Index

1. Introduction .. 1
2. The Aerospace and Defense Industry Worldwide ... 3
3. The Aerospace and Defense Sector in Mexico ... 3
4. National Strategy ... 4
 4.1. Global Trends ... 4
 4.2. Strategy: Progress and Main Lines .. 4
 4.2.1. Quality Global Infrastructure ... 4
 4.2.1.1. The Bilateral Aviation Safety Agreement (BASA) ... 4
 4.2.1.2. Development of Laboratories and Certification Programs 4
 4.2.1.2.1. Strengthening Technical Support to Enhance the Competitiveness of SMBs in Mexico’s Aerospace Sector Supply Chain 4
 4.2.1.2.2. Center for Training and Certification in Design and Engineering Software ... 4
 4.2.1.2.3. Project to Enhance the Advanced Manufacturing Capacities of SMBs in Chihuahua .. 4
 4.2.1.2. DGAC Offices ... 4
 4.2.2. Turbine Development in Mexico .. 4
 4.2.3. Aircraft with High Domestic Content ... 4
 4.2.4. Defense Strategy ... 4
 4.2.4.1. Strategic Trade ... 4
 4.2.4.2. Export Control Regimes .. 4
 4.2.4.2.1. Wassenaar Arrangement (WA) .. 4
 4.2.4.2.2. Other Export Control Regimes .. 4
 4.2.4.3. Acquisition of Industrial Equipment and Systems (offset) and Government Procurement ... 4
 4.2.4.4. From Buy American to Buy NAFTA .. 4
 4.2.4.5. Creation of a North American Security Block .. 4
 4.2.4.6. Dual-Use High-Technology Platform-Defense Parks 4
 4.2.5. Integrated Aviation Services Center in Mexico .. 4
 4.2.6. Human Capital and Training Activities for the Aerospace Industry 4
 4.2.7. Mexican Space Agency (AEM) .. 4
 4.2.8. Development of Aerospace Sector Suppliers and Advanced Manufacturing 4
 4.2.8.1. National Assessment of Advanced Manufacturing 4
 4.2.8.2. Supplier Development / Sourcing Council .. 4
 4.2.9. Logistics Development .. 4
 4.2.9.1. Infrastructure .. 4
 4.2.9.2. Public Policies and Intervention Mechanisms .. 4
 4.2.9.3. Special Economic Zones (ZEE) .. 4
 4.2.10. Engineering Council ... 4
 4.2.11. Engineering City ... 4
 4.2.12. Examples of Progress (Specific Projects) ... 4
 4.2.12.1. Honeywell’s Advanced Engineering and Design Campus 4
 4.2.12.2. Messier-Dowty Industrial Plant in Mexico .. 4
 4.2.12.3. Aernnova Project in Mexico ... 4
 4.2.12.4. Goodrich Plant Growth Project (UTAS) ... 4
 4.2.13. Regional Strategies ... 4
 A. Baja California .. 4
 B. Chihuahua .. 4
 C. Sonora ... 4
 D. Querétaro ... 4
 E. Nuevo León .. 4
 5. Conclusions .. 4
6. Directory and Matrix .. 4

4.2.5.1. Intelligent Management of Mature Fleets (TARMAC) ... 4
4.2.5.2. International Aerospace Training Center ... 4
4.2.6.1. National Assessment of Advanced Manufacturing .. 4
4.2.6.2. Supplier Development / Sourcing Council .. 4
4.2.7.1. Mexican Space Agency (AEM) ... 4
4.2.7.2. Development of Aerospace Sector Suppliers and Advanced Manufacturing 4
4.2.7.3. Supplier Development / Sourcing Council .. 4
4.2.8.1. National Assessment of Advanced Manufacturing .. 4
4.2.8.2. Supplier Development / Sourcing Council .. 4
4.2.9.1. Infrastructure .. 4
4.2.9.2. Public Policies and Intervention Mechanisms .. 4
4.2.9.3. Special Economic Zones (ZEE) .. 4
4.2.10. Engineering Council .. 4
4.2.11. Engineering City ... 4
4.2.12.1. Honeywell’s Advanced Engineering and Design Campus 4
4.2.12.2. Messier-Dowty Industrial Plant in Mexico .. 4
4.2.12.3. Aernnova Project in Mexico ... 4
4.2.12.4. Goodrich Plant Growth Project (UTAS) ... 4
4.2.13.1. Regional Strategies .. 4
 A. Baja California .. 4
 B. Chihuahua .. 4
 C. Sonora ... 4
 D. Querétaro ... 4
 E. Nuevo León .. 4

1. Introduction

The sustained growth of the Mexican aerospace industry has been the result of coordinated actions by leaders of the triple helix—industry, academy and government. This triple helix has built a collective vision of the future of this sector, establishing multiple actions to promote and develop its competitiveness: “The best way to predict the future is to build it.”

Based on this vision, a comprehensive plan was created and implemented called the National Flight Plan (NFP), which has been the basis for the development of the national strategy of the Mexican aerospace sector (ProAéreo). The NFP is a point of reflection and evaluation that will fine-tune the strategy defined in earlier versions, considering the evolution of the sector and the assessment of the outcomes for its tactical and operational execution.

This document presents the results of the projects and lines of action proposed since the third version of the NFP. It includes a prospective analysis on global trends in the aerospace and defense sectors, with special emphasis on the implications for Mexico. Finally, it identifies the regional strategies of the country’s main aerospace clusters. The results gathered in this publication have been taken from the proposals in the first versions of the NFP. It shows how it has been possible to coordinate the different actors of the Mexican aerospace sector to trigger growth and increase added value.

It is important to note that the NFP is a dynamic document, being constantly updated, and it demands the ongoing participation of the actors involved in its implementation. This continuous updating process aims to identify new niches of opportunity and to detect emerging factors that may have an effect on the global and local aerospace sector, which in turn demands the adaptation of the road map to prevailing conditions in a fast-changing technological and economic environment.
The global aerospace and defense (A&D) market was estimated at 1.244 billion dollars at the close of 2013. According to data from Deloitte, this market has grown at an annual rate of 5% over the last three years.

Profits from the defense sector are expected to remain low, mainly because of the disruptions in the Iraq and Afghanistan armed conflicts. This has translated into a smaller budget allocation for the purchase of military equipment. Despite adjustments and spending cuts in defense, the United States has remained the most lucrative country. It represents almost 70% of the A+D market value, while the civil segment barely contributes the remaining 30%.

Aerospace and defense companies are facing new challenges related to cost reductions in their programs and contracts, forcing them to adjust to budget cuts around the globe. However, the quest continues to build ever more efficient and lighter aircraft. These challenges create new pressures dictated by an industrial environment with high standards, in which innovation is a determining factor.

Now more than ever, aerospace and defense companies are experiencing a number of challenges: costs, the supply chain, the need to expand operations and the search for macroeconomic certainty, to name a few. Customers, meanwhile, seek constant improvements in innovation and price. In short, the A+D industry recognizes that innovation is a vital component, and must be achieved by any means, but not at any cost.

As it was stated in the document A&D Insights: Executive Summary prepared by PwC, “This convergence of pressures is leading to a change in program management that moves it well beyond its traditional heartland of scheduling, progress tracking, managing risk and pressurizing or sometimes penalizing suppliers. In the past, companies would respond to pressure by majoring on excellence in one of solutions leadership, operational excellence or customer intimacy. But today’s environment means that excellence in one alone is not enough. Companies, and in turn their program managers, need to be top of their game in all three. And they need to be able to deliver innovation and affordability in tandem.”

In the civil sector, the fleet of passenger and cargo aircraft—with more than 100 seats and 10 tons—is expected to reach 31,318 by 2033, which means a significant increase (more than double) considering the commercial aircraft currently in service. Single-aisle passenger aircraft represent the largest segment of the new deliveries with 22,071 over the next 20 years. The demand for Twin-aisle aircraft will require 7,726 new passenger aircraft and 530 freight aircraft. Due to the growth in traffic demand in Asia Pacific, it is no surprise that 48% of the demand for very large passenger aircraft (VLA) will be within this region. It is equally important to note that over 38% of all new aircraft deliveries over 100 seats will be within North America and Europe. Much of this demand, especially in North America, is for new, more fuel efficient aircraft to replace older less eco-efficient types. By 2033, the world’s airlines will take delivery of more than 31,350 new passenger and freighter aircraft worth 4.6 trillion dollars at current list prices.
In 2014, the level of aircraft production remained for the fourth consecutive year at more than one thousand units. The number of orders will continue to rise due to the constant improvement and renovation of fleets. The replacement of old planes for more efficient aircraft will be important to guarantee more competitive prices. Over the next decade, commercial aircraft annual production levels are anticipated to increase significantly by an estimated 20%. With such growth expected, there are two significant trends and challenges to consider; the entrance of new global competitors (COMAC, Bombardier, Embraer) to the existing duopoly (Boeing and Airbus) and the impact on the supply chain. The industry has been a duopoly since 1997. Going forward, it is expected that at least one additional competitor may successfully enter this market in the next 20 years.4

Graph 1. Fleets and Deliveries

- New Deliveries: 31,358
- Converted: 803
- Passenger Fleet: 30,555
- Converted: 803
- Freighter Fleet: 1,318
- Remarked & stay in service: 4,263
- Retired: 11,037

Graph 2. History and forecast for large commercial aircraft orders and production (1981 to 2018F)

Graph 3. Aircraft Delivery Forecast (2015 to 2033)

Suppliers to original equipment manufacturers (OEMs) and/or assemblers face huge challenges to keep pace with production demand. Sizeable investment is expected in the development of skills and tools, and to increase manufacturing capacity.

Cost efficiency and innovation-related challenges will apply to new-generation aircraft, both commercial and military. The commercial aircraft market will focus on the development of wide-body planes with the A350 and the 787-9, and the development and design of the 777X. Meanwhile, in narrow-body aircraft the Bombardier C-Series and improved engines for the A320neo and the C919, which are scheduled for assembly from the end of last year through early 2015.

Finally, there is the Brazilian Embraer with the launch of its successor to the G2 Jet, and COMAC’s C919 and ARJ21 planes. These models will intensify competition with Boeing and Airbus. In December 2013, Airbus received more than 750 orders for the A320neos. Boeing had more than 560 orders for the 737MAX. During the next two years, Bombardier will be put to the test; airlines are expected to place orders for narrow-body planes, which would position the C-Series.

Concerning non-commercial aviation, there is a clear trend towards partnership between countries to manufacture combat aircraft. Switzerland is collaborating with Sweden on the development of the next generation Saab Gripen. Indonesia has joined South Korea’s KFX combat aircraft program.

The sales forecast will be dominated by the Joint Strike Fighter Lockheed Martin F-35 program—which will run through 2019—involving the partnership of nine countries: the United States, the United Kingdom, Italy, the Netherlands, Turkey, Canada, Denmark, Norway, and Australia. Progress on the development of the F-35 Joint Strike Fighter will be very important, considering the concern of multinational partners for escalating costs, which have become a determining factor for Mexico’s aerospace industry to be recognized as a strategic option.

According to Aviation Week, Lockheed Martin has confirmed orders for almost 340 Hercules C-130 from more than 15 countries. There are new competitors around the manufacturing of this aircraft, so timely delivery will be crucial for the company. The main competitors in this segment are the Embraer KC-390, the Chinese Shaanxi Y-9, the Russian/Indian Medium Transport Aircraft (MTA), and the A400M.

As far as helicopters, the seven countries behind the Eurocopter Typhoon are expected to grant the development contract for an AESA (Active Electronically Scanned Array) to Euroradar’s consortium, Selex Galileo. Meanwhile, the United States has commissioned Bell for an upgrade to replace the use of AH-64E Apache helicopters.

In Europe, Great Britain and France spend about the same percentage of GDP on defense; together they represent half the military spending of the continent and their armed forces are very similar. Both nations cooperate in individual programs, such as Watchkeeper unmanned air vehicles (UAV) for surveillance, which have gained ground in cyber defense. They also share research objectives with the English Taranis and the French Neuron.

In summary, the international outlook will be extremely intense, with enormous activity in the development and construction of aircraft for commercial and military use. As mentioned, the most important challenges will be related to cost reduction as well as design and materials innovation. In this sense, the existence of a reliable supply chain will be of paramount importance, and a prime development opportunity for Mexico.
3. The Aerospace and Defense Sector in Mexico

Mexico has become firmly established as one of the most important global players in the aerospace sector. It has reported a growth rate of 17.2% annually since 2004. Currently, there are 302 companies and support organizations, most of which have NADCAP and AS9100 certifications. They are mainly located in six states and employ more than 45,000 high-level professionals.

Mexico has built its vocation as a manufacturing, engineering and development center with high strategic value. This is due to the degree of technological sophistication of its exports, existing engineering talent (Mexico has the largest number of graduates in the Americas) and the quality and competitiveness of its workforce. In addition to this, respect for industrial property in Mexico has become a crucial factor.

The accumulated foreign direct investment in aerospace in the last ten years is around 1.797 billion dollars.

Mexican aerospace exports amounted to 6.366 billion dollars in 2014, representing an increase of 16.5% over 2013 according to data from the Ministry of Economy (SE).

In 2014, aerospace accounted for 0.66% of manufacturing GDP, registering an increase of 88% in its participation compared to 2007.

According to estimates from the 2010-2020 Aerospace Industry Strategic Program, coordinated by the Ministry of Economy (SE), the industry is expected to report exports of 12.267 billion dollars in 2021, with a 14% average annual growth rate.
Major international companies like Bombardier, Safran Group, GE, Honeywell, and Eurocopter have found in Mexico the conditions to develop design and engineering centers, laboratories and production lines capable of evolving quickly to handle more complex assignments in the race for next generation engines and airframe components. This has been possible due to the wealth and availability of specialized human capital. Mexico is the most important talent pool in America, with more than 100,000 graduates per year from engineering and technology courses, which is a great opportunity for the aerospace sector and the development of other medium and high-technology industries. In addition to new graduates, Mexico has highly qualified personnel with decades of experience in the automotive, electronics, medical devices and advanced manufacturing-related industries.

The overall quality of infrastructure has also played a major role in creating favorable conditions for the industry with the availability of laboratories, certification units and the presence of Mexican civil aviation authorities. This facilitated the signing of the BASA (Bilateral Aviation Safety Agreement) with the United States Federal Aviation Administration. The agreement involves the recognition by the United States government of aeronautical certification systems and products made in Mexico. This allows components to be designed and manufactured in the country and encourages the development and strengthening of national procurement for the parts manufacturing industry.

Moreover, Mexico is still the most competitive country in the hemisphere in aerospace manufacturing costs. The country’s legal framework protects industrial property and ensures the proper use of the goods produced and exported from the country.

The new Mexican export control system was found to be so efficient and safe by the international community that in 2012 the country entered the Wassenaar Arrangement and the Nuclear Suppliers Group, and then in 2013 the Australia Group. Mexico is already part of three of the four main export control regimes, and is in the process of applying for the remaining. Considering the Wassenaar Arrangement alone, this adhesion implies access to an estimated additional 11.3 billion dollars in exports.

Mexico’s admission in the regimes ratifies the international community’s trust in the country as a reliable destination for the integration of sensitive technologies. It also shows the country’s commitment to remain a safe destination for the production of goods and services, including both restricted technologies and dual use goods and services.

It is worth noting that Mexico is the sixth largest supplier to the US aerospace industry. Furthermore, geographical proximity to the United States, the world’s largest aerospace market, and convergence with the two main manufacturing corridors in North America are competitive factors for the country. In addition, the commitment of industry, academia and government to establish and implement a national strategy has enabled the creation of highly competitive poles that function within a certified ecosystem and at world class level, presenting Mexico as an attractive destination in innovation and operating efficiency.
4. National Strategy

In the execution of any strategic plan, it is important to remember that the focus should be on meeting the objectives, which will be critical to establish concrete actions aimed at giving a boost to the sector. Within this context, an innovation-based road map must be built through teamwork. In line with this principle, the major players in the aerospace community in Mexico convened to define the path of the industry, academia and government to establish it as the country’s flagship industry, attracting more productive investment, promoting technology and knowledge transfer, and affecting the creation of better jobs, opportunities and strategic partnerships.

This updated version of the National Flight Plan (NFP) shows the progress and alignment requirements under development, without losing sight of the original focus or goals. It also includes the strategic milestones that have guided the efforts made thus far and considers those that are still to be made.

Below are the key trends that are shaping and will undoubtedly mark the national and international course of the aerospace sector; major advances made based on the strategy, along with the capacities developed so far.

4.1. Global Trends

The analysis of global market trends in the aerospace and defense sector reveals strategic information to determine which market niches will be the most important. In addition, they serve to evaluate the scenarios which are more advantageous for Mexico. Below are the main trends that have shaped the development of the aerospace sector from a social, technological, economic, environmental and political-legal perspective.
Graph 5. Trends and Drivers

<table>
<thead>
<tr>
<th>Year</th>
<th>Social</th>
<th>Airframe & Systems</th>
<th>Engines</th>
<th>Alternative Fuels</th>
<th>Air Traffic Management</th>
<th>Economic</th>
<th>Environmental</th>
<th>Political and Legal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>Demographic bonus in Mexico</td>
<td>Use of nanocomposites in military and civil aviation</td>
<td>Command and control</td>
<td>Flex</td>
<td>National investment in new material development (nano composites)</td>
<td>engine replacement</td>
<td>Alternative fuel research</td>
<td>Global acceptance of taxes on CO2 emissions</td>
</tr>
<tr>
<td>2015</td>
<td>Drain of professionals</td>
<td>Composite of hydraulic and pneumatic systems into electrical systems</td>
<td>Data link communication</td>
<td>Synthesis</td>
<td>Integration of regional airlines</td>
<td>New engine core concepts</td>
<td>Synthethic paraffinic kerosene</td>
<td>Acquisition of defense companies after export control agreements</td>
</tr>
<tr>
<td>2016</td>
<td>Confidence in Mexico as partner in the use of technology and engineering</td>
<td>Electronic systems into electrical systems</td>
<td>Required arrival time</td>
<td>Turbine</td>
<td>National investment in new material development (nano composites)</td>
<td>Open-runway en route rights</td>
<td>Ethanol</td>
<td>More competitive legal framework (Reforms)</td>
</tr>
<tr>
<td>2017</td>
<td>Confidence in Mexico as partner in the use of technology and engineering</td>
<td>Electrical and electronic systems</td>
<td>Customizable/active flow control</td>
<td>Fuel</td>
<td>National investment in new material development (nano composites)</td>
<td>Advanced 3rd generation core</td>
<td>Liquid hydrogen</td>
<td>Faster</td>
</tr>
<tr>
<td>2018</td>
<td>Confidence in Mexico as partner in the use of technology and engineering</td>
<td>Hybrid wing body</td>
<td>Liquefied petroleum gas</td>
<td>Hybrid</td>
<td>National investment in new material development (nano composites)</td>
<td>Active stability handing</td>
<td>Linear</td>
<td>More competitive legal framework (Reforms)</td>
</tr>
<tr>
<td>2019</td>
<td>Confidence in Mexico as partner in the use of technology and engineering</td>
<td>Unmanned air combat vehicles replace military fleets around the world</td>
<td>Synthetic paraffinic kerosene</td>
<td>Variable cycle</td>
<td>National investment in new material development (nano composites)</td>
<td>Advanced 3rd generation core</td>
<td>Liquid hydrogen</td>
<td>Faster</td>
</tr>
<tr>
<td>2020</td>
<td>Confidence in Mexico as partner in the use of technology and engineering</td>
<td>Cruise-efficient short takeoff and landing</td>
<td>Liquid hydrogen</td>
<td>Variable cycle</td>
<td>National investment in new material development (nano composites)</td>
<td>Advanced 3rd generation core</td>
<td>Linear</td>
<td>More competitive legal framework (Reforms)</td>
</tr>
<tr>
<td>2021</td>
<td>Confidence in Mexico as partner in the use of technology and engineering</td>
<td>Wing with cross reinforcement bar</td>
<td>Liquid hydrogen</td>
<td>Variable cycle</td>
<td>National investment in new material development (nano composites)</td>
<td>Advanced 3rd generation core</td>
<td>Linear</td>
<td>More competitive legal framework (Reforms)</td>
</tr>
<tr>
<td>2022</td>
<td>Confidence in Mexico as partner in the use of technology and engineering</td>
<td>Variable curve with variable control surfaces</td>
<td>Liquid hydrogen</td>
<td>Variable cycle</td>
<td>National investment in new material development (nano composites)</td>
<td>Advanced 3rd generation core</td>
<td>Linear</td>
<td>More competitive legal framework (Reforms)</td>
</tr>
</tbody>
</table>
FLIGHT PLAN // MEXICO’s AEROSPACE INDUSTRY ROAD MAP

Engines

The trend in the coming years will focus primarily on commercial engine supply. For single-aisle aircraft, the CFM Leap-1 and Pratt & Whitney PW1000G engines will be chosen by the OEMs to use mainly in A320NEO, 737 MAX, the C919 and Bombardier’s Series-C models. The Trent XWB in A350 planes will receive the majority of wide body orders and deliveries.

This trend aims to maximize profits for airlines since these types of aircraft and engines have the latest fuel-saving technology.

In Mexico, companies like GE and Honeywell are conducting research and design of new turbines, including the Genx turbine, which saves almost 15% in fuel and has a 30% reduced carbon footprint. These design tests were performed in Querétaro at the GE9X. The R&D of the next generation LEAP-X turbine is also carried out at this center.

Alternative Fuels

The search for better results and ever-rising fuel prices has generated key trends in improving the performance of engines and aircraft.

In terms of fuels, many alternatives, such as biofuels, synthetic fuels and aromatic compounds, are both viable option and environment-friendly. Unfortunately, their development and marketing is still not so profitable, therefore investment in fuel efficiency research and development will be a priority in the near future.

Mexico has not lagged behind in this area. As of July 1, 2012, the International Standard ASTM D7566 for the use of biofuels blended with conventional aviation turbine fuel came into force. This standard implies that commercial airlines must have the capacity to fly with biofuels.

The Mexican airline Interjet was the first on the continent to run commercial flights with biofuel, putting the Mexican aviation industry on the front line. The fuel it used was a mixture of 27% biofuel and 73% conventional fuel, as established in the aforementioned international standard. Interjet plans to do regular commercial flights with biofuel, although considering the limited availability of certified stock in Mexico it may have to wait until supply is more constant.

Aeroméxico made the first transoceanic flight in a wide-body plane using biofuel; the first of its kind in the world. Moreover, institutions such as ASA (the Mexican Airport Services) and CONACyt (the National Council of Science and Technology), have pushed the development of a sustainable aviation biofuel plant in the state of Chiapas.

