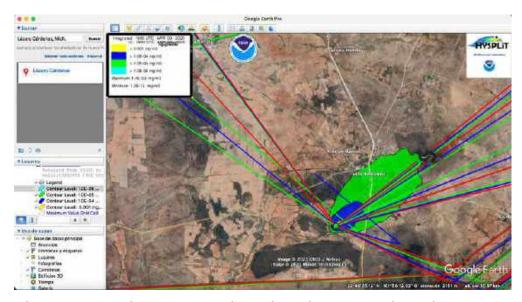


Ilustración 143. Modelación de trayectorias y dispersión por Hysplit en Villa de Ramos, SLP.

Se modeló el mes de marzo, este lugar presenta fuertes vientos, la dispersión de mercurio contamina Contamina campso de cultivo y a Villa de Ramos.

Villa de Reyes

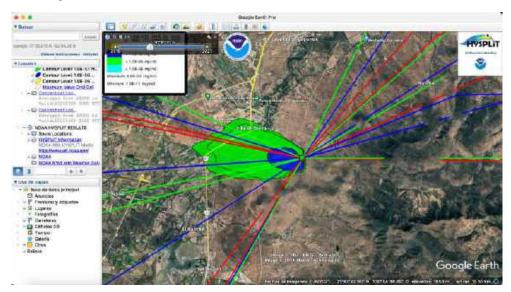


Ilustración 144. Modelación de trayectorias y dispersión por Hysplit en Villa de Reyes, SLP.

Otra vez se presentan fuertes vientos, se modeló el mes de marzo, este lugar presenta fuertes vientos, la dispersión de mercurio contamina Contamina campso de cultivo y a Villa de Reyes.

Conclusiones

Se obtuvieron las variables meteorológicas de los municipios en donde se lleva a cabo la extracción de oro artesanal. Algunos de los municipios no se pudo recabar la información por encontrarse suspendidas las estaciones. De otros, aunque se encontraron suspendidas, existía la información, sin embargo no se especifica que tan antigua son.

En SMN y CONAGUA se reporta que los datos son hasta el 2010, pero no se indica si la información es más reciente o antigua. Tampoco se indica cuando dejaron de funcionar las estaciones meteorológicas.

Estos municipios fueron seleccionados a partir de cartas geográficas y verificaciones en campo por el SGM, además de que se cuenta con el número de personas que participan en esta actividad por estado.

Este estudio es una primera aproximación de las emisiones de mercurio y de los posibles lugares afectados por la emisión. Cabe destacar que no se cuenta con la localización exacta de los clústers que trabajan el oro artesanal, ya que se trata de personas de bajos ingresos y la extracción de oro representa un trabajo eventual que en la mayoría de los casos se realiza durante 8 meses al año, y el resto del tiempo las personas se dedican a otra actividad. Para determinar los sitios de emisiones en el informe, se tomaron puntos como montañas, cañadas, zonas serranas y barrancas y minas de oro en funcionamiento actualmente en México.

El estado con mayor contaminación es Sinaloa y de ahí siguen Nayarit y Guerrero. En las modelaciones de trayectorias se puede apreciar que abarcan todo el estado, lo cual indica que el mercurio se esparce en el aire de todo el lugar y en la gran parte de México. El estado que estuvo mejor representado en el presente estudio fue el de Guerrero, ya que por los pocos

municipios que se dedican a esta actividad, las emisiones son más representativas y en cada uno se concentrada las personas que realizan esta actividad.

Según los resultados los campos de cultivo y los cuerpos de agua se ven contaminados por la presencia del mercurio, hay poblados y ciudad afectadas como es el caso de San Luis Potosí, Zacatecas y Guadalajara.

Aún que es un primer esfuerzo por determinar la afectación de mercurio en México por la preocupación del Covenio de Minamata, los resultados demuestran que la extensión del problema de la dispersión del mercurio es amplia en el país y requiere de un estudio más profundo, sobre todo porque la producción de oro artesanal es importante y el número de personas que se dedican a esta actividad es menor de 21,000, pero los gramos de mercurio que se queman son de 34,490.6 gramos de mercurio al día, de las cuales 26,557.8 gramos se emiten a la atmósfera.

Las personas que trabajan el oro artesanal se encuentran expuestas a altas emisiones de mercurio, pero lo más importante es que participan mujeres y niños en la actividad, además que no se ha considerado hasta ahora a las familias de los trabajadores que también se encuentran expuestas en menores concentraciones, estas exposiciones representan un problema de salud en el país, para los ecosistemas y para el mundo.

Bibliografía

- Black, P., Ricahard, M., Rossin, R., & Telmer, K. (2017). Assessing occupational mercury exposures and behaviours of artisanal and small-scale gold miners in Burkina Faso using passive mercury vapour badges.