The generation of aviation biofuel is still in its early stages, and current production costs remain higher than for conventional fuel. However, oil prices are also rising, so biofuel is expected to be a competitive option compared to conventional fuel in a short period of time.

Dual and Restricted Use Technologies

The development of restricted and dual-use technologies is highly lucrative. It has become a strategic sector for regions with a strong aerospace sector. The sector faces budgetary constraints and a concentration of resources in specific programs, so it needs a more efficient supply chain.

In the case of Mexico, since its entry into the main export control systems such as the Wassenaar Arrangement, the Nuclear Suppliers Group and the Australia Group, it has captured investment projects which are increasingly more profitable and strategic, with greater potential for the promotion of industrial competitiveness through technical and financial compensation.

In this context, some of the projects that are beginning to take shape include combat planes, unmanned vehicles, latest generation materials and knowledge process outsourcing (KPO) services for the aerospace and defense sector, including software design and other industrial processes.

New Materials: Quieter, Lighter and Cleaner Aircraft

The continued efforts to create lighter, stronger and quieter aircraft have furthered the research and development of new materials for civil aviation and defense. The new materials, such as nanocompounds, are classified as dual-use since they have both civil and military applications. Efforts have been made to improve energy efficiency and range. Materials are also sought which are lighter, quieter and invisible to air detection systems. The new materials are needed to perfect their use, control noise, optimize strength and minimize wear. Both military and civil aviation sectors around the world have expanded into the manufacture of aircraft with lower emissions, which has affected the use of materials and alternative fuels.

Among the current trends is the notable return of aluminum. Metal suppliers affirm that an improved aluminum-lithium alloy could fully replace the use of traditional aluminum. The lower density of the new alloys reduces weight by 3 to 6%. New designs can take advantage of its strength and corrosion resistance. An example of these is AirWare alloys, used by Airbus in the A350 and Bombardier in its Series-C.

Mexico has research centers and laboratories specialized in new materials and nanocompounds, including the Mexican Materials Research Corporation (Corporación Mexicana de Investigación en Materiales, COMINSA), the Advanced Materials Research Center (Centro de Investigación en Materiales Avanzados, CIMAV) and the Materials Research Institute (Instituto de Investigaciones en Materiales, IIM) of the National Autonomous University of Mexico (Universidad Nacional Autónoma de México, UNAM), among others. This opens opportunities to develop new materials, and latest generation composite materials, which has facilitated their integration into international innovation networks in the field. Helicópteros y Vehículos Aéreos Nacionales (HELIVAN), for example, is developing graphene, a carbon fiber that is two hundred times stronger than steel and is used in the defense aerospace industry.

Unmanned Air Vehicles

Unmanned air vehicles (UAV) have experienced meteoric growth in the last decade. They are crucial for the transformation of international defense systems. In addition, the budgetary reality facing governments requires most effective and less risky (in terms of human losses) solutions to win military confrontations or perform paramilitary activities.

In this context, the effectiveness of UAVs in military operations has been widely proven. The new generation of Unmanned Combat Aerial Vehicles or UCAVs will have full autonomy and tactical combat capabilities that gradually replace or complement the military fleets of world powers.

The market for military use UAVs in the United States is forecast to grow at a compound annual rate of 12%, reaching 18.7 billion dollars in 2018. The United States market for this type of UAV will generate 86.5 billion dollars in revenue between 2013 and 2018.

In Mexico, some companies have focused on the manufacture and development of unmanned vehicles. An analysis of the trend towards UAVs shows that Mexico has the specialized manufacturing capacity, research and development talent, and dual use international technology agreements needed to become one of the key suppliers for this market.
4.2. Strategy: Progress and Main Lines

The development of the aerospace sector’s strategy—its tactical and operative implementa-
tion in terms of tasks, milestones, projects and relevant activities—has positioned Mexico as
one of the main emerging players in the international arena. Despite the obvious results of
the implementation of the NFP, a strategy with nothing to improve is conformist. Therefore,
the outstanding tasks must be assessed, along with the challenges of a competitive strategy.

The general objective holds: the development of a national ecosystem of high added val-
ue and its competitive integration into international aerospace and defense networks. Dur-
ing 2015, the national strategy will also maintain its focus: turn Mexico into a destination that
serves the full cycle of an aircraft, while regional strategies align with the national strategy
based on the productive vocations of the main clusters.

Since its first version, the NFP has been integrated by three strategic milestones, which
have focused on high-value projects and the lines of action of the triple helix. This framework,
in line with regional strategies, has enabled the launch of ambitious initiatives, which have had
an effect on the development of the Mexican aerospace sector. The following graph summa-
rizes the strategic milestones planned for the Mexican aerospace industry.

4.2.1. Quality Global Infrastructure

The National Quality System is based on the country’s accreditation, certification, standards,
metrology, and testing capabilities. The national strategy, therefore, covers different actions
designed to strengthen those capabilities.

Implementation of best practices, process control and talent are the bases for Mexico’s
aerospace industry to have the necessary links to generate high-quality companies and a sec-
toral value chain with high added value.

Thus, the country has developed a quality global infrastructure, in terms of test laboratories
and certification units according to the needs and requirements of the world aerospace indus-
try, covering companies with AS9100 certifications, NADCAP processes and people. Quality
and safety systems are pillars of the Mexican aerospace system, whose products and services
meet the highest requirements of the international market.

4.2.1.1. The Bilateral Aviation Safety Agreement (BASA)

The signing of the Bilateral Aviation Safety Agreement (BASA) in 2007 and its ratification in
2009 is a mutual recognition of aviation certification systems between the General Director-
ate of Civil Aviation (Dirección General de Aeronáutica Civil, DGAC) and the FAA. This way, the
DGAC can certify parts, components, aviation systems and even a full aircraft that is manufac-
tured and/or assembled in Mexico and exported to the United States, or other markets, ac-
cording to the relevant standards and regulations. At present, the Implementation Procedures
for Airworthiness (IPA) are in force. The signing of the chapter on Maintenance Implementa-
tion Procedures, which includes maintenance, repair and operations (MRO) of aircraft and their
parts, is still in progress.

The continuity and full implementation of BASA is in line with the strategy for Mexico to
provide products and services to address the entire life cycle of an aircraft. It will also allow
companies to certify manufactured and/or repaired products, as well as maintenance services
performed in Mexico.
4.2.1.2. Development of Laboratories and Certification Programs

Mexico has a large network of research centers nationwide, which support industrial sectors, among the most important of which is aerospace. The network of laboratories and centers consists of the Industrial Engineering and Development Center (Centro de Ingeniería y Desarrollo Industrial, CIDEIS), the Center for Research and Technical Development in Electrochemistry (Centro de Investigación y Desarrollo Tecnológico en Electroquímica, CIDEIQ), the National Metrology Center (Centro Nacional de Metrología, CENAM), the Advanced Technology Center (Centro de Tecnología Avanzada, CIATEQ), the Center for Research and Advanced Studies of the National Polytechnic Institute (Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CEI), the Advanced Materials Research Center (Centro de Investigación en Materiales Avanzados, CIMAV), among others. All have coverage that includes the country’s main aerospace clusters.

In addition to this network of research centers and laboratories, the primary objective is to expand technology and testing spaces that provide technical services, infrastructure and parts and equipment technology, as well as for the technical and administrative support to complete product certifications and supplier development.

Aerospace clusters have also formed organizations that function as an important mechanism of coordination between industry and higher education and research institutions. Such is the case of the Querétaro Aerospace Research and Innovation Network (RIIAQ), which aims to contribute to the development and strengthening of research, technology, and innovation capacities, or the aerocluster in Monterrey, which seeks to become a center of excellence in innovation, engineering and supply of parts and components in North America. One of its main goals is to promote innovation and technology transfer between industry and academia in the state.

Other specific initiatives and programs have been implemented to strengthen the network of laboratories and certification programs that focus on the sector, such as the Mexico-European Union Competitiveness and Innovation Program (PROCEI).

The PROCEI, managed by ProMéxico, has developed different projects aimed at reinforcing Mexico’s aerospace sector, including the development of studies, certification programs, supplier identification, consulting and infrastructure, which has helped the SMB industry to strengthen its capacities and raise competitiveness. Below are some of the main projects of PROCEI.

4.2.1.2.1. Strengthening Technical Support to Enhance the Competitiveness of SMBs in Mexico’s Aerospace Sector Supply Chain

This project is managed by the CIATEQ (Advanced Technology Center) and has two lines of action:

1. Creation and Equipping of an Aeronautical Testing Laboratory.

The initial concept of this laboratory considered an initial phase with a single aircraft. However, at the federal government’s initiative, the infrastructure will be complemented with an aeronautical materials center. This laboratory will be primarily focused on the aerospace sector and work strictly with 18 OEMs, members of the Querétaro cluster and the SMBs of the industry established in central Mexico. It was designed following exhaustive research among similar laboratories and centers in Europe, Asia, and North America. Its implementation considers the adaptation of models and tests according to the medium- and long-term needs of the industry in Mexico, thus responding to the demand for specialized capabilities which complement those of the three centers that are part of this initiative (CIATEQ, CIDEIS, CIDETEQ).

Following up on the above, low cycle and high-temperature fatigue testing equipment was acquired, aimed at the needs of tractor companies of the aerospace sector, as well as standards and databases. In addition, there is a proposal to acquire equipment to analyze materials produced by certain SMBs for their insertion into the aeronautics supply chain (and other sectors).

2. Diagnosis and AS9100 Certification of Companies and Research Centers.

Its initial phase involved a diagnosis of 51 metalworking SMBs from seven central states, in order to identify the feasibility of this group of companies obtaining AS9100 certification. Of the 51 SMBs, twenty were selected to continue the second phase of mentoring and a third phase of AS9100 certification for them to join the aerospace sector supply chain.

The companies were selected for the project by the recommendation of OEM and Tier 1 companies, who are working closely with them to strengthen the national supply chain. The initiative will also certify the CIATEQ and the CIDETEQ further developing production in the region.

4.2.1.2.2. Center for Training and Certification in Design and Engineering Software (Centro de Capacitación y Certificación en Software de Diseño e Ingeniería, CATIA)

The National Chamber of the Electronics, Telecommunications and Information Technologies Industry (Cámara Nacional de la Industria Electrónica, de Telecomunicaciones y Tecnologías de la Información, CANIETI), through the PROCEI, will consolidate the Center for Training and Certification in Design and Engineering Software (CATIA), which is in Baja’s Innovation and Technology Transfer Park (PIT3). The center is located in Tijuana. The chamber has participated actively in the generation of supply for the high-technology manufacturing sector, especially electronics and aerospace, which has enabled it to detect areas of opportunity.

The Baja California Aerospace Cluster considers that one of the strategies to strengthen the sector is to have robust ITC services to meet its design and engineering requirements. That is why CANIETI, with support from PROCEI, put together a training and certification center to offer clinics on CATIA and SolidWorks design and engineering software, providing services with high-technology content targeted to the aerospace sector.

The first clinics were held in January 2014. Three instructors were also selected who trained and certified thirty engineers in their modules of interest.

4.2.1.2.3. Project to Enhance the Advanced Manufacturing Capacities of SMBs in Chihuahua

Through this joint project with Economic Development of the state of Chihuahua (Desarrollo Económico del Estado de Chihuahua, DESEC) and with the aim of increasing the degree of integration of the state’s metalworking sector, improving the quality of the products transformed by SMBs and achieving their integration into international markets (especially in the aerospace sector), two lines of action were established:

1. To innovate, develop, and enhance the design of products and their parts.
2. To certify the parts in question for the aerospace industry.

For the first, a FabLab (flexible manufacturing laboratory) will be installed in the Innovation Technology Transfer Park (PIT3) of the Monterey Institute of Technology and Higher Education (Instituto Tecnológico de Estudios Superiores de Monterrey, ITESM), campus Chihuahua. The FabLab is based on the Massachusetts Institute of Technology (MIT) global laboratory network model: It consists of an experimentation and production area that enables the generation of prototypes and acts as a link between metalworking SMBs and the automotive and aerospace industries, through advanced manufacturing processes and products. It will be the first of its kind in Mexico and the third in Latin America. The laboratory will enable SMBs to carry out innovation, design and development activities for new products.
The second line of action concerns the evaluation and certification of parts according to NADCAP standards and will be performed through the Advanced Materials Research Center (CIMAV), which will give accreditation in thirteen different material tests, allowing pieces to receive NADCAP certification and subsequently penetrate the aviation market.

The project is in the phase of human capital training and the first phase of the FabLab is being pre-installed. As far as obtaining NADCAP certification, the CIMAV has begun to do all the necessary adjustments to equipment, processes and human resources to meet the established requirements and standards in order to obtain the distinction, which will help the aerospace sector take another step towards its development and consolidation.

4.2.2 Turbine Development in Mexico

As a result of the efforts of the General Directorate of Civil Aviation (DGAC) to address the growing demand for aerospace related services in Mexico, a regional office was opened in Querétaro—others are planned around the country. The priority of the first decentralized DGAC office is the certification of airplane parts manufactured in Mexico, as part of the bilateral aviation safety agreement (BASA) between Mexico and the United States.

The main companies performing these activities in Mexico are:

- SNECMA/SAFRAN (Querétaro), for new, medium engines and their repair.
- Honeywell (Chihuahua), for new, medium and small engines and their repair.
- General Electric (Querétaro), focused on new, large engines and their repair.
- Churchill (Sonora), focused on the manufacture of blades for Rolls Royce and their application in new products.
- ITP (Querétaro) for the manufacture and repair of low pressure turbines.

Regarding the design of parts, components and/or turbines in Mexico, the main companies are Honeywell (with centers in Chihuahua and Baja California); GE and ITP in Querétaro, which will probably be joined by SNECMA in the near future.

It is important to mention that Sonora also has a clear vocation for engines and is establishing a cluster aimed at this segment. Companies like Trac Tools de Mexico, UTC3, EECO and Wallbar Engine Components, are developing their capacities. Several of them have attracted the attention of leading companies like Rolls Royce, which since 2012 established a purchasing office in Guaymas, Sonora.

Mexico has the necessary capacities to design and manufacture complete engines. However, turbine development can be boosted with the following actions:

1. Developing the education capacities of advanced mechanical engineering, with emphasis on 3D modeling (UNIGRAPHICS and CATIA 5).
2. Specialization of certified laboratories for strength, life, metallographic testing, among others.
3. Offsets program for engine manufacturing and maintenance in Mexico.

Among the success cases related to turbines in Mexico are:

Mexicali Research & Technology Center

Honeywell’s Mexicali Research and Technology Center (MRTC) is an engineering and technology center comprising a design center, system integration laboratory, testing annex and business support team.

The MRTC is an important system integration laboratory and the first of the Mexican aerospace industry. It allows full-scale simulation of aircraft systems, providing the possibility of testing interoperability, control, and technical maturity.

The installation tests a wide range of subsystems and electrical/mechanical components of products for next generation aircraft in the air transport market. Its testing annex supports a wide range of activities and manufacturing processes of electronic and/or mechanical components and instrumentation testing functions.

Honeywell Aerospace Chihuahua

Honeywell’s Aerospace Chihuahua Manufacturing Operation consists of highly complex manufacturing facilities. The facility hosts a Warehouse, Labs, Quality Control Operations, as well as Engineering. HCMO (Honeywell Chihuahua Manufacturing Operation) is one of the most advanced manufacturing operations in the Aerospace industry. It features a state of the art Blade Manufacturing cell as well as numerous highly advanced Aerospace machining cells. The site manufactures a number of parts for Aerospace Engine and APUs including Engine assembly ducts, gears and shafts, blades, impellers, nozzles, disks, stators, seals, nozzle segments, etc.

General Electric

GEIQ is the largest Global Engineering Center for GE Aviation and the second for GE Energy. The center achieved a significant expansion in 2011, hiring more than 240 engineers and designers and enabling the center to ramp up sales to 80 million dollars for the year. Some of the areas of specialization include Mechanical, Electric, Controls and Software Engineering.

At Aviation GEIQ engineers participate in the design of the new generation of aircraft engines, including the successful GENX or the new LEAP-X. It also provides support to existing engines, such as the CFM56, in the areas of production, redesign and operation. In Energy they focus on various technologies ranging from steam and wind turbines, to generators or gas turbines, and they are in charge of Services for Latin America and support local projects such as the installation and setup of GE turbines in Tamaulipas and Manzanillo.

Eurocopter

Within the Aerospace Aerocluster, Eurocopter has a maintenance center to perform small and medium inspections equivalent to 150 to 600 flying hours, as well as one and two years of use for aircraft of the Ecureuil family—Ardilla AS350, AS355 and EC130. It has the capacity to inspect six helicopters at the same time and also possesses a Eurocopter AS355N Dauphin. The aim of the center is to provide different services to meet the required quality standards and develop one of the best helicopter maintenance bases in the country.
4.2.3. Aircraft with High Domestic Content

One of the strategy’s most important milestones is the deployment of an aircraft manufactured in Mexico, with high Mexican integration and engineering content. To this end, different companies have gradually increased their design, engineering and manufacturing capacities so that aerospace structures, components and systems are conceptualized, designed, tested and manufactured in Mexico.

Among the most advanced companies is Bombardier, whose progress with the Learjet 85 is outstanding. The aircraft, manufactured largely from composite materials, is an example of collaboration within the framework of the North American Free Trade Agreement (NAFTA) involving the company’s plants in Mexico, the United States and Canada.

Currently, Bombardier Aerospace in Querétaro, Mexico, manufactures the fuselage, assembles the wings, the horizontal and vertical stabilizers and manufactures and installs the electrical harnesses of this innovative aircraft. The final assembly of the Learjet 85 will be done in Wichita, United States. The development of the Learjet 85 program in Mexico is a major step forward, considering that the company began operations in Mexico in 2006 and only eight years later is manufacturing the components of a completely new airplane, contributing to the development of the aerospace industry in Mexico.

Along with technical capacities, all the necessary conditions to achieve this milestone are moving forward in Mexico.

4.2.4. Defense Strategy

4.2.4.1. Strategic Trade

Mexico is a key player in industrial goods production on a global scale. It has become a responsible, reliable partner for the development, production and distribution of aerospace, defense and dual-use assets. Mexico is taking strides towards doing business in the high-technology and defense market by creating the conditions required to give certainty to the international community.

Based on an approach to attract international business, and in the context of security and control of information, processes, products and services, important opportunities will be created to:

• Attract investment, opening the door to transnational producers of latest generation technology and with access to high-technology contracts.
• Promote the development of new sectors to diversify goods and technologies.
• Transfer leading edge technology and generate added value, strengthening domestic capacities.
• Boost important technology-based industries (aerospace and software).
• Provide legal certainty in foreign trade operations by enabling trade relations between countries sharing the same control regimes.

4.2.4.2. Export Control Regimes

In addition to the requirements of confidence and eligibility to participate in high-technology and defense projects, there must be mechanisms that attract businesses with the most potential to generate economic development, added value, and raise Mexico’s competitiveness and its innovation capacities.

Mexico has been a driver of strategic trade, creating an inter-ministerial group which identifies the possibilities of attracting international investment and trade, as well as focusing business intelligence and competitiveness efforts on the identification of projects with the potential to boost the country’s participation in defense and high-technology markets (with or without access restrictions to dual-use technology). This implies greater benefits for economic and technology development.

Based on this dynamic, it was necessary to join the main export control regimes, which meant modifying the national export control system. However, since 2011, a new system has been implemented that requires prior permission to export all conventional arms, dual-use goods, software and related technologies.

4.2.4.2.1. Wassenaar Arrangement (WA)

The first version of the NFP highlighted the huge potential for the country’s economic and technological development in the dual-use technologies and defense markets, both in research, design, development and manufacturing processes and products, as in supply services associated with these industries.

Mexico officially joined the Wassenaar Arrangement on January 25, 2012. As mentioned, this mechanism was established to contribute to regional and international security and stability, by promoting transparency and responsibility in the transfer of conventional weapons, goods and dual-use technologies.

Different government agencies and organizations were coordinated to generate this new export control system and to establish the right conditions to join the regime, which was identified as having the greatest impact on Mexico’s economic and technological development.

Mexico’s entry into the Wassenaar Arrangement has two important implications. The first is that Mexico joins a community committed to the non-proliferation of conventional weapons, which also promotes a safe environment for the trade of restricted-use goods among its members. The second is that, to become part of the mechanism, Mexico joined the club of high-technology countries, giving it access to new markets and to leading edge technology, while improving the country’s competitiveness and the attraction of investment in different sectors.

Membership does not entail the obligation to transfer technology or knowledge between member countries. However, it gives certainty to the international community and makes Mexico eligible to become a reliable partner for developing business in the restricted high-technology market, to which it did not have access previously.

The potential for economic and technological development is huge since Mexico’s entry to the Wassenaar Arrangement. As said, it provides access to an additional export market of close to 11.3 billion dollars a year. This opens an attractive outlook for the country which requires a strategy to maximize and capitalize on the potential benefits of the negotiation.

The Ministry of Economy (SE) and ProMéxico, together with state governments, have coordinated strategic plans to steer the aerospace sector, while establishing competitive poles in restricted high technologies in both product research, design, development and manufacture and in the supply of industry-related services.

4.2.4.2.2. Other Export Control Regimes

Although the Wassenaar Arrangement has the greatest impact on Mexico’s aerospace and defense industry, the country has also gained admission to other regimes to increase competitiveness and international business opportunities.

On November 16, 2012, Mexico became the 47th member of the Nuclear Suppliers Group. Created in 1974, the group’s goal is to contribute to the non-proliferation of weapons and
nuclear material by implementing guidelines to regulate the export of nuclear goods, and related dual-use software, technologies and products.

With this new membership, the Mexican export industry gained greater competitiveness, operating in a more secure environment and strengthening its industrial platform to continue the development of leading edge technology in sectors that use nuclear elements (such as electricity generation and nuclear medicine), among others.

In August, 2013 Mexico became the 42nd member of the Australia Group (AG), which relates to the international export control regime of chemical substances, biological agents, plant and animal pathogens, and related technologies. The AG is responsible for the control of chemical substances, biological agents and equipment and equipment for the manufacture of dual-use chemical and biological substances in the chemical and biotechnology industries.

4.2.4.3. Acquisition of Industrial Equipment and Systems (offset) and Government Procurement

Since the first version of the NFP, the group formed by the industry, academia and government pointed out that industrial compensations are an alternative to develop more competitive industries; boost design, research and development capacities; promote the generation of intellectual property in partnership with multinational companies, and incorporate and produce new technologies. This is derived from the country’s major acquisitions, especially through government procurement.

Offsets are industrial compensation practices established as a condition of purchase in the contractual negotiations for large acquisitions (for example, aircraft). These compensation practices are used in military and commercial purchases. Offsets can be direct (involving goods and services related to the acquired items) or indirect (involving unrelated goods and services) and include practices such as: co-production, authorized production, outsourced production, technology transfers, in-kind trade, training and direct foreign investment, among others.

As a result of this strategy, the first draft of the offsets policy is in development and will seek to attract new technologies, and promote industrial and commercial development that boosts the competitiveness of strategic national and international projects.

4.2.4.4. From Buy American to Buy NAFTA

The Buy American Act in the United States, which considers all government and US Defense Department acquisitions, restricts purchases from suppliers whose products do not have a minimum of 50% domestic content.

Article 1004 of NAFTA prevents the existence of protectionist domestic legislations on government acquisitions made in Mexico, Canada and/or the United States (this is no longer applied, except in the case of Mexico). Due to this, and aware of the benefits to be obtained from the elimination of this restriction, Mexico intends to sign a Memorandum of Understanding (MoU) with the United States seeking exemption from the Buy American Act in purchases from the US Department of Defense. The MoU will establish that the application of restrictions of the Buy American Act and the Balance of Payments Program on the purchase of products from 21 rated countries (Waiver 225.872-1) is inconsistent with public interest. The MoU will be signed to guarantee a reciprocal treatment in military purchases made between Mexico and the United States.

4.2.4.5. Creation of a North American Security Block

Events that have occurred in the region (9/11, Hurricane Katrina, and the fight against drug trafficking, among others) have made Canada and the United States aware that guaranteeing security in North America also requires the participation and cooperation of the third country of the region: Mexico.

Some trilateral processes, such as the Security and Prosperity Partnership (SPP) of North America, and cooperation in terms of intelligence, military exercises, technical assistance and military training carried out in cooperation with Mexico through the US Northern Command (USNORTHCOM), are solid proof that Mexico is a key component to offer a comprehensive solution for shared problems (organized crime, terrorism, natural disasters) threatening security in the North American region.

For the three countries that form North America, these military cooperation initiatives show a trend towards the creation of a common security block in the region. This allows greater convergence by promoting economic and trade integration, security and the creation of better welfare levels for the population.

The formation of a North American security block is related to regional economic integration in dual-use (civil and military) technologies. Mexico’s acceptance into the Wassenaar Arrangement demonstrates its reliability for the integration of sensitive industrial processes of the high-technology and defense sector. This affects North America’s competitiveness as a block in international markets.

4.2.4.6. Dual-Use High-Technology Platform-Defense Parks

Mexico’s geopolitical position and competitive and comparative advantages make it the ideal destination for producing goods and developing sensitive technologies likely to be used for commercial purposes, in addition to producing goods and dual-use technologies.

As mentioned, Mexico’s entry into the Wassenaar Arrangement also integrates it into a collaborative group focused on the non-proliferation of weapons of mass destruction, while representing new opportunities to attract high-technology civil and military projects. Mexico currently attracts 5% of all permits granted by the US Department of State for the production of dual-use goods.

Under these conditions, and considering the general factors that make Mexico a competitive country, a particular strategy and associated public policies were implemented to develop the industry and attract greater investment and high-value technology transfers.

One of the premises of the strategy is the focus of the defense sector on specific centers of competitiveness, by their evolution and geographical position. This will achieve the constant attraction of advanced manufacturing companies, technology and talent. To do this, the strategy provides for the establishment and development of specialized parks with the infrastructure, procedures and conditions defined by international control regimes, while facilitating the transactions and logistics of companies operating within it. This can be achieved if the park is designed and operated as a special economic zone (SEZ) focused on dual-use and restricted technologies. This requires specialized infrastructure for the parks that includes:

- Research and development center for dual-use and restricted technologies.
- Technological park, incubator, and business accelerator.
- Specialized services center (export control office of the SE; the DGAC; the National Metrology Center; among others).
- Testing laboratory for the industry, for certification bodies and the academy.
- Technical support center in information technologies.
- Perimeter security controls for full adherence to the security standards managed by companies in the field.
The proposed actions, both to generate public policy and develop infrastructure, are aligned with the general strategy to boost centers of high international competitiveness, in this case, specializing in dual-use products and technologies.

4.2.5. Integrated Aviation Services Center in Mexico

The global aerospace industry will undergo structural changes during the next few years. Price hikes in fuel and raw materials will impact the revenue of airlines, manufacturing companies and air fleet MRO companies. The search for competitive destinations, specialized labor and the logistical advantages of certain countries will become the main business drivers to establish integrated aviation centers.

Those centers will offer an ideal ecosystem for industry development, providing advantages in maintenance services, conversion, management and decommissioning of mature fleets; integration of spare parts, parts and repair services into the supply chain, preferential trade areas; and the training of and access to technicians, engineers, pilots, crew and ground support personnel, whose demand will rise in the coming years.

Mexico’s geographical and business position, and developed capacities in advanced manufacturing and process engineering, provides an unbeatable opportunity to establish the country as one of the leading world centers for aviation services.

Mexico is therefore keenly interested in establishing an Aviation Service Center that integrates traditional business opportunities with services for next generation aircraft and engines, both in MRO and complementary activities to integrate national and international supply chains and serve the full life cycle of an aircraft.

Mexico is working with key industry players, especially in the areas of intelligent management of mature fleets, engine and airframe maintenance in order to operate this Integrated Aeronautical Center in Mexico.

One of the first results of these conditions is the alliance between Aeroméxico and Delta, and the approach from top international players intending to make strategic partnerships with Mexican companies to establish an MRO hub. Meanwhile, European and North American companies have initiated approaches to establish the conversion and decommissioning activities of mature fleets, to complement the vision of such a center.

The strategy to define the location and startup will be confined to the evaluation of the country’s different clusters where its implementation is feasible. The locations looked at have the space required to house a world-class hub, and the best flow of aircraft to validate the country’s different clusters where its implementation is feasible. The locations looked at have the space required to house a world-class hub, and the best flow of aircraft to validate the country’s different clusters where its implementation is feasible.

One of the first results of these conditions is the alliance between Aeroméxico and Delta, and the approach from top international players intending to make strategic partnerships with Mexican companies to establish an MRO hub. Meanwhile, European and North American companies have initiated approaches to establish the conversion and decommissioning activities of mature fleets, to complement the vision of such a center.

The strategy to define the location and startup will be confined to the evaluation of the country’s different clusters where its implementation is feasible. The locations looked at have the space required to house a world-class hub, and the best flow of aircraft to validate the initial business case. Each of the airports evaluated is close to an industrial development with the capacity to grow and strengthen the required suppliers. Below is a description of two of the primary components of the hub.

4.2.5.1. Intelligent Management of Mature Fleets (TARMAC)

The goal is to establish a center dedicated to the final stages of an airplane’s life cycle, where it can be retired, dismantled and recycled in safe and environmentally responsible conditions. This activity creates important lines of business by extracting recyclable materials and selling valuable components which are still in reusable condition, either directly, or after being remanufactured, repaired or reconditioned.

The dismantling of aircraft which have reached the end of their useful life is a great business opportunity, especially after Airbus stated that by 2015, 85% of an aircraft will be able to be recovered, reused and recycled. Over the next twenty years, an estimated 10,500 commercial aircraft will complete their useful life and have to be dismantled and recycled for sustainability and public health reasons.

The project is set to operate under the regulations established by the Aircraft Fleet Recycling Association (AFRA) whose purpose is to stop inappropriate disposal practices of this kind of transport and implement a code of conduct for aircraft dismantling. AFRA was initiated by Boeing and ten other companies in 2006 and currently has 70 members including Rolls Royce, Pratt & Whitney, Grupo Safran, Bombardier, and Bell Helicopter.

4.2.5.2. International Aerospace Training Center

This training center will be part of the aviation services hub to develop human capital, to complement the efforts of other national academic institutions with aerospace programs, thus satisfying the strong current and future demand for trained personnel in the national and international aviation industry. The aim will be to cover different disciplines including aircraft operation, design, manufacture and maintenance.

The center will train pilots, crew and ground support staff, engineers and technicians specialized in MRO, avionics and electronics, inspectors and auditors, among others, according to international quality standards. The center will be developed in such a way that it can be created either privately or, depending on the location of the hub, as part of an academic institution with aerospace capacities. However, aerospace companies established in Mexico have the support of the Mexican education system, which has proven very successful in training technicians and engineers with specialties in MRO and retrofitting aircraft and their components.

For several decades, Mexican education programs have produced professionals who have excelled in domestic MRO and aerospace manufacturing companies. The quality and international renown of the country’s programs have secured various strategic partnerships between global operators and companies and education centers in the sector, in order to develop specialized programs and guarantee direct access to local talent. Mexico’s experience in training professionals for the aerospace industry goes beyond the explosive growth of recent years. Training centers have been established in Mexico which are known throughout Latin America. For example, pilot, ground and air personnel and MRO technician training has evolved to include sophisticated academic programs in aviation design and engineering.

Today, Mexico has developed the capabilities required to train aviation personnel. A clear example is the strengthening of various research centers and higher education institutions.

Another example is CAE Systems, a leader in modeling, simulation and training for civil and commercial aviation, located in Toluca, State of Mexico. Its simulation center focuses on training for helicopters and commercial aircraft. It is the first advanced simulation training center in the country, and required an initial investment of 63 million dollars.14

The center has four flight simulators (one for Airbus, one for Bombardier’s Learjet, another for Bell helicopters and one for Viva Aerobus, Magnicharter and Estafeta). In a second stage, foreign pilots are expected to train in the center. These investments allow domestic companies to save thousands of dollars. Until 2012 this type of training was only available outside Mexico.

4.2.6. Human Capital and Training Activities for the Aerospace Industry

An essential factor for the development of any industrial sector, if it is to be profitable, sustainable and competitive, is the availability of human capital across levels, skills and competences. This applies particularly to high-demand industries like aerospace. Therefore, human resource training is a strategic activity for the sector.
Currently, the highest demand for human capital is primarily in machining, aerostructures, special processes, electromechanics, MRO, design and composite materials.

Graph 8. Needs Pyramid

Graph 9. Aerospace Education Coverage

Summary of education institutions for the aerospace industry in Mexico:

Graph 10. Education Institutions for the Aerospace Industry in Mexico

Graph 11. Enrollment in Aviation/Aerospace Engineering

Mexico has been training aviation technicians and engineers since 1937. Today, 21 education institutions offer 52 aerospace education programs covering core courses, high school, technical degrees, higher technical university, professional licenses, engineering degrees (mostly aerospace), as well as some masters programs.
It is important to align talent training with the industry’s current—and future—needs. As part of the sector’s strategy, a work group has been put together to develop the Integrated Strategic Aerospace Education Program, which will be defined by the triple helix (government, industry, and academia), under the coordination of a committee represented by entities such as the Mexican Federation of the Aerospace Industry (FEMIA), the Mexican Space Agency (AEM), the Mexican Council for Aerospace Education (COMEA), ProMéxico, and the Ministry of Public Education (SEP), among others.15

4.2.7. Mexican Space Agency (AEM)

Mexico’s foray into space involves the participation of groups from the triple helix. Since the early fifties, a series of experiments and efforts have been made by the National Commission of Outer Space (CONEE). Also influential was the Mexican Communications Institute (Instituto Mexicano de Comunicaciones, IMC) during the nineties. This development mobilized industrial, academic, and government communities for several years. The momentum led to the creation of the Mexican Space Agency (AEM), which was approved on April 2, 2010 by the Chamber of Deputies (the decree was published in the Official Gazette of the Federation on July 30, 2010). Almost a year later, and as a result of this synergy, the Outline of Mexican Space Policy was published on July 13, 2011.

During the integration of the AEM (in 2010), Mexico positioned at the forefront of space technology with the acquisition of the MEXSAT System, a constellation of three geostationary satellites for social coverage (Bicentennial Satellites, launched in November 2012) and to support national security (Centennial and Morelos and III) with a total investment of 20 billion pesos and an operating budget of close to 5 billion pesos.

The Mexican government maintains the commitment to boost Mexico’s development and competitiveness, recognizing the strategic role of the space sector. To reaffirm that commitment, the AEM focuses its efforts on integrating space infrastructure oriented to meet social needs, venturing into space transport, promoting the integrated development of the space sector, consolidating it and coordinating its value chain.

Different multidisciplinary teams are currently working to ensure the successful achievement of the milestones of the space industry and their ties to the proper development of the sector’s national strategy, thus seeking to protect technological sovereignty and independence, and the sustainability of the Mexican space industry.

4.2.8. Development of Aerospace Sector Suppliers and Advanced Manufacturing

4.2.8.1. National Assessment of Advanced Manufacturing

A national assessment of advanced manufacturing capacities is planned in order to trigger competitive, high added value clusters and their development. This will help define the status of supply in different added value processes and their physical distribution around the country.

The study will lay the foundation for identifying gaps and business opportunities in the supply chain, and suppliers with the potential for large scale development. It will concentrate on the main manufacturing regions which account for the majority of design, engineering, and advanced manufacturing capacities. The study will identify existing regional capacities for the definition of productive vocations for the industry, and other competitive clusters in advanced manufacturing. Aerospace sector companies will be able to use the study to strengthen, optimize and expand their national supply chains.

Several of the leading companies of the sector are committed to this initiative and recognize it as a high-impact tool that will allow them to identify the different productive ecosystems and their location, current capacities and potential.

The study will provide useful decision-making information. Initially, it will serve for acquisition and supplier development, but it will also be a departure point for expanding operations and attracting new areas of development.

4.2.8.2. Supplier Development / Sourcing Council

Mexico has implemented different programs aimed at developing suppliers to strengthen the national productive chain. One, led by the Ministry of Economy in cooperation with the United Nations Program for Development (UNDP), resulted in the joint suppliers’ development model. The program is based on training certified consultants with the necessary skills to improve production chains.

Meanwhile, ProMéxico implemented the methodology of the Transnational Corporations Partnerships (ACT, acronym in Spanish) model, which seeks to leverage the strong interest of large companies established in Mexico to grow their business, particularly through domestic supply and transfer of operations.

The ACT model proposes integrating the aerospace sector into the supply chain by identifying the main products imported by original assembly companies, the establishment of inquiry lines to determine qualified domestic supply certified to the required standards, and to identify whether the current installed capacity is sufficient to meet those requirements. In the absence of domestic supply, the system supports a program to attract projects to transfer international supply companies’ operations for them to establish in Mexico.

Another important initiative mentioned in the first NFP concerns quality. In response, a council of companies was created for the supplier development. The Sourcing Council is focused on developing specialized suppliers for the aerospace sector, which obtained results in coordinating the efforts of a group of companies in order to establish spaces for multidisciplinary collaboration, to encourage partnerships and team work among members. The Council consists of Eaton, Grupo Safran, Bombardier, Honeywell, Bell Helicopter and Rockwell Collins.
Among its first actions, the Council drew up a map showing the capacities of companies in the industry and identified the specific needs to strengthen them. As a result of the joint actions towards supplier development, some important achievements were made:

- Detection of missing links in the supply chain.
- Qualified domestic supply, certified to the required standards in work processes.
- Capacities to carry out programs to attract talent.
- Establishment of international supply companies in Mexico.

The following graph identifies the processes with most demand. It also shows the estimated proportion of demand growth in those processes in Mexico—from three to five years—considering only the requirements of the companies that form the Council.

Graph 13. Increased Purchasing Demands

Short-Term (3-5 Year Outlook)

As the graph shows, the increased demand justifies national initiatives aimed at supplier development, and the initiatives to complement domestic supply chains.

4.2.9. Logistics Development

Since the first version of the NFP, the development of logistics was highlighted as a key factor to increase the industry’s competitiveness. Logistics development represents a great opportunity to promote the aerospace industry (and manufacturing in general) and turn the country into the logistics hub of the Americas.

While other programs have been launched to support and encourage the sector’s competitiveness through trade facilitation, there is still much to be done in developing logistics networks, projects and infrastructure. The first version of the NFP defined the following strategic lines:

- Promote the creation of a bigger and better supply of logistics services in Mexico.
- Promote the incorporation of best practices in corporate logistics management.
- Position Mexico internationally as a world class logistics hub.
- Promote logistical adjustments in infrastructure operations to achieve trade facilitation.
- Promote certification of the quality of logistics services.
- Develop human capital training with capacities in logistics services.
- Improve coordination between federal and local governments with the private initiative.

Some actions implemented by different players in the aerospace sector have enabled progress along certain strategic lines for logistics development. Federal and local government agencies, the SE, the Ministry of Finance and Public Credit (SHCP), the Bank of Mexico (BM), and the Federal Competition Commission (Comisión Federal de Competencia, CFC), among others, have supported the progress of different projects aligned to promote logistics development.

4.2.9.1. Infrastructure

In addition to the actions mentioned above, the SE launched programs like the Logistics Competitiveness Agenda 2008-2012 (ACL) and the Competitiveness Program in Logistics and Supply Centers (Prologyca), which were created to build a logistics platform that enables domestic and foreign trade, with the aim of promoting the supply of logistics services more efficiently by supporting projects that encourage competitiveness and the sustainability of logistics infrastructure and related services.

The application of these initiatives must guarantee that the projects contribute directly to strengthen existing logistics networks and boost the integration and creation of new networks aligned with the national strategy.

4.2.9.2. Public Policies and Intervention Mechanisms

The efficient integration of local supply chains with global chains requires regulatory initiatives aimed at eliminating or minimizing bottlenecks or trade barriers. There are numerous programs that promote international trade, including the following:

a) **IMMEX**

IMMEX enables the temporary import of goods needed for a specific industrial process or service for the manufacture, transformation or repair of foreign goods for export or export services, without having to pay the general import tax, value added tax or countervailing duties. Import activities are completely tax free.

b) **Draw Back**

This program allows beneficiaries to recover the amount of tax paid on imported inputs, raw materials, parts and components, packaging and containers, fuels, lubricants and other materials incorporated into the exported product, or the importation of goods that are returned in the same state, as well as goods for repair or alteration.
c) Trade Facilitation

The World Trade Organization (WTO), the World Bank (WB), and the Organization for Economic Cooperation and Development (OECD) coined the term “trade facilitation” to refer to the simplification and harmonization of international trade procedures to streamline the exchange of goods and services between countries.

Mexico has been active in the creation of programs to promote this concept which has benefited different sectors in the country, including aerospace. The implementation of the programs has allowed specific actions to reduce operation and production costs. In Mexico, the trade facilitation program has been based on the following lines:

- **Simplification and Rethinking of Exemption Schemes**

 The SE established a program to gradually reduce tariffs; the implementation of a simplified tariff policy seeks to bring tariff levels in line with those of our trade partners, among them the United States. This measure has saved companies more than a billion dollars.

 A country with a complex tariff structure has negative effects in the dynamics of foreign trade, reducing trade flows and hampering transactions with classification errors due to different tariff levels between similar products.

- **Customs and Foreign Trade Facilitation**

 Customs and foreign trade facilitation has enabled trade openness with countries that do not have trade agreements with Mexico. This has meant that producers have greater access to inputs and capital goods supply at competitive prices, thus becoming more efficient in the production of finished products that they offer on the domestic market and abroad.

 According to the International Institute for Management Development’s Global Competitiveness Index, Mexico has climbed ten places in just two years. It is the only country in Latin America that moved up in this ranking, positioning ahead of countries like Turkey, Brazil and Russia. This was due in part to tariff simplification and rethinking of exemption schemes.

- **Customs and Foreign Trade Facilitation**

 Customs and foreign trade facilitation concerns the streamlining of customs dispatch procedures, the revision of standards and their homologation with international standards, among other factors. In Mexico, more than 10 billion import requests and more than 37 thousand export requests are processed every year. In addition, there are more than 60 thousand active users of foreign trade, 40 documents, 165 procedures, 200 different bits of data and more than 30 players (government, exporters, importers, transporters, etc.).

 In order to provide information and move forward on trade issues in Mexico, the SE created the SIICEX website16 as a free tool to access government information related to foreign trade. The site is directed to business owners, importers, exporters, and anyone with an interest. The site is as follows:

 - **Creation of the 9806.00.06 and 05 Tariff Sections Relevant to the Aerospace Sector**

 The Tariff heading 9806.00.06 was created as a SIICEX tool. The website streamlines and simplifies information flows (trade and government) and optimized corporate time in terms of inquiries on trade procedures. It also reduces time for administrative processes and facilitates information about customs clearance. The SIICEX helps in the search for information and eliminates freight and courier expenses, reducing costs for physical storage space.

 Progress was also made in the New Mexican Export Control System. As mentioned, in early 2012 Mexico became part of the Wassenaar Agreement—the most important multilateral export control regime for the export of conventional weapons, dual-use goods and technology in the world. Mexico’s entry into these export control regimes enable it to transition from a manufacturing country to one that also designs, builds and manufactures dual-use goods, software, technology, arms and explosives.

 - **Creation of the 9806.00.06 and 05 Tariff Sections Relevant to the Aerospace Sector**

 The Tariff heading 9806.00.06 was created as a SIICEX tool. The site is as follows:

 - **Goods for the assembly or manufacture of aircraft or aircraft parts, when the companies have a Certificate of Approval for Production issued by the Ministry of Communications and Transport (SCT)!”**

 The initiative arises to facilitate the operation and drive the development of aerospace companies that export aviation machinery, equipment, instruments, materials, parts, and components. This tariff heading allows free import for the assembly or manufacture of aircraft or aircraft parts, provided the companies have the certificate of approval issued by the SCT.

 In addition, heading 9806.00.05 allows goods for the repair or maintenance of aircraft or aircraft parts, which benefits MRO activity given that imports made under this heading are also tariff free and have administrative advantages.

 The heading has benefited companies in the sector, regardless of the activities they perform: parts design and development, assembly or manufacture of harnesses and cables, fuselage parts, landing system components, machined and metal parts, turbine parts, precision equipment, audio and video systems, electronic components, aircraft repair and maintenance work (repair of interior, mechanical and electrical parts), repair and maintenance of turbines, among others.

 4.2.9.3. Special Economic Zones (SEZ)

 In earlier versions of the NFP, the working group determined that the logistics component of the supply chain could be more efficient, and that customs procedures must be simplified to facilitate the integration of production chains and generate cooperative conditions for manufacturing activities or the export of services through Special Economic Zones (SEZ), aimed at the aerospace activity.

 This has led to joint work with the SHCP to adapt the existing economic zones, or create new ones, based on international dynamics of the sector to generate more competitive advantages. In Mexico, the SEZ are in defined areas for the performance of industrial and service activities. They typically offer incentives to foreign investors, expectations for high economic returns, product processing markets for export, tax exemptions, favorable infrastructure conditions, administrative facilities, skilled labor and economic growth for the development of the domestic market.