 Environmental Research(152), 462 469. https://doi.org/https://pubmed.ncbi.nlm.nih.gov/27312531/
- Escala, P. P. I. d. M. a. P. (2019). Minería Artesanal y de Pequeña Escala global produjo 15% del oro durante 2018. https://www.plataformaintegraldemineria.org/es/noticias/mundo-mineria-artesanal-y-de-pequena-escala-global-produjo-15-del-oro-durante-2018
- IPEN. (2017). LA COP 1 en el Convenio de Minamata: Informe sobre el mercurio y la minería de oro artesanal y en pequeña escala (MOAPE).

 IPEN. Retrieved 14 de Noviembre del 2021 from https://ipen.org/sites/default/files/documents/ES-print-ipen-brief-asgm-v1_0-es.pdf
- Kocman, D., Wilson, S. J., Amos, H. M., Telmer, K. H., Steenhuisen, F., Sunderland, E. M., . . . Horvat, M. (2017). Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. *International Journal of Environmental Research and Public Health*, 14(2), 138.
- Lenntech. (2021). *Mercurio Hg*. Lenntech B.V. Retrieved Noviembre 14 from https://www.lenntech.es/periodica/elementos/hg.htm
- los_municipios.mx. (2021). *Municipios de México Información sobre pueblos y ciudades de México*. los_municipios.mx. Retrieved Noviembre 14, 2021 from https://www.los-municipios.mx
- Marshall, B. G., Camacho, A. A., Jimenez, G., & Veiga, M. M. (2021). Mercury Challenges in Mexico: Regulatory, Trade and Environmental Impacts. *Atmosphere*, 12(1), 57.
- OMS. (2017a). El Mercurio y la Salud. OMS. Retrieved 14 de Noviemdre 2021 from https://www.who.int/es/news-room/fact-sheets/detail/mercury-and-health
- OMS. (2017b). Esfectos de la exposición al mercurio en la salud de las personas que viven en comunidades donde se practica la minería aurífera artesanal y en pequeña escala. Suiza: OMS
- ONU. (2017). Convenio de Minamata sobre mercurio. Estados Unidos: ONU Retrieved from https://www.mercuryconvention.org/sites/default/files/documents/information_document/Minamata-Convention-booklet-Sep2019-SP.pdf
- ONU. (2019). Global Mercury Assessment 2018. ONU. https://www.unep.org/resources/publication/global-mercury-

- <u>assessment-2018?_ga=2.261137037.1825417376.1635202878-</u>461683158.1635202878
- Pfeiffer, W. C., & de Lacerda, L. D. (1988). Mrecury inputs into the Amazon Region, Brazil. *Environmental Technology Letters*, 9, 325-330.
- PNUMA. (2014). Informe: El Convenio de Minamata sobre Mercurio y su implementación en la región de América Latina y el Caribe. Uruguay:

 PNUMA Retrieved from https://www.mercuryconvention.org/sites/default/files/inline-files/folleto_Minamata_LAC_ES_FINAL.pdf
- Seccatore, J., Veiga, M., Origliasso, C., Marin, T., & De Tomi, G. (2014). An estimation of the artisanal small-scale production of gold in the world. Science of The Total Environment, 496, 662-667. https://doi.org/https://doi.org/10.1016/j.scitotenv.2014.05.003
- SGM, S. G. M. (2017). Generar Información Cualitativa y Cuantitativa de las Fuentes Minero-Metalúrgicas en México. INECC.
- SMN. (2021a). Normales Climatológicas por Estado. Gobierno de México. Retrieved Noviembre 14, 2021 from https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=jal
- SMN. (2021b). Pronóstico del Tiempo por. Municipios. Gobierno de México. Retrieved Noviembre 14, 2021 from https://smn.conagua.gob.mx/es/pronostico-del-tiempo-por-municipios
- SMN. (2021c). SMN Funciones y Objetivos. Gobierno de México. https://smn.conagua.gob.mx/es/smn/funciones-y-objetivos
- UNEP. (2008). El Uso del Mercurio en la minería del oro artesanal y en pequeña escala. P. d. l. N. U. p. e. M. Ambiente. https://ige.org/archivos/IGE/mercurio_en_la_Mineria_de_Au.pdf
- UNEP. (2019). Toolkit for identification and quantification of Mercury Releases. (Reference Report and Guideline for Inventory Level 2. Version 5.1, Issue. UNEP.

ANEXO 1

Tablas:

Coordenadas Geográficas
Estaciones Meteorológicas con temperatura y precipitación
Resumen de resultado de moldelación con coordenadas empleadas
(Información en CD)