 Some of these zones have a customs regime that allows the introduction of foreign goods to Mexican territory for a limited time for handling, storage, custody, exhibition, sale, distribution, elaboration, transformation or repair. The implementation of this regime benefits programs that boost exports and allows the aerospace sector to further develop, especially regarding MRO.

 The main SEZ are located in Guanajuato Puerto Interior (Guanajuato), Puerto Frutero Colomibia (Nuevo León), Logistik Free Trade Zone (San Luis Potosí), Zona Franca (Baja California), and Refeson (bonded area located in Sonora).
In general, Mexican aerospace companies can obtain advantages by establishing within an SEZ (or rather, operating through them). However, some can receive greater benefits (depend-
ing on their activity), MPIDs, for example, or companies that use dual-use high technology. To be competitive, these must operate in highly efficient logistics environments able to meet the specific needs of this productive activity. Despite there being no SEZ in Mexico aimed specif-
ically at the aerospace sector, there are prime conditions for their development.

In short, it is intended that the planning of SEZ be part of the centers of competitiveness to
guide the industry towards a better management of key links in the production chain, diver-
sify and complement the industrial base, promote the evolution towards knowledge intensive
industries and insert national companies into global chains.

4.2.10. Engineering Council

In earlier versions, the NFP presented a project related to the creation of this Council, which
would represent the interests of the main companies and organizations that provide knowl-
edge-intensive services (engineering). This responded to the country’s need to train special-
ized professionals, manage talent in science and engineering, and create the right conditions
to develop projects focused on knowledge development. These challenges have come up
consistently during the development of sectorial and regional strategies.

It is thus crucial to create an Engineering Council that manages the establishment of inter-
national standards and actions to be followed by the different companies that design, engi-
neer and develop new products with intensive knowledge generation. So far, an initial group
of companies is moving forward with common activities aimed at real, current and future
needs of the high-technology industry and strategic sectors for the country.

4.2.11. Engineering City

Considering competitiveness as the capacity to attract and retain investments and talent, this
project, raised by the working group shortly after the third version of the NFP was published,
considers the creation of certain conditions to retain high-level professionals once they have
been identified or developed.

Different national clusters with high concentrations of engineering talent have advanced indus-
trial capacities, a suitable business environment and attractive working conditions. However, the
quality of life to which these professionals have access makes talent retention difficult in those places.

The current national strategy and regional strategies include the creation of competitive-
ness clusters where integrated ecosystems are developed that allow high-level industrial
growth, and the integrated development of talent, enhancing quality of life, access to services
and the right conditions for social and family life.

Different companies that have furthered the growth of the aerospace industry and the
generation of activities with higher added value are committed to this vision and collaborate
with municipal, state and federal governments to generate ecosystems that not only promote
industrial activity and talent training, but also improve the quality of life of professionals. These
initiatives seek to facilitate the retention of advanced talent through a good mix between
working conditions and the environment in which the professionals and their families are im-
nersed (housing, transport, culture, leisure, accessibility, green areas, services, etc.).

4.2.12. Examples of Progress (Specific Projects)

The different versions of the NFP have defined priorities related to the attraction of targeted
aerospace investment, especially those which contribute high-value processes and technolo-
gies and generates better integrated supply chains. Some examples are the opening of the

SNCA plant (focused on the manufacture of steel and titanium parts, forged parts and the
configuration of a network of suppliers and contractors), the opening of the Aernnova aviation
structures plant (and the upcoming opening of its composites manufacturing plant), and the
growth of the UTAS plant in Sonora (dedicated to new processes including the manufacture
of turbine blades and machined components for injectors, among others). These are some
examples of the results obtained based on the definition of the strategy. They are the first of
many examples typical of aviation development in Mexico.

Investment projects also involve opening specialized laboratories, research centers, and
certification units. Some of them are described below.

4.2.12.1. Honeywell’s Advanced Engineering and Design Campus

Honeywell has developed important aerospace engineering, design and manufacturing ca-
pacities in Mexicali, Baja California. As mentioned in the section on turbine development in
Mexico, this company has an advanced engineering and design campus—Mexicali Research
and Technology Center (MRTC)—with the capacity to perform full-scale simulations of dif-
f erent aircraft. Engineers are able to put their interoperability, control, and maturity to the test.
Honeywell manufactures heat exchangers and electro-mechanical components in Mexicali
that are incorporated into commercial planes like the Boeing 737, Boeing 787, and the Airbus
A350 XWB, and in executive jets like the Gulfstream GV.

4.2.12.2. Messier-Dowty Industrial Plant in Mexico

This project, which alludes to a new Snca ma
ufacturing plant in Mexico, was mentioned in
the first NFP. It opened on March 17th, 2010 and represented a 150 million dollar investment
and 500 new jobs.19

Since its development, there has been an increase in the volume of major parts, the manu-
facture of steel and titanium parts, and forged parts, and in parallel, the development of a local
network of suppliers and skilled contractors.

4.2.12.3. Aernnova Project in Mexico20

The first version of the NFP also mentioned the investment announced by Aernnova, which is
now a reality. The aviation structures plant in Querétaro has a production area of 12,400 m2
and concentrates on the assembly of large, fully equipped aviation structures such as sections
of fuselage, wings and stabilizers, ready for direct integration into the client’s final assembly
line. It currently assembles structures for Embraer, Bombardier and Sikorsky planes.

The plant is responsible for the overall management of the manufactured aerostructures,
allowing it to address assembly activities and take over the engineering, management of the
supply chain, development and homologation of the supplier chain.

The metal components plant (also in Querétaro), produces parts in sheet metal technology
and fully finished machined aviation parts ready for integration into the structure assembly
plant lines. The Aernnova project in Querétaro required an investment of 84 million dollars and
created 1,070 jobs (810 specialized operators and 260 technicians, engineers, and managers).

Aernnova has also submitted plans to open a composite component manufacturing plant
and create an Aviation Engineering and Design Center (structures and systems). With these in-
vestments, the Aernnova project in Mexico will reach a volume of 134 million dollars, creating
1,624 positions, of which 320 will be engineers and graduates. This kind of project encourages
investment, job creation and, above all, technology transfer in engineering and manufactur-

ing processes, and stimulates the development of regional production ecosystems through
new suppliers, the incorporation of new design capacities, component manufacture and the
development of higher added value products.

19 http://eleconomista.com.mx/
estados/2012/03/14/
airbus-eto-embraer-
planta-queretaro%

20 www.aernnova.com/
user/sp/news.php?id=56
4.2.12.4. Goodrich Plant Growth Project (UTAS)

The first version of the NFP proposed the growth of the plant in Guaymas, Sonora. The main products manufactured in the new facilities are turbine blades and machined injector components, processes which initially were completely new for the region: non-destructive tests, digital x-rays, laser welding, and formation of super plastics. These processes are now an essential part of UTAS in Mexico.

In 2011 Goodrich was recognized with a Coparmex Best Practices Award for its participation in the community (large company category). In 2012 the company opened the aerospace engineering center in Mexicali, Baja California (planned since the first version of the NFP), which aims to develop leading-edge aerospace technology in the state, taking advantage of the region’s human talent.

The company’s participation has not been limited to its operation and production in Mexico; the CEO is the president of the aerospace cluster in Baja California, and is actively involved in the development of the regional strategy in the state, which is defined in the State of Baja California Road Map (coordinated and organized by ProMéxico).

Goodrich is a clear example of a strategically designed investment that has benefitted the company and the country alike, leaving economic, social and technological spillovers; strategic investments that were envisioned at five years, and are today a reality.

4.2.13. Regional Strategies

As part of the next stage of development of the aerospace and defense industry in Mexico, it was agreed to establish regional strategies that identified and furthered the development of production vocations in the country’s aerospace clusters.

These strategies seek to trigger poles of competitiveness, that is, ecosystems of innovation and high-level coordination which raise the competitiveness of the regions and harmoniously combine different sectors, and which are conducive to innovation, collaboration, and competition. By developing poles of competitiveness, companies within them will have advantages in terms of access to a broader supplier base, specialized support services, talent pools, and access to knowledge, technologies and markets, among other things, in order to attract similar and complementary companies. In addition to local benefits, the poles will facilitate efficient insertion into national and international production and innovation networks.

Thus, regional strategies, in addition to being aligned with the national strategy, consider three pillars as competitiveness enablers in the region:

1. **Innovation system**: based on the region’s capacity to generate innovation across regional and sectoral levels of its vocation.
2. **Cluster dynamics**: based on the concentration of the mass of companies, universities, suppliers and institutions, with the capacity to generate a value chain.
3. **Triple helix**: focused on the combined efforts of the academy, government and industry.

Through specific actions, companies that constitute the aerospace cluster in the state are collaborating with the three levels of government, academia and its specialized centers to generate talent that aligns with the demands for new product production, quality and certification in the region (particularly specialized technicians and professionals), while developing the specialized engineering which is required locally to support the growth of industrial operations and expand new production areas. The active participation of the national aviation authority (DGAC) will be sought to establish a regional certification office and promote activities related to the BASA agreement.

Regarding the education sector, the scarcity of talent in the global aerospace industry opens an enormous window of opportunity for Baja California. Five years ago, the Autonomous University of Baja California (Universidad Autónoma de Baja California, UABC) opened an Aerospace Technology and Engineering Center and an engineering campus with one of the best laboratories specializing in composite materials, built in collaboration with Honeywell Aerospace. One of the Center’s latest achievements is the launch of an experimental rocket by UABC students, in collaboration with experts from the State University of San José and supervised by NASA.

Thus, regional strategies, in addition to being aligned with the national strategy, consider three pillars as competitiveness enablers in the region:

1. **Innovation system**: based on the region’s capacity to generate innovation across regional and sectoral levels of its vocation.
2. **Cluster dynamics**: based on the concentration of the mass of companies, universities, suppliers and institutions, with the capacity to generate a value chain.
3. **Triple helix**: focused on the combined efforts of the academy, government and industry.

Through specific actions, companies that constitute the aerospace cluster in the state are collaborating with the three levels of government, academia and its specialized centers to generate talent that aligns with the demands for new product production, quality and certification in the region (particularly specialized technicians and professionals), while developing the specialized engineering which is required locally to support the growth of industrial operations and expand new production areas. The active participation of the national aviation authority (DGAC) will be sought to establish a regional certification office and promote activities related to the BASA agreement.

Regarding the education sector, the scarcity of talent in the global aerospace industry opens an enormous window of opportunity for Baja California. Five years ago, the Autonomous University of Baja California (Universidad Autónoma de Baja California, UABC) opened an Aerospace Technology and Engineering Center and an engineering campus with one of the best laboratories specializing in composite materials, built in collaboration with Honeywell Aerospace. One of the Center’s latest achievements is the launch of an experimental rocket by UABC students, in collaboration with experts from the State University of San José and supervised by NASA.
Another important education institution is the Cetys University. The institution is certified by the Western Association of Schools and Colleges (WASC) and has an aviation engineering program and a master’s in aerospace engineering. The university is working on the construction of a laboratory for scale-model aircraft prototypes and automobile models, for which it has constituted three research teams made up of students, professors and engineers from the local industry.

The Tijuana University of Technology (Universidad Tecnológica de Tijuana, UTT) has a robust outreach program with aerospace companies. It has a mechatronics engineering program and two professional technical programs in mechatronics and the manufacture of aerospace harnesses, which were adapted to the needs of the local industry.

The UTT recently opened the Product Lifecycle Management Lab, the fourth of its kind in Mexico. The laboratory includes latest generation software that enables to virtually control the production manufacturing process, from conception to industrial design, testing, manufacture, delivery to the client and services. The laboratory will allow regional companies to simulate manufacturing processes in order to reduce costs, time frames and errors.

The National College of Professional Technical Education (Colegio Nacional de Educación Profesional Técnica, Conalep), one of the most important technical schools in the country, is also present in the state. In coordination with the Baja California Aerospace Cluster, it recently opened its precision engineering center to meet the needs of the aerospace industry in the region. The center is the first of four soon to be opened in the state.

The center was partially sponsored by local companies like Zodiac and Solar Turbines, which supported equipment installation and got involved in the development of training programs to ensure the technical and design content, as well as compliance with AS9100 standards and regulations.

In addition, the importance of the mega binational CaliBaja region should be emphasized. It consists of the counties of San Diego and Imperial (United States) and Tijuana (Baja California). The region offers unique opportunities not only because of its location and easy access, but because of the availability of talent, intellectual and scientific resources, experts, extensive infrastructure and natural resources. Also, the business incentives granted by both countries for a single zone is significant, as well as the space required for expansion.22

B. Chihuahua

Chihuahua’s industrial and advanced manufacturing capacity makes it one of the states with greatest development and potential in the country’s aerospace and defense sector. Chihuahua has five OEMs and more than 37 certified suppliers.

Original Equipment Manufacturers (OEMs) and/or Assemblers

Textron Aviation: Cessna and Beechcraft merge into a single company.

3. Textron International Mexico: components and assembly of structural elements for helicopter cabins and fuselages, and electrical harnesses. Commercial and private aviation. Main processes: application of chemical compounds, electrical, mechanical and structural assembly and secondary manufacturing support processes. Generates 500 jobs. Currently assembling more than 60% of the complete helicopter process.

4. Honeywell Aerospace: turbine parts and components. Commercial and military aviation. Honeywell’s plants in Chihuahua are considered the most important high-precision machining center in America. Main processes: multi-axis CNC high-precision machining, heat and surface treatments, non-destructive integrity testing. Generates more than 1,500 jobs.

From the development of the MRT Chihuahua Flight Plan, the industry, academia, and government defined the steps to follow based on the strategy, and their strategic milestones focus on the innovation capacities in the design, engineering, manufacture and assembly of fuselages, aerostuctures and their parts (airplanes and helicopters), engines and their parts, electrical wiring systems, high-precision machining, interiors, seats and their components, landing gear parts and emergency systems such as chutes and life rafts, among others.

As a result of the integration of the triple helix, Chihuahua has established itself as a major industry leader. The Chihuahua Aerospace Cluster has identified six main lines of action focused on education, sourcing, certification, technology, infrastructure and promotion. One of the main initiatives focuses on the establishment of an MRO Center.

Chihuahua has more than 42 company operations that generate 13 thousand direct jobs in the industry, and a total of 1.5 billion dollars in foreign and local investment. Its capacities lie predominantly in composite materials, sheet metal, aerostuctures, forging, welding, and heat and surface treatments.

Chihuahua has important engineering and design centers, constituted mainly by Grupo Safran, Zodiac Aerospace and Honeywell Aerospace, among other international consortia.
In 2014, Chihuahua’s exports exceeded one billion dollars a year. Its main export destinations are the United States, Germany, France and Canada.

Aircraft parts manufactured and assembled in Chihuahua are incorporated into the commercial, regional, and military aircraft of 12 OEMs and in more than 60 airlines around the world, having international certifications such as NADCAP, AS9100, ISO 17025, DGAC, FAA, and EASA, among others.

In terms of human capital training, Chihuahua has 59 universities and technological schools, 65 technical schools and two high-level research and development centers, which provide the talent required by the industry. Of the 30,000 engineering students, around 3,900 engineers and 1,500 technicians graduate every year.

Chihuahua has an advanced materials research center, unique in Mexico, that facilitates the growth and development of the aerospace industry primarily in nanotechnology and metrology. Its aerospace cluster is ready to meet the growing demand of the global aerospace industry.23

C. Sonora

Sonora is home to one of the most important and integrated aviation machining clusters in the country. The state has become a center of excellence for the manufacture of blades and components for turbines and aeroengines (casting and machining processes, among others).

Its capacities in the aviation sector began with the assembly of electronics (switches and harnesses). Sonora has furthered the complexity and technology related to composites, aerospace structures and the availability of special processes. These are only some of the existing processes in the state. Some are unique in the country:

- Investment casting.
- Die casting.
- Sand casting.
- Heat treatment, vacuum heat treating, passivation, brazing, sintering, CAD plating.
- Surface treatment, HVOF spray, VPA, plasma spray, platinum plating, gold plating, sulfuric anodize, chromic anodize, prime, and paint.

Sonora has more than 50 companies and support entities in the aerospace sector. It exports close to 250 million dollars. The United States is its main export destination. It is worth noting that the state also has an important supply of talent. Engineering and technology enrollment is recorded at 29,203 students.

The state recently opened the Advanced Manufacturing and Aerospace Institute of Sonora (Instituto de Manufactura Avanzada y Aeroespacial de Sonora, IMAAS), in Hermosillo, in response to the growing demand for trained technicians due to new investments and/or expansions in the aeronautical sector. The IMAAS is a public school that will offer courses and programs required by the industry, such as:

- Aerostucture assembly
- CNC machining
- Sheet metalworking
- Composite materials
- Tooling

Some of the most recent advances in the aviation sector in Sonora are:

- Creation of the Advanced Manufacturing and Aerospace Institute of Sonora (IMAAS).
- Establishment of a French company that will assemble doors for the Boeing 787 and create 400 jobs by 2015.
- Opening of a US company that will have surface treatments such as HVOF Spray, VPA, Plasma Spray, etc.
- Establishment of a Mexican company to the south of Sonora for aerostructure and engine components, taking into account cost competitiveness in value chains, the geographical location of the state and a business model based on talent generation and an integrated supply chain.

D. Querétaro

Querétaro has firmly established itself as a strategic point for the global aerospace industry. This has been due in part to the capture of important investments during the last few years. This success has been the product of a close relationship between the state government and the sector, and the support mechanisms that have triggered strategic projects, such as:

- The Aeronautical University of Querétaro (Universidad Aeronáutica en Querétaro, UNAQ) is the linchpin for generating specialized human resources and their connection to companies, enabling them to design study programs to meet demand. The UNAQ offers four levels of education: basic technical, higher technical (384), engineering (411) and graduate (40). Since 2006, 2,851 students have graduated and the number is expected to increase to 6,500 by 2016.
- The Testing and Aircraft Technologies Laboratory (Laboratorio de Pruebas y Tecnologías Aeronáuticas, LABTA) is a unique project in Latin America, consisting of three research centers that unite their specialties to provide a comprehensive range of laboratory testing and services that will strengthen the development of the supply chain. The installed capacity of LABTA will enable the durability assessment of components and materials used in an aircraft through testing that reproduces their in-flight operating conditions.

The state’s strategy is designed to maximize the potential to manufacture turbine blades and engine components, taking into account cost competitiveness in value chains, the geographical location of the state and a business model based on talent generation and an integrated supply chain.
The Querétaro Aerocluster aims at contributing to develop and strengthen the sector’s capacities. It consists of thirty companies that manufacture and supply structures, parts and components, three MRO companies, five design and engineering centers, three innovation and development centers, five service companies, three education institutions and an innovation and research network.

Querétaro’s aerospace sector offers opportunities and new investments for aviation operations under an appropriate infrastructure and optimal business conditions, particularly those intended to complement the supply chain for complex machining processes, surface coatings, heat treatments, sheet metalworking, forging and casting.

The state exports mainly goods for the assembly or manufacture of aircraft and aircraft parts, turbojets with thrusts in excess of 25 kN, landing gear and parts and goods for aircraft or aircraft part repair or maintenance.

Querétaro has focused primarily on products and machining processes for complex components, aerostructure manufacture, engine component manufacture, brake system manufacture, MRO for propulsion engines, landing gear manufacture and MRO, technical treatments and component manufacture for complex materials.

Querétaro has 30 aerospace companies and support entities and has reported exports of 1.137 billion dollars. The aerospace sector in Querétaro is composed mainly of the following companies: Bombardier, Grupo Safran (Messier-Bugatti-Dowty and Snecma), Eurocopter, Brovedani Rema, Elmoico, Safran Aerospace, Galnik, GE Infrastructure, Galnik, Cris, NDT Export México and ITP, the majority of which have obtained AS 9001, ISO 9001, ISO 14001, and NADCAP certification.

An important link between the industry and higher education and research institutions is the region’s Aerospace Research and Innovation Network (Red de Investigación y de Innovación Aeroespacial de Querétaro, RIIAQ), whose aim is to help to develop and strengthen research, technology development and innovation capacities.

E. Nuevo León

The state of Nuevo León is known for its significant industrial development, and as a leader in advanced manufacturing. Its geographical location, combined with its highly qualified human capital and its supply network, make it an ideal place to do business in Mexico and the rest of North America.

Contributing 8% of the domestic GDP and 11% of all goods manufactured in Mexico, Nuevo León has developed and consolidated various industries including automotive, metalworking, household appliances and aviation. With multi-sectorial industrial experience going back more than a hundred years, Nuevo León has a vast network of suppliers that has enabled the recent transformation from basic to advanced manufacturing, capable of supplying highly specialized sectors like aviation.

The state currently has 28 companies in the aviation sector, which export their products mainly to the NAFTA market. The sector exports 651 million dollars per year, with steady growth over the last five years; the majority of the companies have 100% Mexican capital. The state also has success stories like FRISA, a 100% Mexican high-technology company that made inroads into the global market by positioning its forged rings with the world’s leading aircraft engine manufacturers.

Nuevo León’s aerospace cluster was created in 2008. Its aim is to promote the integration and growth of the aviation sector in the state. In line with the NFP, its strategy includes the integration of local suppliers to the value chain of the national aviation industry through the development and conversion of suppliers which manufacture high added value pieces for the country’s main OEM and Tier 1 companies. The medium-term goal is to export aerospace components to the rest of North America, Europe and the main leading markets.

One of the state’s main strengths is its capacity to house large MRO centers. Its international airport has room for an integrated maintenance workshop for commercial aircraft. In addition, the Aeroporto di Noto, the only private airport in Mexico, has more than 25 MRO workshops, making it the second biggest airport in Mexico and Central America for corporate aviation operations. The aerospace cluster in Nuevo León is also working on the integration and promotion of these companies.

One of the keys to the economic success that has positioned Nuevo León as an industrial capital in Mexico and an attractive business destination is the quality and excellence of its highly competitive education institutions, which graduate more than 6 thousand engineers every year. Their programs include:

- An aerospace engineering degree with three majors: design and manufacturing, aircraft maintenance and air transport at the Autonomous University of Nuevo León (Universidad Autónoma de Nuevo León, UANL). In 2012 a master’s degree in aerospace engineering was launched.
- A double master’s degree in aerospace engineering and lightweight technologies from the Monterrey Institute of Technology and Higher Education (ITESM) with the Steinbeis University of Berlin, Germany, with support from the association of aerospace companies of Baden-Württemberg.
- Technical schools and customized programs for state technical institutes. They have developed courses and specialties in engines, CNC machining and welding of advanced materials, among others.

In 2014, the strategy for the aerospace sector in the region called “Road Map for the region of Nuevo León” was held. Nuevo León’s strategy is based on leveraging its capacities in advanced manufacturing, engineering, design and research and development to apply them to the development of the region’s aerospace sector.

According to the triple helix the strategic milestones for Nuevo León are to:

- Be the biggest generator of human capital for the aerospace sector in Mexico, specializing in high-precision manufacturing, materials, mechanical design, and maintenance for aviation.
- Have a developed and skilled supply chain integrated into the aerospace value chain.
- Be the top R&D center in the country for advanced manufacturing and aerospace design.
- Be the most important hub in Latin America for civil aviation MRO.
- Be the top R&D center in the country for advanced manufacturing and aerospace design.
Conclusions

The growing number of investment projects in the aerospace sector has turned Mexico into one of the most competitive and strategic destinations for manufacturing and sourcing services and industrial processes. Its increasing development of design and engineering capacities has enabled it to attract high-value projects related to the main commercial programs, while its potential in defense and dual-use markets draw the attention of major international players.

A large part of this success is the result of the application of methodologies that allow the coordination of the most important players in defining the sector’s development strategies. This document is the fourth version of the NFP and its application to three regional road maps. Its third version formed the basis and synthesis of the Strategic Program for the Aerospace Industry (Programa Estratégico de la Industria Aeroespacial, ProAéreo). This edition intends to become a coordinating element and a springboard for the development of a national strategy of the Mexican space industry.

The benefits of the implementation process expressed in this road map are of high strategic value. They are aimed at the creation of better business opportunities for Mexico’s trade partners, at the implementation of value chains and, primarily, the creation of social and economic well-being through the generation of well-paid, stable job opportunities for Mexican talent.
Directory
Mexico’s Aerospace Industry

Aguascalientes
Sensata Technologies de México, S. de R.L. de C.V.
Av. Aguascalientes Sur 401
Ex Ejido Salto de Ojo Caliente
CP 20290 Aguascalientes, Aguascalientes, México
Tel. 52 449 9 105500
www.sensata.com

Baja California
3d Robotics
Jordi Muñoz
Libramiento Oriente 14299-9,
CP 22643 Tijuana, Baja California, México
(664) 104 3435
Jordi.3drobotics.com
www.3drobotics.com

Aerothecnical Solutions
Ricardo Domínguez
Privada Misiones 1123
Parque Industrial Misiones
CP 22500, Tijuana, Baja California, México
(686) 157 4853
dgoldeneagle@aim.com

Aerospace Solutions de Mexico S. de R.L. de C.V.
Luis Echeverría
Av. De las Palmas 4800
Las Palmas
CP 22106, Tijuana, Baja California, México
(619) 661 5232
dle@aerosolutions.info
www.aerosolutions.info

Afiliados Industriales
Unión de Comerciantes 1123
Parque industrial Morelos
CP 22450, Tijuana, Baja California, México.
(664) 622 4167
www.afiliadosindustrialesdeprecision.com
afila2@prodigy.net.mx
Aerodesign de México
Gustavo Treviño, Human Resources Manager
Bvd. Pacífico 14634
Parque Industrial Pacífico
CP 22670 Tijuana, Baja California, México.
(664) 626 0555 | 626 0558
Gustavo.Treviño@zodiacaeroespace.com
www.cidzodiac.com

Aerospace Coatings International
(Industrial Vallera de Mexicali, S. A. de C.V.)
Fortunato G. Arce, General Director; Celia Castro Assistant
Calle Industria del Papel 17
Parque Industrial El Vigia
CP 21389 Mexicali, Baja California, México.
(686) 562 64 09
arce@aerocoatings.com
www.aerocoatings.com

Allied Tool & Die
Bill Jordan
Circuito de las Misiones Sur 199 Módulo 1
Mexicali, Baja California
(602) 276 24 39
Bill.Jordan@alliedtool.com
www.alliedtool.com

Co-Production de México, S.A. de C.V.
(All-power Manufacturing Co.)
Ivonne Rodríguez, Human Resources
Calle Olivo 204
Tecate, Baja California
(665) 521-12-95 | 521-13-84
ivonnerodriguez@coproduction.com.mx

Anodimex de México, S. de R. L. de C. V.
Roberto Limón
Yolanda A. Ortiz, Legal Representative
Bvd. Pacífico 9217
Parque Industrial Pacífico
CP 22709 Tijuana, Baja California, México
(664) 969 96 34
anodimex1@prodigy.net.mx
www.anodimex.com

Arneses y Conexiones S.A. de C.V.
José Luis Furlong
Calle Uno Norte 1108
Ciudad Industrial
CP 22444, Tijuana, Baja California, México
(664) 623 3700
josefaroza-arcosa.com
www.osca-arcosa.com

Asteeflash Group
Avenida Producción 5-B
Parque Industrial Finca
Tijuana, Baja California, México

BAP Aerospace de México, S. de R.L. de C.V.
Calle Maquiladoras 101
Cd. Industrial,
CP 22444 Tijuana, Baja California, México
(664) 686 5557

BC Manufacturing, S. de R. L de C. V.
Mario Alberto Rodríguez García, General Manager
Rampa de Otay 1115
Parque Industrial Misiones de las Californias
CP 22396 Tijuana, Baja California, México
(664) 624 9939 | (664) 188 9707
mrodriguez@bcmanufacturing.com
www.bcmanufacturing.com

Bourns de México
Luis Rene Sánchez
Antonio Díaz
Bvd. Agua Caliente 4600 Local 13
Centro Industrial Barranquita
CP 22400 Tijuana, Baja California, México
(664) 608 6800
ranulfo.noriega@bourns.com | gaby.rodriguez@bourns.com
www.bourns.com

Chromalloy, S. A. de C. V. (Chromalloy Aerospace)
Héctor Vázquez, Plant Manager
Calle Galaxia 91
Parque Industrial Mexicali 1
CP 21210 Mexicali, Baja California, México
(686) 566 5331 | (686) 566 5333
www.chromalloy-cnv.com
www.chromalloy-cnv.com
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Contact Name</th>
<th>Address</th>
<th>Phone Number</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remec México, S. A. de C. V.</td>
<td></td>
<td>Terrazas 4350</td>
<td>(664) 661 6025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coast Aluminum</td>
<td>Eduardo Quiñones</td>
<td>Andador del Rey 20051, Mod 10AB</td>
<td>(664) 625 5052</td>
<td>eduardoq@coastaluminum.com</td>
<td>www.coastaluminum.com</td>
</tr>
<tr>
<td>Compoende Aeronáutica de México, S.A. de C.V.</td>
<td>Ricardo Martínez</td>
<td>Júpiter 193</td>
<td>(686) 565 8600</td>
<td>ricardo@compoende.com</td>
<td>infol@compoende.com</td>
</tr>
<tr>
<td>Conesys</td>
<td></td>
<td>Los Olivos 2000, Col. Industrial</td>
<td>(665) 655 5008</td>
<td>amurillo@conesys.com</td>
<td></td>
</tr>
<tr>
<td>Consolidated Precision Products, S. de R. L. de C. V.</td>
<td>Ulises Valdez</td>
<td>Carretera Tijuana - Ensenada Km. 97.5</td>
<td>(664) 175 8871</td>
<td>ulises.valdez@cpp.corp.com</td>
<td></td>
</tr>
<tr>
<td>Crissair de México, S. A. de C. V.</td>
<td></td>
<td>Salvador Jiménez</td>
<td>(664) 683 3021</td>
<td>julia@crissair.com</td>
<td></td>
</tr>
<tr>
<td>Cubic de México</td>
<td>Reiny Giesecke</td>
<td>Privada Misiones 1120</td>
<td>(664) 621 5171</td>
<td>reiny.giesecke@cubic.com</td>
<td></td>
</tr>
<tr>
<td>Esterline México</td>
<td>Alberto Osuna</td>
<td>Vía Rápida Poniente 16955-58</td>
<td>(664) 231 4594</td>
<td>alberto.osuna@esterline.com</td>
<td></td>
</tr>
<tr>
<td>Galvanizadora Tijuana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet Cabo</td>
<td>Daniel Carreón</td>
<td>Aeropuerto Internacional de Tijuana, Hangar Matriz</td>
<td>(624) 146 5121</td>
<td>daniel.carreon@jetcabomx.com</td>
<td></td>
</tr>
<tr>
<td>Spectrum Integrity</td>
<td>Michael Ingham</td>
<td>Blvd. Benito Juárez 907-7</td>
<td>(661) 612 9266</td>
<td>ingham@spectrumintegrity.com</td>
<td></td>
</tr>
<tr>
<td>Techmaster de México</td>
<td></td>
<td></td>
<td>(664) 624 4444</td>
<td>escandon@techmaster.com</td>
<td></td>
</tr>
</tbody>
</table>
FLIGHT PLAN // MEXICO'S AEROSPACE INDUSTRY ROAD MAP

Welch Allyn
Danna Collins
Calle Emilio Flores 2471-A
Col. Canon del Padre
CP 22203 Tijuana, Baja California, México
(664) 211 6900
dana.collins@welchallyn.com
www.welchallyn.com

Customs Sensors and Technologies de México Aerospace
Cesar Castro
Parque Industrial FINSA
Baja California, México
(665) 682 2190
cesarcastro@crydom.com

Delphi Connection Systems Tijuana, S. A. de C. V.
Natividad Rosario Osuna, Plant Manager and Representative
Blvd. Pacífico 14532
Parque Industrial Pacífico
CP 22643 Tijuana, Baja California, México
(664) 622 6100 | 622 61 55
rosario.osuna@delphi.com
www.delphi.com

Deutsch Servicios
Carretera Federal Mexicali – Tijuana km 127
Parque Industrial Tecate
CP 21430 Tecate, Baja California, México
(664) 633 4300

Dynamic Resources Group Tecate Llc, S. A. de C. V.
Romeo A. Toledo Muñoz, General Manager
Martha Benitez
Av. Maple 7B-1
Parque Industrial Tecate
CP 21430 Tecate, Baja California, México
(665) 655 0151
romeot@craigtools.com | marthab@craigtools.com
www.craitools.com

Eaton Industries, S. de R. L. de C. V.
Jerry Newman, Plant Manager
Alberto García y Héctor Soto, Representativos Legales
Av. Santa Rosalía 9707
Parque Industrial Pacífico II
CP 22572 Tijuana, Baja California, México
(664) 978 1600 | 626 5006
jenry.newman@eaton.com | albertogarcia@eaton.com | hectorsoto@eaton.com
www.aerospace.eaton.com

Electro-Ópticas Superior, S. A. de C. V.
Pablo Santos, Plant Manager
Alba y Terrazo 9
La Mesa, Parque Industrial Bustamante
CP 22450 Tijuana, Baja California, México
(664) 626 1530
p santos@eablack.com
www.lockeedmartin.com

Empresas L.M., S. A. de C. V.
Luis Mendivil N., General Manager
Luis Fernando Mendivil S., Production Manager
Av. Mecánicos 1350, Col. Industrial
CP 21010 Mexicali, Baja California, México
(686) 554 6691 | 555 6178
luis_mendivil@elm-aerospace.com | fernandomendivil@elm-aerospace.com
www.elm-aerospace.com

Americas Plating Company
(Craig Tools Ensambladores Electrónicos de México, S. A.)
Aldo Romero Moreno, General Director
Anabel Valle Astorga, Plant Manager
Ernesto Duarte Magaña, Legal Representative
Av. Sierra San Agustín 2498, Col. El Porvenir
Parque Industrial Progreso
CP 21785 Tijuana, Baja California, México
(664) 637 3400
oromero9@rockwellcollins.com | yrvalde10@rockwellcollins.com
www.rockwellcollins.com

Ensambles del Pacífico S. de R.L. de C.V.
Jose Vega
Av. Sierra San Agustín 2498
Col. El Porvenir
Parque Industrial Progreso
CP 21785, Tijuana, Baja California, México
(664) 637 5602
vega@parpro.com
www.parpro.com

FSI de Baja, S. A. de C. V.
Arturo Berecochea
Av. Reforma 394
Fraccionamiento Loma Linda
CP 22890 Ensenada, Baja California, México
(664) 120 5884
arturo.berecochea@mtidebaja.com
GKN Aerospace Chem-tronics Inc.
(Industrial Vallera de Mexicali, S. A. de C. V.)
Dave Harriman, Plant Vicepresident
Ardy Najafian, General Manager
Circuito Siglo XXI 1974
Parque Industrial Ex-XXI
CP 21290 Mexicali, Baja California, México
(686) 905 0005 | 905 5700
dave.harriman@usa.gkn.aeroespace.com | ardy.najafian@usa.gkn.aeroespace.com
www.chem-tronics.com

Goodrich Aerospace de México, S. de R. L. de C.V.
J.J. Pérez, Plant Manager
Bijan Latifzadeh, Gerardo Teuttli y Gary M. Sullivan, Legal Representative.
Calzada Vénustiano Carranza 238
Desarrollo Industrial Colorado 4a. Etapa
CP 21384 Mexicali, Baja California, México
(686) 904 7900 | 904 7998
gerardo.teuttli@goodrich.com | bijan.latifzadeh@goodrich.com
www.goodrich.com

Hartwell Dzus S. A. de C. V.
Javier Mendoza, General Manager
Prof. Av. Juárez 999
Col. El Refugio
CP 21440 Técate, Baja California, México
(665) 654 0493 | 654 6681
mendoza@southco.com
www.southco.com

Honeywell Aerospace de México, S. de R. L. de C.V.
José del Muro, Production Manager
James Bedon, General Manager
Aldo Romero Moreno, Plant Director
Alfredo Cárdenas, Plant Manager
Circuito Aeroespacial 12
Parque Industrial El Vigía II
CP 21395 Mexicali, Baja California, México
(686) 580 5300 | 580 5307 | 580 5385
jose.delmuro@honeywell.com | james.bedon@honeywell.com
aldo.romero@honeywell.com | alfredo.cardenas@honeywell.com
www.honeywell.com

Hutchinson Seal de México, S. A. de C.V.
Mario García, General Manager
Ignacio Sánchez, Aerospace area
Calle Pelicano 313
Col. Lomas de San Fernando, Ex Ejido Chapultepec
CP 22785 Ensenada, Baja California, México
(664) 173 6272
l.sanchez@stillmancseal.com | mario.garcia@hutchinson-seal-mexico.com
www.hutchinsonrubber.com

Interiores Aéreos S.A. de C.V. (Gulfstream)
Boulevard Lázaro Cárdenas 2385
Col. Calles
CP 21397 Mexicali, Baja California, México
(686) 562 8600

Jonathan Mfg. de México, S. de R. L. de C. V.
Eduardo Lavalle, Materials Manager
Marco Jiménez
Circuito Siglo XXI 2136
Parque Industrial Ex-XXI
CP 21259 Mexicali, Baja California, México
(686) 562 6267 | 567 6769
jmendoza@jonathanengr.com
www.jonathanengr.com

Lat Aero-Espacial S. A. de C. V.
Román Barroterán, Plant Manager
Ermita Norte 2-C
Col. La Mesa,
CP 22440 TJUANA, Baja California, México
(664) 621 6138
lataero@att.net.mx
www.lionindustries.com

Leach International México S. de R.L. de C.V.
Robert Navarro
Ave. Águila Azteca 19190
Parque Industrial Baja Mac El Águila
CP 22215, Tijuana, Baja California, México
(664) 625 5111
rnavarro@leachintl.com
www.esterline.com

Leach International México S. de R.L. de C.V.
Robert Navarro
Ave. Águila Azteca 19190
Parque Industrial Baja Mac El Águila
CP 22215, Tijuana, Baja California, México
(664) 625 5111
rnavarro@leachintl.com
www.esterline.com
LMI Aerospace (Industrial Vallera de Mexicali S. A. de C. V.)
Armando Vargas, Human Resources Manager
Brad Nelson, Manager de Programas
Av. Eucalipto 2353 Módulos C y D
Parque Industrial Calafia
CP 21259 Mexicali, Baja California, México
(686) 905 0044
avargas@lmiaerospace.com | bnelson@lmiaerospace.com
www.lmiaerospace.com

Máquinas, Accesorios y Herramientas de Tijuana S.A.
Wilberth Santoyo, General Manager
Av. Del Fuerte 18 – 469
Fracc. Campestre Murua
CP 22520 Tijuana, Baja California, México
(664) 623 2544 | 624 3015
mahetsa@telnor.net
www.mahetsa.com

Market Power(Cooper Industries)
Silvino Navarro China
Calle Romanoc 13525 – C
Col. La Mesa
CP 22440, Tijuana, Baja California, México
(664) 681 9760
silvino.navarro@cooperindustries.com
www.cooperindustries.com

MTI de Baja
Calle Cuarzo S/N lotes 7 y 8
CP 22790 Ensenada, Baja California, México
(646) 154 1193

Nex Tech Aerospace (Industrial Vallera de Mexicali, S.A. de C.V.)
Tzinia Martinez
Calle Saturno 2 PIMSA 1
Parque Industrial Mexicali 1, Alamitos
CP 21210 Mexicali, Baja California, México
(686) 841 0330
tzinia.martinez@nex-techaerospace.com
www.nex-techaerospace.com

North American Production Sharing de México, S. A. de C. V.
Ricardo Sánchez, Plant Manager
Carretera Tecate Km. 14.5
Centro Industrial Los Pinos (bodega 30)
CP 22850 Tijuana, Baja California, México
(664) 660 8376
nsas1tiju@prodigy.net.mx
www.napsint.com

Oncore de México, S.A. de C.V.
Industrial 9
Del Prado Este
CP 22500 Tijuana, Baja California, México
(664) 134 6774

Orcon de México, S. A. de C. V.
Roberto Buelna de la Toba, General Director
Bld. Lázaro Cárdenas 244
Ejido Chapultepec, Parque Industrial Chapultepec
CP 22785 Ensenada, Baja California, México
(664) 120 38 88 | 129 24 35
sonia.medrano@orcon.com | roberto.buelna@orcon.com | javier.malfabana@orcon.com
www.orcon-aerospace.com

Parker Hanniffin, S. de R. L. de C. V.
Geromin Reyes
Calle Siete Norte 111
Parque Industrial Nueva Tijuana
CP 22500 Tijuana, Baja California, México
(664) 623 3066
greyescoparker.com
www.parker.com

Placas Termodinámicas
Steven Willson, General Director
Luisa Miramontes, General Manager
Av. El Rey del Desierto 66
Parque Industrial El Sahuarco
CP 21399 Mexicali, Baja California, México
(686) 561 5400
luisa.miramontes@mexmil.com

Procesos Térmicos y Especiales de Mexicali, S. de R. L. de C. V.
Av. Eucalipto 2351
Parque Industrial Calafia
CP 21259, Mexicali, Baja California, México
(686) 905 0075

River Manufacturing International
Luis Manzo
Francisco Manzo
Av. 28 Corporativo, Parque Industrial OT,
Tijuana, Baja California, México
(664) 624 94 95
lmanzo@rivermfg.com | fmanzo@rivermfg.com
www.rivermanufacturing.com
Rkern Manufacturing de México, S. de R. L. de C. V.
José Núñez, General Manager
Elder Núñez
Valle del Sur 8431-1
Col. El Rubí
CP 22620 Tijuana, Baja California, México
(664) 701 0539 | 637 9179
elder@hotmail.com | elder236@hotmail.com

Ryerson Metals de México
Angel Torres
Ave. Encantada Oeste 11510
El Florido
CP 22405, Tijuana, Baja California, México
(664) 231 6833
angel.torres@ryerson.com
www.ryersonmetalsdemexico.com

Seacon Global Production, S. de R. L. de C. V.
Leticia Margarita Pazi
Callejón Terrazos 8, Local 2-C
Centro Industrial Las Brisas 1a. Sección
CP 22610 Tijuana, Baja California, México
(664) 626 2726
lpazzi@seaconglobal.com
www.seaconglobal.com

Segó Precisión de México, S. de R. L. de C. V.
Sergio Golfo, General Director
Calle Torre de Piza 230
Col. Magisterial
CP 22470 Tijuana, Baja California, México
(664) 645 4300
sergio.segaprecision.com | gabriela@segoprecision.com
www.segaprecision.com

Southco Hartwell Dzus S.A. de C.V.
Javier Mendoza
Avenida Juárez 999
El Refugio
CP 21444 Tijuana, Baja California, México
(665) 654 0493
mendoza@southco.com
www.southco.com

Suntek Manufacturing Technologies, S. A. de C. V.
Zaven Arakelian, General Director
Santos Soriano, General Manager
Daniel Hernandez
Circuito Internacional Norte 14-Sur
Parque Industrial Nelson
CP 21395 Mexicali, Baja California, México
01(664) 580 0414
suarez.za@karelmanufacturing.com | santiago.s@karelmanufacturing.com
www.karelmanufacturing.com

Suntron de México, S. de R. L. de C. V.
Luis Chadón, General Manager
Humberto Nieves
Av. Producción 20 Módulo C
Parque Industrial Tijuana
CP 22425 Tijuana, Baja California, México
(664) 979 1100 | 979 1111 | 979 1114
luis.chacon@suntroncorp.com | humberto.nieves@suntroncorp.com
www.suntroncorp.com

Switch Luz, S. A.
David Octavio Berruecos Ortigoza, Plant Manager
Av. Las Brisas 14930 Int. 1 y 2
Parque Industrial Las Brisas II
CP 22610 Tijuana, Baja California, México
(664) 686 8088
davidberruecos75@hotmail.com
www.electromechcomp.com

TDI-Transistor Devices de México, S. de R. L. de C. V.
Martín Quezada, General Manager
Calle Viñedos 3000
Parque Industrial El Bajío
CP 21440 Tecate, Baja California, México
(665) 655 5115
martin.quezada@tdipower.com | juan.robles@tdipower.com
www.tdipower.com

Technology and Industrial Services de México
Marco Arturo Rosillo, General Manager
marco.rosillo@nex-techaerospace.com
www.nex-techaerospace.com
Teledyne Microelectric Technologies
Blvd. Díaz Ordaz 15270
Col. Benton
CP 22115, Tijuana, Baja California, México

Transmex International, S. A.
Mario Rodríguez Corelia, Representative
Romano 13525-B
Fracc. Alcalá La Mesa
Parque Industrial Jumare
CP 22106 Tijuana, Baja California, México
(664) 681 5027
mario.rodriguez@transmex.net
www.Transmex.net

Tyco Electronics Tecnologías, S. A. de C. V.
José Luis García Hernández, Plant Manager
Adelina Acevedo, Human Resources Manager
Av. Producción 20
Parque Industrial internacional Tijuana
CP 22424 Tijuana, Baja California, México
(664) 647 4500 | 647 4520
jlgarcia@tycoelectronics.com | aacevedo@tycoelectronics.com
www.tycoelectronics.com

Vescio Manufacturing Internacional
(Dafmex S. de R.L. de C.V. o Dameron Alloy Foundries).
Av. Galaxia y Júpiter 72
Parque Industrial Mexicali 1
CP 21210, Mexicali, Baja California, México
(686) 841 0455
www.dameron.net

Volare Engineering, S. de R. L. de C. V.
Edgar Paz, Director
Sergio Segura, Representative
Calzada Cuauhtémoc 899-2º
Col. Pro-hogar
CP 21240 Mexicali, Baja California, México
(686) 567 5286 | 567 4998
edgar.paz@volare-eng.com | sergio.segura@volare-eng.com
www.volare-eng.com

Chihuahua

A&E Petche
Roberto Martínez
Av. Washington 3701 Edificio 13-B Interior
Parque Industrial Las Américas
CP 31200, Chihuahua, Chihuahua
(614) 417 5492
www.aepetche.com

Altaser Aerospace
Arturo Ávila
Calle Sicomoro 2905
Chihuahua, Chihuahua, México
(614) 417 5492
www.altaser-aero.com

Amprior Aerospace México
Jesús Saenz
Av. Tabalaopa 8901
Parque Industrial Chihuahua Sur
Chihuahua, Chihuahua, México
(614) 238 5000
www.amprioraerospace.com

Atlas Aerospace Chihuahua
Rubén González
Ave. Washington 3701 Ed. 43
Parque Industrial Las Américas
CP 31200, Chihuahua, Chihuahua, México
(614) 426 2140
www.theatlasgroup.biz

BE Aerospace
Elías López
Ave. Nicolas Gogol 11332-A
Complejo Industrial Chihuahua
CP 31109 Chihuahua, Chihuahua, México
(614) 179 5104
www.beaerospace.com
FLIGHT PLAN // MEXICO'S AEROSPACE INDUSTRY ROAD MAP

1. Beechcraft
 Álvaro Aguilar
 Blvd. Fuentes Mares 9003
 CP 31090
 Chihuahua, Chihuahua, México
 (614) 429 5700
 www.beechcraft.com

2. CAV Aerospace
 Roberto Luján
 Alejandro Dumas 11321
 Complejo Industrial Chihuahua
 CP 31109 Chihuahua, Chihuahua, México
 (614) 158 6600
 www.cav-aerospace.net

3. Cessna
 Héctor Heras
 Av. Miguel de Cervantes 140
 Complejo Industrial Chihuahua
 CP 31109 Chihuahua, Chihuahua, México
 (614) 236 1000
 www.cessna.com

4. EZ Air Interior Limited
 Carlos Ramos
 Oscar Wilde 11340
 Complejo Industrial Chihuahua
 CP 31109 Chihuahua, Chihuahua, México
 (614) 158 8600
 www.zodiacaerospace.com

5. Fokker Aerostructures
 José Luis Rodríguez
 Av. Tabalaopa 830
 Parque Industrial Chihuahua Sur
 CP 31385 Chihuahua, Chihuahua, México
 (614) 260 6000
 www.fokker.aerostructures.com

6. Honeywell Aerospace
 Felipe Sandoval
 Av. Tabalaopa 8507
 Parque Industrial Chihuahua Sur
 CP 31385 Chihuahua, Chihuahua, México
 (614) 429 5400
 www.honeywell.com

7. HT-MX
 Humberto Ramos
 Calle 40º S200 7, Col. Dale
 CP 31050 Chihuahua, Chihuahua, México
 (614) 492 3800
 www.ht-mx.com

8. Kaman Aerostructures
 Francisco Meza
 Blvd. Fuentes Mares 9403
 CP 31064 Chihuahua, Chihuahua, México
 (614) 380 1400
 www.kaman.com

9. Manoir Industries
 Nicolás Maillard
 Av. Oscar Wilde 11390
 Complejo Industrial Chihuahua
 CP 31109 Chihuahua, Chihuahua, México
 (614) 481 3235
 www.manoir-industries.com

10. Metal Finishing Co.
 René Espinosa
 Av. Nicolás Gogol 11332
 CP 31136 Chihuahua, Chihuahua, México
 (614) 483 1324
 www.metalfinishing.com

11. Nordam
 José Luis Enríquez
 Parque Industrial Supra
 CP 31183 Chihuahua, Chihuahua, México
 (614) 158 0140
 www.nordam.com

12. Safran Labinal
 César Díaz de León
 Av. Nicolás Gogol 11322
 CP 31136 Chihuahua, Chihuahua, México
 (614) 442 5900
 www.labinal-power.com

13. Safran Engineering Services
 Ángel Anaya
 Av. Nicolás Gogol 11322
 CP 31136 Chihuahua, Chihuahua, México
 (614) 442 5900
 www.safran-engineering.com
SOISA Aerospace
Jesús Mesta
Melchor Guaspe 3800-3, Col. Dale.
CP 31050 Chihuahua, Chihuahua, México
(614) 442 5900
www.soisaerospace.com

SOURIAU
Ricardo Valerio
Ave. Nicolas Gogol 11332-A,
Complejo Industrial Chihuahua
CP 31136 Chihuahua, Chihuahua, México
(614) 481 9769
www.souriau.com

Textron International Mexico
Luis Azúa
Km. 16.5 Carretera Cd. Juárez
Chihuahua, Chihuahua, México
(614) 238 7000
www.textron.com

Tighitco
Humberto Santiago
Calle Aeroespacial S/N
Parque Industrial Chihuahua Sur
Chihuahua, Chihuahua, México
(614) 238 2250
www.tighitco.com

Wesco Aircraft
Luis Rivero
Av. Nicolás Gogol 11342
Complejo Industrial Chihuahua
CP 31136 Chihuahua, Chihuahua, México
(614) 427 0719
www.wescoair.com

Zodiac Seat Actuation
Benoît-Marie Mellet
Calle Taguchi 18702
Parque Industrial Supra
Chihuahua, Chihuahua, México
(614) 306 5100
www.zodiacaerospace.com

Zodiac Aero Elastomer America
Eleazar Carmon
Av. Ishikawa 1000
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 306 5000
www.zodiacaerospace.com

Zodiac Aerosafety Evacuations Systems
Luis Carlos Ramírez
Av. Ishikawa 1200
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 483 5551
www.zodiacaerospace.com

Zodiac Interconnect Technologies Americas
Aarón Meléndez
Av. Ishikawa 1000
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 306 5000
www.zodiacaerospace.com

Zodiac Lighting Solutions
Irasema Ramírez
Av. Ishikawa 1001
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 158 6800
www.zodiacaerospace.com

Zodiac Seat Shells
Iván Aguilar
Calle Taguchi 18702
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 306 5100
www.zodiacaerospace.com

Zodiac Seats US
Carlos Montoya
Av. Ishikawa 1001
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 158 6800
www.zodiacaerospace.com

Zodiac Seats US
Carlos Montoya
Av. Ishikawa 1001
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 158 6800
www.zodiacaerospace.com
Zodiac Monogram
Octavio Chacón
Calle Taguchi 18702
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 306 5100
www.zodiacaerospace.com

Zodiac Electrical Power Systems
Benoît-Marie Mellet
Calle Taguchi 18702
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 158 6800
www.zodiacaerospace.com

Zodiac In-Flight Innovations
Benoît-Marie Mellet
Calle Taguchi 18702
Parque Industrial Supra
CP 31183 Chihuahua, Chihuahua, México
(614) 158 6800
www.zodiacaerospace.com

Jalisco
Benchmark Electronics de México, S. de R. L. de C. V.
Hugo Haussner
Circuito de la Productividad 132, Las Pintas
CP 45690 El Salto, Jalisco, México
(33) 3668 5200
hugo.haussner@bench.com
www.bench.com

Sanmina-SCI Systems de México, S. A. de C. V.
Javier Carral
Carretera Guadalajara - Chapala Km. 15 8-29
Tlajomulco de Zúñiga
CP 45640 Tlajomulco de Zúñiga, Jalisco, México
(33) 3668 9800 | 3284 2000
javier.carral@sanmina-sci.com
www.sanmina-sci.com

Flextronics Manufacturing México, S. A. de C. V.
Guillermo del Río
Carretera a Base Aérea 5850 - 4, Col. La Mora
CP 45136 Zapopan, Jalisco, México
(33) 3181 3200
guillermo.delrio@flextronics.com
www.flextronics.com

AVNTK, S. C.
Marcelo Funes-Gallanzi, President, Administrative Council,
Alicia García López (Assistant)
Av. Chapalita 1143, Col. Chapalita
CP 45040 Guadalajara, Jalisco, México
(33) 3915 8719
info@avntk.com | alicia.garcia@avntk.com
www.avntk.com

Pounce Electronics
Miriam Castillo
Av. de Julio 1295
Col. Moderna
CP 44190, Guadalajara, Jalisco, México.
(33) 3942 2500
miriam.castillo@pounceconsulting.com
www.pounceconsulting.com

Foxconn
Francisco J. Peña Nuño
Camino el Castillo 2100 M
CP 45680, El Salto, Jalisco, México
(33) 3284 4100
francisco.pena@foxconn.com
www.foxconn.com

Zoltek de México, S. A. de C. V.
Rafael Rendón
Raymundo Vázquez
Carretera El Salto a La Capilla Km 3 S/N
Corredor Industrial El Salto
CP 45680 El Salto, Jalisco, México
(33) 3284 3321
rafael.rendon@zoltek.com | raymundo.vazquez@zoltek.com.mx
www.zoltek.com

TATA Technologies
Rajee Vjupta
Av. Adolfo López Mateos Sur 2077 Z-31
Guadalajara, Jalisco, México.
(33) 1601 2951
rajee.vjupta@tcs.com
www.tatatechnologies.com
Interlatin
Alejandro Carrillo
Parque Jalisco
Camino al ITESO 8900-1B
Col. Pinar de la Calma
CP 45080, Tlaquepaque, Jalisco, México
(33) 1057 5252
alejandro.carrillo@interlatin.com.mx
www.interlatin.com

Soluciones Tecnológicas
Eduardo Ramírez
Av. Aviación 5051 interior 16 y 17
Condominio City Park
Col. San Juan de Ocotlán
CP 45019, Jalisco, México
(33) 3898 2080
eramirez@sst-mx.com
www.sst-mx.com

Mercury Aircraft Mexico
Silvia Camacho
Barra de Navidad
CP 45700, Acatlán de Juárez, Jalisco, México
(523) 8777 1103
silvia.camacho@mercurymexico.com.mx
www.mercurycorp.com

Vertical Force Mexico
Eric Gallegos
Antonio Alvarez Esparza 100
Col. Las liebres
Tlaquepaque, Jalisco, México
(33) 3629 4808 | 8421 9010
eric.gallegos@verticalforce.com.mx
www.verticalforce.com.mx

Aeroriel, S. A. de C. V.
Patricio Castillo, Marketing Director
Av. General Ramón Corona 2514
Col. Nuevo México
CP 45201 Zapopan, Jalisco, México
(33) 3669 3000 | 1189 4910
patricio@aeroriel.com
www.aeroriel.com

Hydra Technologies de México, S. A. de C. V.
Eduardo Yakin Hernández, General Director
María Isabel Barrios Castillo, Legal Representative
Elena Nuñez
Av. Vallarta 6503
Plaza Concentro Local B-21
Col. Ciudad Granja
CP 45010 Zapopan, Jalisco, México
(33) 3777 3677 Ext. 100
abarrios@hydra-technologies.com
mbarrios@hydra-technologies.com
enunez@hydra-technologies.com
www.hydra-technologies.com

Jabil Circuit de México, S. de R. L. de C. V.
Ernesto Sanchez Proal
Av. Valdepeñas 1993
Col. Lomas de Zapopan
Zapopan, Jalisco, México
(33) 3818 3300
www.jabil.com

X-QNA
Adrian Wence
Av. Hidalgo 1952
Col. Ladrón de Guevara
(33) 3630 3597
awencexqna.com
www.qna.com

Sonora
Acra Aerospace
Allan Smith
Parque Industrial Roca Fuerte
Carretera Internacional Km. 129 Norte
CP 85400, Guaymas, Sonora, México
(622) 221 1497
allan@acraaerospace.com

Avnet Logistcs
Angel González, Product Development Manager
Parque Industrial Nuevo Nogales
Calzada Industrial Nuevo Nogales y Ave. de la Tecnología 1061
Nogales, Sonora, México
(631) 311 5900
angelt.gonzalez@avnet.com
Consolidated Precision Products (Before: Aerocast Internacional)
Ken Hromada, Plant Manager
Av. Industrial 47-2
Fraccionamiento California
Nogales.
(631) 311 3100
ken.hromada@cppcorp.com
www.aerocastinc.com

Cadence Aerospace (Before: PRV Aerospace)
Fernando Chávez, Plant Manager
Calle Alejandria 9
Parque Industrial Los Alamos
Col. El Greco Nogales
(631) 313 7449
chavez@aerodesignmfg.com
www.aerodesignmfg.com

American Precision Assemblers
Laura Jiménez, Operations Manager
García Morales 257, Edificio 1º
Parque Labor
CP 83200 Hermosillo, Sonora, México
(662) 260 6380
ljimenez@apa1.com

Amphenol Optimize México, S. A. de C. V.
Thayne Hardy, General Manager
Los Gavilanes 51
Parque Industrial San Ramón
CP 84094 Nogales, Sonora, México
(631) 311 1600 | 311 1602
thayne@amphenol.mx
www.amphenol-optimize.com

Arrow Electronics
Jorge Tello, Plant Manager
Blvd. Luis Donaldo Colosio 1179
CP 84058 Nogales, Sonora, México
(631) 311 4900
jtello@arrow.com
www.arrow.com

BAE Systems Products Group
Jayson Harris, Plant Manager
Carretera Internacional Km. 129
Parque Industrial Roca Fuerte
Guaymas, Sonora, México
(622) 221 4227 | 223 4333
jayson.harris@baesystems.com
www.baesystems.com

BE Aerospace
Anthony Thomas, Plant Manager
Callezada Industria de las Maquiladoras
Parque Industrial Nuevo Nogales
CP 84094 Nogales, Sonora, México
anthony.thomas@beaerospace.com
www.beaerospace.com

Benchmark Electronics Precision Technologies
Kevin Kennedy, Plant Manager
Carretera Federal No. 15
Parque Industrial Roca Fuerte
CP 85430 Guaymas, Sonora, México
(622) 221 3660
ken.kennedy@bench.com
www.bench.com

Bodycote
Christian Garcia
Parque Industrial Bellavista, Planta SB
Carretera Internacional Km. 1969 Guadalajara – Nogales Km. 2
CP 85340 Sonora, México
(622) 223 4443
christian.garcia@bodycote.com

Bosch – División de Sistemas de seguridad
Luis Martínez, Plant Manager
Periférico Poniente 310-C
Col. Las Quintas
CP 83240, Hermosillo, Sonora
(66) 2260 7012 | 2260 7010
luismartinezus.bosch.com
www.bosch.com

CRM Advanced Manufacturing
Rick Emery, Operations Vicepresident
Privada Bustamante Final s/n
Col. Granja Nogales
CP 84065 Nogales, Sonora, México
rick@crmach.com
(631) 314 9812

Curtis Wright Controls de México
Emmanuel Murillo
Carretera Internacional Km 5.5
Parque industrial San Ramón
CP 84094 Nogales, Sonora, México
(631) 314 0710
emurillo@curtisswright.com
Daher Aerospace, S. A. de C. V.
Florian Bourdais
Calz. Industrial Nuevo Nogales 270
CP 84094 Nogales, Sonora, México
(631) 311 4850
f.bourdais@daher.com
www.daher.com

Ducommun AeroStructures México
Franklin Gaxiola, Plant Manager
Carretera Internacional Km. 129 Norte
CP 85400 Guaymas, Sonora, México
(622) 221 4911 | 221 4529
gaxiola@ducommun.com
www.ducommun.com

Ellison Surface Technologies
Eric Passalacqua
Parque Industrial Rocafuerte
Carretera Internacional km. 129 Norte
CP 85400 Guaymas, Sonora, México
(513) 770 4952
epassalacqua@ellisonsurfacetech.com

Consolidated Precision Products
(antes ESCO Turbines Technology Mexico)
Ramsés Valdez
Carretera Internacional Km. 129 Norte
Parque Industrial Roca Fuerte
CP 85400 Guaymas, Sonora, México
(622) 221 2989
ramses.valdez@escocorp.com
www.escocorp.com

Federal Electronics
Ed Evangelista, President
75 Stamp Farm Road, Cranston, RI
(401) 944 6200
ed_evangelista@federalelec.com

G.S. Precision, Inc. de México, S. A. de C. V.
Douglas Kirker, Plant Manager
Sonia Martínez (Assistant)
Carretera Internacional Km. 129 Norte
Parque Industrial Roca Fuerte
CP 85400 Guaymas, Sonora, México
(622) 221 3880 Ext. 104
douglas.kirker@gsprecision.com | sonia.martinez@gsprecision.com
www.gsprecision.com

UTC Aerospace Systems
(antes Goodrich Engine Components Blades & Vanes)
Hiram Martínez
Carretera Internacional Km. 129 – Norte
Parque Industrial Roca Fuerte
CP 85400 Guaymas, Sonora, México
(622) 221 2981
hiram.martinez@utas.utc.com

Amphenol Griffith Enterprises, Inc.
Ricardo Humberto Rodríguez Morachis
General Director and Legal Representative
Calle Kennedy 5
(631) 314 60 94
rmorachis@griffithent.com
www.griffithent.com

Horst Engineering de México
Andrew Law, Plant Manager
Carretera Internacional Km. 129 – Norte
Parque Industrial Roca Fuerte
CP 85400 Guaymas, Sonora, México
(622) 221 2559
awlaw@horstengineering.com
www.horstengineering.com

Integrated Magnetics de México
Juan Delgado, Plant Manager
San Patricio 20, Colonia San Carlos
CP 84090 Nogales, Sonora, México
(622) 319 1514 | 314 2593
juand@intemag.com
www.intemag.com

Incertec
Jesus Cervantes
Parque Industrial Bellavista Ed. 13 A-D
Carr. Internacional Km. 1969 Guadalupe-Nogales Km. 2
CP. 85340 Empalme, Sonora, México
(622) 223 5851
jcervantes@incertec.com
www.incertec.com
ITT Cannon de México, S. A. de C. V.
Carlos Martínez, Manager
Av. Libre Comercio s/n
Parque Industrial Nuevo Nogales
CP 84090 Nogales, Sonora, México
(631) 311 00 50
Carlos.martinez@itt.com
www.itt.com

JJ Churchill Ltd
Jonathan Goodwin, Plant Manager
Parque Industrial Rocafuerte
Calletera Internacional km.129 Norte
CP 85400 Guaymas, Sonora, México
jonathan.goodwin@jjchurchill.com

Latecoere
Bruno Ferrand – VP North America Operations
bferrand@latecoere-intl.com

Latelec
Laurent Valverde, Director
Blvd Solidaridad 1066, Interior 3
Col. Emiliano Zapata 83280
Hermosillo, Sonora, México
laurent.valverde@latelec.com
(52) 662 204 1974

BF&S - Manufacturas y Ensamblados Fernández y Asociados
Luis Carlos Ramos Sandoval, Legal Representative
Calle 15 Ave. Emiliano Zapata 720, Col. Sur
CP 84500 Sonora, México
Planta Cumpás
Avenida C entre calle Benito Juárez y Luis Cosme Barceló Granados
Cumpás, Sonora
(634) 346 0208
ramos@bfandsa.com
Planta Agua Prieta:
Calle 7-498
Ferrocarrilera Agua Prieta
CP 84500 Sonora, México
(634) 346 0208

Minco Manufacturing
Rafael Regalado – Plant Manager
Carretera Internacional Km.1969 Guadalajara-Nogales Km 2
Empalme, Sonora, México
(622) 220 0305
rafael.regalado@mincomfg.com

National Manufacturing Mexico
Alan Montelí
Calle Bustamante s/n
Col Granja
CP 84065 Nogales, Sonora, México
(631) 319 2228
alanm1@nmmexico.com
www.nationalmachinecompany.com

Paradigm Precision
Denise Petrie, Plant Manager
Calle Diamante s/n
Col. Guadalupe
CP 85440 Guaymas, Sonora, México
(622) 224 7777 (622) 224 31 76
denise.petrie@paradigmprecision.com
www.paradigmprecision.com

Parker Hannifin Aerospace
Jesús Zaragoza Ramírez, Plant Manager
José Armando Lee Quiroga, Legal Representative
Carretera Internacional Km. 129
Parque Industrial Roca Fuerte
Guaymas, Sonora, México
(622) 225 02 00 Ext. 2301
jesuszaragoza@parker.com
www.parker.com

Pencom CSS de México, S. de R. L. de C. V.
José Edmundos Sandoval, Sales Manager
Calzada del Raquet 46
Fracc. California
CP 84000 Nogales, Sonora, México
(631) 339 1485
coronado@pencomsf.com
www.pencomsf.com

Pinnacle Aerospace
Alejandro Osorio, Quality Manager
Michael Morgan, President
Sonora Soft Park in Obregon
Prolongación Boulevard Colonial 300Sur, edificio A, Local 20-2° piso
Col. Parque Tecnológico Obregón
Cd. Obregón, Sonora, México
(664) 4336163 Ext. 104
alex@pinnacleaerospace.com |mike@pinnacleaerospace.com
www.pinnacleaerospace.com
Phoenix of Chicago
Salvador Talamantes, Plant Manager
Carretera Internacional Km. 1969
Empalme, Sonora, Mexico
(622) 223 9333
talamantes@phoenixofchicago.com

Sheryl Manufacturing (Before: Quantum Metal, S. A. de C. V.)
Sheryl Murphy, President
Carretera Internacional Km. 6.5, Edificio 20
Parque Industrial
CP 84094 Nogales, Sonora, México
(631) 314 31 35
smurphy@icag.biz

QET-Tech Aerospace
Mike Dornenburg, Vicepresident of Operations
Obregon International Airport
(331) 567 2398
mike.dornenburg@qta.com.mx

Radiall (Sonora S. Plan, S. A. de C. V.)
Ildefonso Leyva, Plant Manager
Blvd. Ing. Jorge Pérez de la Peña y Blvd. Las Torres
CP 85065, Ciudad Obregón
(644) 411 00 62
www.radiall.com
ildefonso.leyva@radiall.com

Rolls Royce International Procurement Office
Don Warman, Manufacturing Engineer
Parque Industrial Roca Fuerte
Guaymas, Sonora
(622) 221 0854 Ext. 102
smiller@airtomic.com | jaguirre@sargentaerospace.com
www.sargentaerospace.ca

Semco Instruments, Inc.
Marco Ibarra, Plant Manager
Av. Libre Comercio Edificio 2
Parque Industrial
CP 84094 Nogales, Sonora, México
(631) 311 39 50 | 320 7878
mbarrera@semcoinstruments.com
www.semcoinstruments.com

Carlisle Interconnect Technologies (Before: Thermax Wire Group)
Gerardo Blanco, Plant Manager
Calle Fernando Bustamante 645
Col. Granja
CP 84065 Nogales, Sonora, México
(631) 314 6105
gerardo.blanco@carlisleIT.com

St. Clair Technologies
Ruben Rabago, Plant Manager
Carretera Federal 15, Hermosillo-Guaymas
Parque Industrial Roca Fuerte
CP 85430, Guaymas, Sonora, México
(622) 221 3960
rrabago@stclairtech.com

Trac Tools de Mexico
Ian Boston, Business Strategy Manager
Carretera Internacinal Km. 129 - salida Norte
Parque Industrial Roca Fuerte
CP 85400 Guaymas, Sonora, México
(622) 221 4301
ian.boston@trac-group.com
www.trac-group.com

TE Connectivty
Arnoldo Francis
Av. Obrero Mundial 9
Parque Industrial Dynatech
CP 83200 Hermosillo, Sonora, México
(662) 289 7220
afrancis@tycoelectronics.com
www.te.com
Vermillion de México
Manuel Márquez, Plant Manager
Carretera Internacional Km. 1969
Guadalajara – Nogales Km. 2
Parque Industrial Bellavista
CP 85340 Guaymas, Sonora, México
(622) 221 59 91 | 223 50 53
mmarquez@vermillioninc.com
www.vermillion.com

Williams International
Adán Palomeque, Plant Manager
Scott Miller
Carretera Internacional Km. 129 - Salida Norte
Parque Industrial Roca Fuerte
CP 85400 Guaymas, Sonora, México
(622) 221 0582 Ext. 1768
apalomeque@williams-int.com
smiller@williams-int.com
www.williams-int.com

Winchester Electronics (Sontronies, S. A. de C. V.)
Efrén Picón Mendoza, General Director
Ana María Gallego Villanueva
Av. Álvaro Obregón 1772 – T, Col. Moderna
CP 84000 Nogales, Sonora, México
(631) 314 0040
www.winchesterelectronics.com

Windtech – Dix-Mex S.A. de C.V.
Sergio Angulo
Calle 16 Avenida 14 y 15-1401
Agua Prieta, Sonora, México
(633) 338 6860
sergio.angulo@windtech.com

Coahuila
Howmet de México, S. de R. L. de C. V.
Carretera Presa de la Amistad Km. 7 100
Parque Industrial Amistad
CP 26220, Ciudad Acuña, Coahuila, México
(877) 773 2700
www.alcoa.com

Saltillo Jet Center, S. de R. L. de C. V.
Jesse Peek, General Manager
Pamela Aguirre, Administración
Blvd. Plan de Guadalupe 650
Eulalio Gutiérrez Treviño

Aeropuerto Internacional de Ramos Arizpe
CP 25900 Ramos Arizpe, Coahuila, México
(844) 488 3200 | 01(800) 288 3400
jesse@saltillojetcenter.com | pamela@saltillojetcenter.com
www.saltillojetcenter.com

Exova de México, S. A. de C. V.
Periférico Luis Echeverría Álvarez Poniente 1785-1
Col. Valle Industrial Saltillo
CP 25110, Saltillo, Coahuila, México
(844) 439 3323
www.exova.com

GSC Internacional, S. de R. L. de C. V.
Luis Morato Salvador, Plant Manager
Gustavo Villareal
Carretera S4 a Zacatecas 5690
CP 25070 Parque Industrial Sur, Saltillo, Coahuila, México
(844) 482 8261
sancag@gscutah.com | gustavov@gscutah.com
www.gscutah.com

Parkway Productos de México, S. de R. L. de C. V.
S. Ramos, Production Manager
Carretera a Zacatecas Km: 3 S 5570-1
Parque Industrial Amistad Sur
CP 25070, Saltillo, Coahuila, México
(844) 482 2518 | 01(844) 482 2520
ramos@parkwaymexico.com
www.parkwayproducts.com

Senior Aerospace Ketema, S. A. de C. V.
(Manufacturas Zapalinamé, S. A. de C. V.)
Aldo Gerardo Rodríguez Carral, General Manager, División México
Miguel Hernández Cervantes, Legal Representative
Carretera Saltillo – Zacatecas Km. 4.5, Parque Industrial La Angostura
CP 25086, Col. Centenario, Saltillo, Coahuila, México
(844) 411 3800
hbarriga@zapa.com.mx | aldo.rodriguez@sfketema.com
www.seniorplc.com/aerospace/index.cfm

Unison Industries, S. A. de C. V.
Dennis Petrie, Operations Manager
Mark Regan, General Director
Carretera Saltillo – Zacatecas Km. 4.5
Parque Industrial La Angostura, Col. Centenario
CP 25086, Saltillo, Coahuila, México
(844) 288 6497 | 288 6450 | 288 6470
dpetrie@unison.ae.ge.com | mark.regan@unison.ae.ge.com
www.unisonindustries.com
Nuevo León

Aero Alterno, S.A. de C.V
Sergio Valdés, General Director
Carretera Monterrey - Laredo km 10.6 Aeropuerto del Norte, Hangar 52
CP 66600, Apodaca, Nuevo León, México
(81) 8158 4502
aeroalternos@live.com.mx
www.aeroalternos.com

Aero Corporación AZOR S.A. de C.V.
Carlos Merino, General Director
Carretera Monterrey – Laredo km 20, Aeropuerto del Norte, Hangar 45
CP 66600, Apodaca, Nuevo León, México
(81) 8369 4637
merino@azoraero.com
www.azoraero.com

Aeronaves Dinámicas del Norte, S. A. de C. V.
Humberto Lobo
Gabino Javier Salazar Saénz
José Benítez Ponsente 2500 2do.
CP 64060 Obispado, San Pedro Garza García, Nuevo León, México
(81) 5000 7590 | 5000 7575
dsalo@grupolomex.com | gsalazar@grupolomex.com
www.grupolomex.com

Aeroservicios Especializados, S. A. de C. V. (ASESA)
Rodrigo Perez Tapia
Av. Ricardo Margain 444, Edificio Equis, Piso 6°
CP 64060 Col. Valle del Campestre, Monterrey, Nuevo León, México
(81) 5000 7579
rtp@asesa.com.mx
www.asesa.com.mx

Aeroservicios Técnicos Regionomontanos, S. A. de C. V. (Asertec)
Sergio Caso
Carretera Monterrey – Nuevo Laredo Km 20 Hangar 13
Aeropuerto Internacional del Norte
CP 66600 Apodaca, Nuevo León, México
(81) 8339 7861
scaso@asertecfbo.com
www.asertecfbo.com

Aerovitro S.A. de C.V
Alberto Salcido
Carretera Monterrey – Laredo Km 20, Aeropuerto del Norte, Hangar 23
CP 66600, Apodaca, Nuevo León, México
(81) 8329 3106
asalcidof@vitro.com
www.aerovitro.com

Ankura Aero
José Ángel González Elizondo
Donato Elizondo 200 esquina con Toluca
Col. Las Encinas
CP 66050, Escobedo, Nuevo León, México
(81) 8901 1182
ankuraaero@com
www.ankuraaero.com

Conductores Monterrey S.A. de C.V. (Viakable)
Patricio Murga, Technology and Development Manager
Av. Conductores SOS
Col. Constituyentes de Querétaro
CP 66493 San Nicolás de los Garza, Nuevo León, México
(81) 8030 8000 | 8030 8030
pmurga@viakable.com
www.viakable.com

Corporativo AJ AIR Services de Monterrey S.A de C.V.
José Arturo González Treviño, General Director
Carretera Monterrey – Laredo km. 24 5
Aeropuerto del Norte, Hangar 22
CP 66616, Apodaca, Nuevo León, México
(81) 1512 0263
jarturoge@msn.com
www.corporativoaj.com.mx

Demaq Technologies
Octavio Rangel, General Director
Av. Manuel Ordoñez 1501-5
Col. Zimex
CP 66358 Santa Catarina, Nuevo León, México
(81) 8388 9356
octavio.rangel@demaq.com.mx
www.demaq.com.mx

Exova de México, S. A. de C. V.
Claudia Figueroa, Trade Representative
Carretera Monterrey-Saltillo 3279-B
Privada de Santa Catarina
CP 66367 Santa Catarina, Nuevo León, México
(81) 8032 4444 (81) 8032 4444
claudia.figueroa@exova.com
www.exova.com
EZI Metales, S. A. de C. V.
Rogelio Cisneros Guerrero, General Director
Planta Apodaca II
Bv. Interamerican 233
Parque Industrial FINSA
CP 666000 Monterrey, Nuevo León, México
(81) 8145 0405 | 8145 0406
cisneros@ezimetales.com.mx
www.ezimetales.com.mx

Frisa Forjados, S. A. de C. V.
Eduardo Garza T. Junco, General Director
G. Rivero 200
Col. Los Térrazos
CP 66150, Santa Catarina, Nuevo León, México
(81) 8124 3600
egarza@frisa.com
www.frisa.com

Full Services NDT S.A. de C.V.
Kees Bleijenberg, General Director
Av. Anillo Periférico 1824–5
Col. Hacienda San Jerónimo
CP 64630, Monterrey, Nuevo León, México
(81) 1366 0809
kees.bleijenberg@ndt.com.mx
www.ndt.com

Hawker Beechcraft Services de México
Eugenio Porte, Operations Manager
Aeropuerto Internacional del Norte
Carretera a Salinas Lotes 25, 27 y 29
CP 66650, Apodaca, Nuevo León, México
(81) 8851 7001
eugenio.porte@hawkerbeechcraft.com.mx
www.hawkerbeechcraft.com

Herramientas y Maquinaria de Monterrey, S. A. de C. V. (HEMAQ)
Benito Gritzewsky Kriger, General Director
Juan Cantú García 601
Col. Garza Cantú
CP 66480 San Nicolás de los Garza, Nuevo León, México
(81) 8131 3199 | 01(800) 674 3627
gritzewsky@HEMAQ.com
www.HEMAQ.com

Jaíter, S. A. de C. V.
Jaime Pérez Ayala, Trade Manager
Ocampo 165
Colonial Las Encinas
Centro Escobedo
CP 66050, Escobedo, Nuevo León, México
(81) 8397 6645
jaimeperez.a@jaifer.com
www.jaifer.com

Maquinados Industriales Mitras, S.A. de C.V. (MIMSA)
Blanca Nelly López Peña, Administrative Manager
Luis D. Colosio 114
Col. Las Palmas
CP 66369, Monterrey, Nuevo León, México
(81) 8316 6123
blanca.lopez@mimssamaquinados.com

MD Helicopters (Monterrey Aerospace México, S. de R. L. de C. V.)
Teresa Galindo, General Manager
Vía Monterrey - Matamoros 604
Parque Industrial Millenium 2a. Etapa
CP 66600 Apodaca, Nuevo León, México
(81) 1156 2130
teresa.galindo@mdmonterrey.mx

Metalinspec Laboratorios
Fausto Yépez, General Director
Av. San Nicolás 114
Col. Arboledas de San Jorge
CP 66465, San Nicolás de los Garza, Nuevo León, México
(81) 8057 8989 | 8057 8416
fausto@metalinspec.com.mx
www.metalinspec.com.mx

Metrolab, S.A. de C.V.
Fausto Yépez, General Director
Av. San Nicolás 114
Col. Arboledas de San Jorge
CP 66465, San Nicolás de los Garza, Nuevo León, México
(81) 8057 8989 | 8057 8416
fausto@metrolab.com.mx
www.metrolab.com.mx
Monterrey Jet Center, S. A. de C. V.
Ricardo Marcos Dieck, General Director
Aeropuerto del Norte
Carretera a Laredo 1006, Hangar 54
CP 66600 Apodaca, Nuevo León, México
(81) 8154 5100
www.mtyjet.com
ricardomdyjet.com

Parker Hannifin De México S.A. De C.V.
Víctor Granades, Strategic Product Manager
Via del Ferrocarril a Matamoros, Segunda Oriente 730
CP 66600 Apodaca, Nuevo León, México
(81) 8156 6077
victor.cortez@parker.com
www.parker.com

Procesos Térmicos y Especiales de México, S. de R.L. de C.V.
Fernando Guajardo, General Manager
Av. T.L.C. 150, Parque Industrial Stivia Aeropuerto
CP 66600 Apodaca, Nuevo León, México
(81) 8386 5448
spiathermalprocessing.net
fernando.guajardo@procesostermicos.com
www.procesostermicos.com

Tecnología, Procesos y Maquinados, S. A. de C. V.
Carlos Eduardo Ramírez Villanueva, General Director
Avenida Texas 125, Parque Industrial Nacional
CP 65550 Ciénega de Flores, Nuevo León, México
(81) 8319 0407 | 8319 0453 | 8319 0460
carlos.ramirez@tecmaq.com.mx
www.tecmaq.com.mx

Transpaís Aéreo, S. A. de C. V. TPA
Eva Cantú, Financial Advisor
Carretera a Laredo Km. 20, Hangar 10 y 44
Aeropuerto Internacional de Nuevo León
CP 66400 Apodaca, Nuevo León, México
(81) 8319 7932 | 8319 7999
cantu@grupolomex.com
www.transpaissaeoro.com

United Technologies Corporation Aerospace System (UTCAS)
Ernesto Vidaurri, Mexico’s Manager
Galeana 467 Oriente
Fraccionamiento Industrial El Lechugal
CP 63350 Santa Catarina, Nuevo León, México
(81) 8316 5399
ernesto.vidaurri@hs.utc.com
www.hamiltonsundstrandcareers.com

Wyman Gordon Monterrey, S de R.L. de C.V.
Jorge Luis Espinosa Marroquín, Maintenance Manager
Av. Las Norias 1050
Col. Sierra Morena
CP 67190, Guadalupe, Nuevo León, México
(81) 8215 9304
wymontero@wyman.com.mx

Tamaulipas

Kearfott Precisiones Generales de México, S. A. de C. V.
Horacio Rodríguez, Plant Manager
Diagonal Lorenzo de la Garza 25B
Ciudad Industrial de Matamoros
CP 87499 Matamoros, Tamaulipas
(868) 812 9740 | 812 9744
lacho.rodriguez@mds.kearfott.com

Chromalloy Dallas - Mexico, S. A. de C. V.
Arturo Baltazar Martínez Tapia, Legal Representative
Guerrero 2801
CP 88240, Nuevo Laredo, Tamaulipas
(867) 715 8282 | 715 4260
arturo.martinez@chromalloy.com
www.chromalloy.com

Ametek Lamb Motores de México, S. A. de C. V.
Peter C. DeJong, General Director
Sonia González, Legal Representative
Av. Río San Juan s/n
Parque Industrial del Norte
CP 88730 Reynosa, Tamaulipas
(899) 921 4591 | 921 4000
peter.dejong@ametek.com | Sonia.gonzalez@ametek.com
www.ametek.com

Cinch Connectors de México, S. A. de C. V.
Alberto Maganda Peña, Legal Representative
Alejandra Hernández
Carretera Riberera Km. 9
Parque Industrial Maquilpark
CP 88635 Reynosa, Tamaulipas, México
(899) 924 0520
amaganda@cinch.com | ahernandez2@cinch.com
www.cinch.com
Corning Cable Systems, S. A. de C. V.
Maurice Rodríguez
Avda. Ind. del Norte Lote 2, Manzana 6
Parque Industrial del Norte
CP 88730 Reynosa, Tamaulipas, México
(899) 921 9000
maurice.rodriguez@corning.com
www.corning.com

Eaton Controls, S. de R. L. de C. V.
Julián Cámara, General Director and Legal Representative
Av. Chapultepec s/n
Parque Industrial Colonial
CP 88787 Reynosa, Tamaulipas, México
(899) 921 1500 (899) 921 1572
jesusvalle@eaton.com | juliancamara@eaton.com
www.eaton.com

G. Shank Inc.
Gral. Pedro Hinojosa 15, CIMA
CP 87499 Reynosa, Tamaulipas, México
(868) 812 9438 | 812 8800 | 812 9040

Servicios Industriales NovaLink S.A. de C.V.
Rend Gonzalez Gazcon, General Director
www.novalinkmx.com

Promotora Merhen, S.A. de C.V.
Carretera a Matamoros Brecha E-99 Km. 8
Parque Industrial Reynosa
CP. 88500 Reynosa, Tamaulipas, México
(899) 140 0322
info@pmerhen.com
www.pmerhen.com

North hills Signal Processing
Martin Saucedo
Av. José Escanón y Helgueras 21
Ciudad Industrial Km. 8, Carretera Lauro Villar
CP 87499 Matamoros, Tamaulipas, México
(868) 327 0552
www.msaucedonorthhills.com

RBC de México, S. de R. L. de C. V.
Av. 16 de Septiembre Lote 11
Parque Industrial Reynosa
CP 88780 Reynosa, Tamaulipas, México
(899) 958 1221
www.rbcbearings.com

Yucatán
Frecuencia 122.1, S. A. de C. V.
Arturo Vargas, General Director
Julio Planas Gómez, Representative
Calle 54ª - 96 x 39
Col. Francisco del Montejo
CP 97203 Mérida, Yucatán, México
(999) 285 0632
frecuencia122punto1.com | planas@122punto1.com
www.122punto1.com

PCC Airfoils, S. A. de C. V.
Javier Domínguez, General Director
Gilberto Díaz and Alfredo Téllez, Legal Representatives
Table 18464
Fraccionamiento Ampliación Cd. Industrial
Periférico por Termoeléctrica CFE
CP 97288 Mérida, Yucatán, México
(999) 930 2700 | 930 2706
dominguez@pccmex.com | idiaz@pccmex.com
www.pccair.com

Seal & Metal Products of Latin America, S. A. de C. V.
Elizabeth Aparicio
Calle 60 Diagonal 492
Parque Industrial Yucatán
CP 97300 Mérida, Yucatán, México
(999) 941 2008 | 941 0124 | 941 0201
eaparicio@smpla.com
www.smpla.com

Distrito Federal
Aerovías de México, S. A. de C.V.
Andrés Conesa Labastida, General Director
Av. Fuerza Aérea Mexicana 416
Col. Federal
CP 15700 México, D.F.
(55) 9132 6377 | 9132 6379
aerovias@aeomexico.com | chiefexecutive@aeomexico.com
directorgeneral@aeomexico.com | jconesa@aeomexico.com
www.aeromexico.com
Mexicana MRO Services
Alberto García Rojas, General Director
Av. 602 No. 161-A Col. San Juan de Aragón
CP. 15620 México D.F.
(55) 1204 0315 | 1204 0315
albertogr@mexicana.com | guillermopp@mexicana.com
www.mexicana.com/mroservices

Eurocopter de México, S. A. de C. V.
Serge Durand, General Director
Hangar 1 Zona “G” de Hangares AICM
Col. Aeropuerto
CP 15620 México D.F.
(55) 5716 7571
serge.durand@eurocopter.com.mx | guadalupe.rosales@eurocopter.com.mx
www.eurocopter.com.mx

Gima Aerospace, S. de R. L. de C. V.
Massimo Giachetta, General Director
Poniente 116 No. 4, Col. Trabajadores de Hierro, C.P.02650, México
(55) 5368 6022 | Cel. (044) (55) 4139 4169
info@gimaaerospace.com
www.gimaaerospace.com

Safran de México
Stephane Lauret, Representative
Camille Roux, Assistant
Campos Elíseos No. 345 Piso 5, Col. Polanco 11560 México
(55) 5281 8775 | 5281 8705
stephane.lauret@safran.com.mx | camille.roux@safran.com.mx
www.safran-group.com

Senermex, Ingeniería y Sistemas, S. A. de C. V.
Roberto Felipe Rodríguez, General Director
Pablo Alejandro Santos López, Unidad de Negocios Aeroespacial
Juan Racine 112, Colonia Los Morales
CP. 11510, México D.F.
(55) 5029 3132
roberto.felipe@sener.com.mx | pablo.santos@sener.com.mx
www.sener.com

Servicio Técnico Aéreo de México, S. A.
Juan José Bonilla; Diana Ozuna
Hangar 10, Zona G de Hangares
Colonia Aeropuerto Internacional de la Ciudad de México
CP 15620 México D.F.
(55) 5133 1109
bonilla@stam.com.mx | dosuna@stam.com.mx
www.stam.com.mx

Tata Technologies de México, S. A. de C. V.
Jorge González Velázquez, Project and Services Manager
José Humberto Torres, Representative
Oficina en Nuevo León
Loma Alta 2369
Col. Loma Larga, Monterrey, Nuevo León
(81) 8343 1645
www.tatatechnologies.com

Estado de México
Ingenieros en Aeronáutica y Arquitectos Interioristas de Aeronaves, S. A. de C. V.
Antonio Gómez Gutiérrez, Representative
Adolfo López Mateos 202, Reforma
CP 50070 Toluca, Estado de México
(722) 180 0788 | 180 0789
aeronautica_2003@yahoo.com.mx

Representaciones Asesoría, Mantenimiento y Servicios Anexos, S. A. de C. V (RAMSA)
Isaac Romero
Bosques de Guinea 73, Bosques de Aragón
CP 57170 Nezahualcóyotl, Estado de México
(55) 5789 5228
aaviation.ramsa@ramsa.com.mx
www.paginasprodigy.com/rmsa10/proveedores.html

Aerovics, S. A. de C. V.
Fernando Fernández Presas, General Director
Griselda Bucio, Assistant
Hangar 3 Calle 1 Lotes 5 y 6
Aeropuerto Internacional Adolfo López Mateos
Col. San Pedro Totoltepec
CP 50200 Toluca, Estado de México
(722) 273 1171 | 273 1172 | 273 1173
www.aerovics.com.mx

Oficina en Ciudad de México
Parral 16-A, Col. Condesa
CP 06140, Distrito Federal, México
(55) 5211 22 97
www.tatatechnologies.com
FLIGHT PLAN // MEXICO’S AEROSPACE INDUSTRY ROAD MAP

Centro de Servicio Avemex, S. A. de C. V.
Iván Granciano
Calle 4 Hangar 14 Lote 35
Aeropuerto Internacional Adolfo López Mateos
Col. San Pedro Totoltepec
CP 50200 Toluca, Estado de México
(722) 279 3054 | 279 3000
ivan.granciano@avemex.com.mx
www.avemex.com.mx

Raytheon Aircraft Services México, S. de R. L. de C. V
Luis Zamudio
Exhacienda Canalejas Calle 2 Hangar 9 y Lotes 14 y 18
Aeropuerto Internacional de Toluca
CP 50200 Toluca, Estado de México
(722) 279 1684
luis_zamudio@hawkerbeechcraft.com.mx

Henkel Capital
Adriana Cruz
Blvd. Magnocentro 8, Piso 2
Centro Urbano Interlomas
CP 52760 Naucalpan de Juárez, Estado de México
(55) 3300 3000
www.henkel.com.mx

Hitchiner Manufacturing Company de México, S. de R. L. de C. V.
Cruce Carretera La Marquesa - T. Tianguistenco - Chalma,
Parque Industrial
CP 52600 Santiago Tianguistenco, Estado de México
(715) 135 1901
www.hitchiner.com

Procesos Control Numérico Computarizado S.A. de C.V.
Aarón Flores
Manuel Martínez 105
Parque Industrial San Antonio Buena Vista
Toluca, Estado de México
(722) 216 2676
www.procnc1.com

Tecniflex Ansorge de México y Compañía, S. en C.S. de C.V.
Stefan De Bock, Representative
Calle 9 - 6 y 6ª Col. Alce Blanco
CP 53370 Naucalpan, Estado de México
(55) 5358 6701
info@tecniflex.com
sales.mexico@bodycote.com
www.bodycote.com

Dupart México, S.A. de C.V.
INDUMET
Alfredo del Mazo 1420
Santa Cruz Azcapotzaltongo
CP 50030 Toluca, Estado de México
(722) 237 3036

Guanajuato

Rototek, S. de R. L.
Demetri Urella
Aeropuerto Municipal de Celaya Hangar 13 y 14, 76050, Celaya
(442) 125 6375
s.urrellad@rototexheli.com | Dominguez beatriz@hotmail.com
www.rototexheli.com

Servicios Integrales Aeronáuticos, S. A. de C. V.
Felipe R. Briones Soto, General Director
José María Ruiz No. 223, Col. Las Trojes, 37227, León
(477) 235 0290
briones@siasaair.com
www.siasaair.com

Bodycote Thermal Processing México, LTD
Parque Industrial y Negocios Las Colinas, Avenida Olmo 100, Silao
(734) 578 3315
ales-mexico@bodycote.com
www.bodycote.com

Querétaro

AAMEC
Hernán Rodríguez, Project Manager
Circuito Andamaxe 6, interior 17
Col. Paseos del Bosque, Corregidora, Querétaro, México
(442) 303 5595
hernan.rodrigueza@aamec.mx
www.aamec.mx

A.E. Petsche Co. (Grupo American Industries, S. A. de C.V)
Juan Carlos López, Manager
Carretera Tequisquiapan - Querétaro Km. 22.5
Parque Aerospacial Querétaro
CP 76278 Colón, Querétaro, México
(442) 101 6702
lopez@aepetsche.com
www.aepetsche.com
Aernnova Aerospace México, S. A. de C. V.
(Aernnova Aerospace / Aernnova México)
Sr. Francisco Javier Pérez Alcaide, General Director
Av. Benito Juárez 109
Parque Industrial Querétaro
Carretera Querétaro - San Luis Potosí Km. 28.5
CP 76220 Querétaro, Querétaro, México
(442) 227 2866
javier.perez@aernnova.com
www.aernnova.com

Aernnova Componentes México, S. A. de C.V.
Sr. Francisco Javier Pérez Alcaide, General Director
Av. Industria de la Transformación 431
Parque Industrial Querétaro
Carretera Querétaro-San Luis Potosí Km. 28.5
CP 76620, Querétaro, Querétaro, México
(442) 227 2876
javier.perez@aernnova.com
www.aernnova.com

Alaxia Aerosystems S. A. de C.V.
Héctor Simental Oceguera, Plant Manager
Raúl Cuevas, Operations Manager
Autopista México-Querétaro Km. 181.5 s/n
CP 76700 Pedro Escobedo, Querétaro, México
(442) 238 09 56
raul.cuevas@alaxia.com.mx

AXON Interconex, S. A. de C.V.
Beatriz Aguilar Manager
Av. Peñuelas 21-A1
Industrial San Pedrito Peñuelas
CP 76148, Querétaro, México
(442) 215 2713
b.aguilar@axon-cable.com
www.axon-cable.com

Bombardier Aerospace México, S. A. de C.V.
Joelle Cournoyer, Vicepresident of Operations
Oficina y planta de arneses
Retorno El Marqués 4 F, Parque Industrial El Marqués
CP 76246 Querétaro, México
(442) 341 7369
joelle.cournoyer@aero.bombardier.com
www.bombardier.com

Brovedani Reme de México
Francesco Centaro, General Director
Gianfranco Pesenti, Manager de negocios
Avenida Industria de la Construcción 411
Parque Industrial Querétaro
Querétaro, México
(442) 256 0300 | 256 0314
francesco.centaro@brovedanigroup.com
www.brovedanigroup.com

Centro de Ingeniería Avanzada en Turbomáquinas,
S. de R. L. de C. V. (GE-IQ)
Vladimiro de la Mora, General Director
Juan Alfonso González, Finance Manager
Av. Campo Real 1692
Col. Ampliación El Refugio
(442) 257 3023
juan.alfonso.gonzalez@ge.com

Crio, S. A. de C.V.
Esteban Aguilar, Plant Manager
Calle 3-11
Zona Industrial Benito Juárez
CP 76120 Querétaro, México
(442) 257 3023
e.aguilar@criomx.com
www.crio.mx.com

CurtissWright Controls Flight Systems /
American industries de Querétaro S.A. de C.V.
Rosaaura Rodríguez, Administration
Alejandra Luna, Purchases and Customs
Autopista México-Querétaro Km. 195.5
Av. Circuito El Marqués Nte. 50
Parque Industrial El Marqués
CP 76246 El Marqués, Querétaro, México
(442) 256 04 17 | 253 1488
r.rodriguez@aig.com
luna@aig.com
www.aig.com

Elimco Prettl Aerospace S. A. de C.V.
Rafael Navarro, Trade Manager
Luis Manuel Zúñiga Tinoco, Operations Manager
Carretera Libre a Celaya Km 8 6
Fracc. Industrial Balvanera
CP 76900 Corregidora, Querétaro, México
(442) 192 9100 | 219 3746 | 192 9140 | 253 1288
avaro@elimco-prettl.com
lzuni@elimco-prettl.com
www.prettl.com
Especialistas en Turbo Partes, S. A. de C. V.
Jatziri Barrios, Project Manager
Cuauhtémoc 3
Industrial San Pedrito Peñuelas
CP 76148 Querétaro, México
Avenida del Conde 4-B
Parque Industrial El Marqués
CP 76246, El Marqués, Querétaro, México
(442) 220 6895
jatziri.barrios@especialistasenturbopartes.com.mx
www.especialistasenturbopartes.com.mx

Eurocopter de México (Planta Querétaro)
Julien Fabreguette, Plant Manager
Omar Peláez, Finance Manager
Carretera 200 Querétaro-Tequisquiapan
Colón, Querétaro, México
(442) 256 2600
julien.fabreguette@eurocopter.com.mx
omar.pelaez@eurocopter.com.mx
www.eurocopter.com/site/en/ref/home.html

González Aerospace (México)
Pablo Calzada Urquiza, NBD Director
Rafael Fragoso, Assistant
Av. del Marques 30
Parque Industrial Bernardo Quintana
CP 76240 El Marqués, Querétaro, México
(442) 221 5368 | 412 0343
localizada@gonzalezaerospace.com
rafafag@gonzalezaerospace.com
www.gonzalezaerospace.com

Hyrsa Aerospace Maquinados CNC de Precisión S. DE R.L. DE C.V.
Roberto Sánchez, General Director
Esteban Sánchez, Underdirector
John F. Kennedy 106
Felipe Carrillo Puerto
CP 76138 Querétaro, México
(442) 455 2600 | 217 2600
info@hyrsa.mx | esteban.sanchez@hyrsa.mx
www.hyrsaerospace.com

Industria de Tuberías Aeronáuticas México
Teresa Chacón, Public Relations Coordinator
Acceso IV Número 6
Zona Industrial Benito Juárez
CP 76120 Querétaro, Querétaro
(442) 296 3900
chacons@itrtelemexico.com
www.itrmexico.com.mx

ITR Fabricación
Teresa Chacón, Public Relations Coordinator
Acceso IV Número 6
Zona Industrial Benito Juárez
CP 76120 Querétaro, Querétaro
(442) 296 3900
chacons@itrtelemexico.com
www.itrmexico.com.mx

ITR Diseño
Teresa Chacón, Public Relations Coordinator
Acceso IV Número 6
Zona Industrial Benito Juárez
CP 76120 Querétaro, Querétaro
(442) 296 3900
chacons@itrtelemexico.com
www.itrmexico.com.mx

ITR Ingeniería y Fabricación, S.A. de C.V.
Teresa Chacón, Public Relations Coordinator
Acceso IV Número 6
Zona Industrial Benito Juárez
CP 76120 Querétaro, Querétaro
(442) 296 3900
chacons@itrtelemexico.com
www.itrmexico.com.mx

PCC Aerostructures de México, S.A. de C.V.
Michael Deshaies, Trade Manager
Miguel Guevara
Carretera Estatal 200 Querétaro-Tequisquiapan
Colón, Querétaro, México
(442) 713 5600
odenhaes@pccaero.com | miguevara@pccaero.com
www.precast.com

Southwest United Galnik S.A. de C.V.
Avenida de la Luz 24, Acceso II, Nave 16
Zona Industrial Benito Juárez
CP 76120 Querétaro, Querétaro, México
(442) 209 5184 | 209 5185
Marco Lechuga, Operations Manager
mlechuga@swunitedgalnik.com.mx
www.swunitedgalnik.com.mx
Turborreactores de México
Acceso IV Número 6 Zona Industrial Benito Juárez
CP 76120 Querétaro, Querétaro, México
(442) 296 3900
www.itrmexico.com.mx

Meggitt Aircraft Braking Systems Querétaro, S. de R. L. de C. V.
Alberto Barrera, Plant Manager
Carretera Estatal 200 Querétaro - Tequisquiapan km22+547
CP 76270, Colón, Querétaro, México
(442) 153 43 00
alberto.barrera@meggitt.com
www.meggitt.com

Messier Services Americas, S.A. de C.V.
Claude Gobenceaux, General Director
Av. De la Noria 131
Carretera Querétaro - San Luis Potosí Km. 28.5, Parque Industrial
Santa Rosa de Jauregui, CP 76220, Querétaro, Querétaro, México
(442) 192 5800 | 192 5806
claude.gobenceaux@safranmbd.com
www.safranmbd.com

Messier Bugatti-Dowty México, S.A. de C.V
Eric Guy Recton, General Director
Ingrid Contreras, Líder de Comunicación
Carretera Estatal 200 Querétaro - Tequisquiapan 24032
Parque Aeroespacial de Querétaro
CP 76270, Colón, Querétaro, México
(442) 153 3900
eric.recton@safranmbd.com | ingrid.contreras@safranmbd.com
www.messierdowty.com

Safran Sncma México, S.A. de C.V
Fernando Comenge, General Director
Carretera Estatal 200 Querétaro - Tequisquiapan Km 22.5-D
Parque Aeroespacial Querétaro
CP 76120 Colón, Querétaro, México
(442) 153 3915 | 296 5629
fernando.comenge@sames.com.mx
www.sncma.com

Sncma America Engine Services, S. A. de C. V
Fernando Comenge, General Director
Acceso IV Número 3
Zona Industrial Benito Juárez
CP 76120 Querétaro, México
(442) 296 5680 | 296 5629
fernando.comenge@sames.com.mx
www.sncma-services.com

Tecnum Service, S. A. de C. V.
Guillermo Bonilla, General Director
Calle 2 106-B
Parque Industrial Jurica
CP 76120 Querétaro, México
(442) 218 7496 | 218 7497
 avoid.tecnum.com.mx
www.tecnum.com.mx

Thyssenkrupp Aerospace México
Antonio Mazatlán, Manager
(442) 192 4089 | Cel. (044) (442) 250 2440
antonio.mazatan@thyssenkrupp.com
www.thyssenkrupp aerospace.com

San Luis Potosí

Aearo Technologies de México, S. A. de C. V.
(Before: TJR Manufacturing & Services, S. A. de C. V.)
Lisette Fernández, Manufacturing and Services
Av. CFE 780, Esq. Eje 136
Parque Industrial Milenium, Zona Industrial
CP 78395 San Luis Potosí, México
(444) 824 1042 | 824 1044
fernandez22@mmm.com
www.aearo.com

GKN Aerospace San Luis Potosí, S. de R. L. de C.V.
Jesus Ley, General Director and Legal Representative
Av. CFE 790
Parque Industrial Milenium
Zona Industrial
CP 78439 San Luis Potosí, México
(444) 834 6100
jesus.ley@usa.gknaerospace.com
www.gknaerospace.com

Hitchiner Manufacturing Company de México, S. de R. L. de C. V.
Jorge Campillo del Corral, General Director
José Luis Enríquez, Plant Manager
Armando Huerta Ochoa, Legal Representative
Av. Circuito Exportación 331
Parque Industrial Tres Naciones
CP 78395, San Luis Potosí, México
(444) 826 5088 | 824 1494 | 824 1492 | 826 5030
jcampillo@hitchiner.com.mx | armando.huerta@hitchiner.com | jose_l_enriquez@hawkerebechcraft.com
www.hitchiner.com
Tighitco Latinoamérica, S. a. de C. V.
Humberto Santiago Martí, President for Latinamerica
Av. CFE 635-2 Esquina Eje 132 y Eje 134
Col. Zona Industrial del Potosí
CP 78395, San Luis Potosí, México
(444) 824 1450
humberto.santiago@tighitco.com.mx
www.tighitco.com

Comercializadora del Centro Bonanza, S. a. de C. V.
Juan Carlos Almazán Mathews, General Director
Antiguo Camino a Santa María 170
cuartel Aguilares, Villa de Pozos
CP 78421, San Luis Potosí, México
(444) 824 5326 | 824 5327
s.almazan@ebonanza.com.mx
www.ebonanza.com.mx

Zacatecas
Triumph Group México, S. de R. L. de C. V.
Sr. Alejandro Olmedo, Vicepresident.
Parque Aeroespacial, Zacatecas
www.triumphgroup.com

Puebla
Avipro Fabricantes
Angel Limón García
Privada Acatlán 26
Parque Industrial Tehuaspango
CP 74367, Atlixco, Puebla
(244) 445 0300
angelfab@bearhawkaircraft.com
www.bearhawkaircraft.com

AritexCading México, S.A. de C.V.
Jesus García
Av. Acacias Nave 21 B-1
Parque Industrial FINSA
CP 72710, Cuautlancingo, Puebla
(222) 455 4483
j.garcia@aritex-es.com
www.aritex-es.com

Durango
Draka Durango
Autopista Durango-Gomez Palacio Km. 2.5 s/n
CP 34206 Durango, Durango
(618) 829 0500
info.mexico@draka.com
www.draka.com

Tecnología Avanzada en Composite S.A. DE C.V.
Tomás Rosales Galindo
Calle Juan Gabriel 608
Colonia Valle del Guadiana
CP 34166, Durango, Durango
(618) 818 3745
fibercompositer@prodigy.net.mx
www.fibercomposite.com

Organizaciones de educación, investigación, desarrollo e ingeniería

Universidad Nacional Autónoma de México (UNAM)
Instituto de Ingeniería
Circuito Escolar s/n
CP 04510 Ciudad Universitaria
Distrito Federal, México
(55) 5623 3600
www.ingen.unam.mx/es-mx/Paginas/default.aspx

Instituto Politécnico Nacional
EJIME, Unidad Ticomán
Miguel Álvarez Montalvo, General Director
Av. Ticomán 600, San José Ticomán
CP 07340 Distrito Federal, México
(55) 5729 6000 Ext. 56092
malvarezm@ipn.mx
www.esimetic.ipn.mx

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)
Unidad Guadalajara
Bernardino Castillo Toledo
Av. del Bosque 1145
Col. El Bajío Zapopan
CP 45019 Jalisco, Zapopan
(33) 3767 3300
www.cinvestav.mx
Instituto Tecnológico y de Estudios Superiores de Monterrey
Aeronautic Engineering Department
Alberto Bustani, Rector Zona Metropolitana de Monterrey
Av. Eugenio Garza Sada 2503 Sur
Col. Tecnológico
CP 64849 Monterrey, Nuevo León
(81) 8358 2000 | 836 26832
www.itesm.edu

Universidad Autónoma de Nuevo León
Mechanic and Electrical Engineering School
José Antonio Morales Treviño, Director at FIME
Av. Universidad s/n, Ciudad Universitaria
CP 66451 Monterrey, Nuevo León
(81) 1492 0375
vilomar@cidesi.mx
www.uanl.mx

Centro para el Desarrollo de la Industria Aeronáutica
Gabriel Tort, General Director
Epigmenio González S/00
Fraccionamiento San Pablo
CP 76130 Querétaro, México
(442) 238 3100 Ext. 3766
jgtortflo@itesm.mx
www.cedia.campusqueretaro.net

Centro de Tecnología Avanzada, A.C. (CIATEQ)
Unidad Bernardo Quintana
Gerardo Sánchez Cáceres, Representative
Eugenia Barrera Sánchez, Customer Manager
Av. Manantiales 23-A
Parque Industrial Bernardo Quintana
El Marqués, Querétaro, México
(442) 211 2609 | 211 2679
gsc@ciateq.mx | mkt@ciateq.mx
www.ciateq.mx

Universidad Nacional Aeronáutica en Querétaro (UNAQ)
Jorge Gutiérrez de Velázco, Rector
Carretera Estatal 200 Querétaro–Tepusquique 22154
CP 76270 Colón, Querétaro
(442) 270 1578
jgutierrez@uteq.edu.mx
www.unaq.edu.mx

Centro de Entrenamiento en Alta Tecnología (CENALTEC)
Av. Central 8901
Complejo Industrial Chihuahua Sur
(614) 429 8500 al 25 | 01 800 CENALTEC (223 6258)

Centro de Ingeniería y Desarrollo Industrial
Av. Playa Pie de la Cuesta 702
Desarrollo San Pablo
Querétaro, Querétaro, México
(442) 211 9800 | 01800 552 2040

Centro de Investigación en Materiales Avanzados, S.C. (CIMAV)
Ave. Miguel de Cervantes 120
Complejo Industrial Chihuahua
CP 31109 Chihuahua, Chihuahua, México
(614) 439 1100
Flight Plan // Mexico's Aerospace Industry Road Map

Baja California

<table>
<thead>
<tr>
<th>Company</th>
<th>Products and Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSIC de Baja, S. A. de C. V.</td>
<td>Aerospace, Electronics Inc.</td>
</tr>
<tr>
<td>Galvanoplastica Tijuana</td>
<td></td>
</tr>
<tr>
<td>Metale Electroplating Inc.</td>
<td></td>
</tr>
<tr>
<td>Goodrich Aeronautica de Mexico, S. de R.L. de C. V.</td>
<td></td>
</tr>
<tr>
<td>Herkiell Eboards S.A. de C.V.</td>
<td></td>
</tr>
<tr>
<td>Honeywell Aerospace de Mexico, S. de R.L. de C. V.</td>
<td></td>
</tr>
<tr>
<td>Hutchinson Seals de Mexico, S. A. de C. V.</td>
<td></td>
</tr>
<tr>
<td>Interamec Aero de Mexico S.A. de CV (Guadalupe)</td>
<td></td>
</tr>
<tr>
<td>Air Cells</td>
<td></td>
</tr>
<tr>
<td>Jonathan & Wright de Mexico, S. de R.L. de C. V.</td>
<td></td>
</tr>
<tr>
<td>Lecoplast Industrial, S. A. de C. V.</td>
<td></td>
</tr>
<tr>
<td>LMI Aeronaves</td>
<td></td>
</tr>
<tr>
<td>Weapo-Aerocinco, S.A.</td>
<td></td>
</tr>
<tr>
<td>Martin Power (Esperia)</td>
<td></td>
</tr>
<tr>
<td>National Baja</td>
<td></td>
</tr>
<tr>
<td>ENS Aeronautica</td>
<td></td>
</tr>
<tr>
<td>North American Production Sharing de Mexico, S.A. de C.V.</td>
<td></td>
</tr>
<tr>
<td>Oracron de Mexico, S. A. de C.V.</td>
<td></td>
</tr>
<tr>
<td>Dornier Mexico, S. A. de C. V.</td>
<td></td>
</tr>
<tr>
<td>Hallmark Aerospace, S. R. L. de C. V.</td>
<td></td>
</tr>
<tr>
<td>Pheas Fabricaciones S.A. de C.V.</td>
<td></td>
</tr>
<tr>
<td>Processos Tecnicos y Componentes de Mexico, S. de R.L. de C. V.</td>
<td></td>
</tr>
<tr>
<td>River Manufacturing International</td>
<td></td>
</tr>
<tr>
<td>Wevo Manufacturing de Mexico, S. de R.L. de C. V.</td>
<td></td>
</tr>
<tr>
<td>Sevan Global</td>
<td></td>
</tr>
<tr>
<td>Segom Precision de Mexico, S. de R.L. de C. V.</td>
<td></td>
</tr>
<tr>
<td>Sunrise Manufacturing Technologies, S.A. de C.V.</td>
<td></td>
</tr>
<tr>
<td>Spectrum Integrity</td>
<td></td>
</tr>
<tr>
<td>SwitchLux, S. A.</td>
<td></td>
</tr>
<tr>
<td>Technicenter de Mexico S.A. de C.V.</td>
<td></td>
</tr>
<tr>
<td>Teledyne Microelectronic Technologies</td>
<td></td>
</tr>
<tr>
<td>Technology and Industrial Services de Mexico</td>
<td></td>
</tr>
<tr>
<td>Transline Microelectronics Technologies</td>
<td></td>
</tr>
<tr>
<td>Transas International, S.A.</td>
<td></td>
</tr>
<tr>
<td>Teledyne Microelectronics Technologies, S.A. de C.V.</td>
<td></td>
</tr>
</tbody>
</table>

Suppliers and Capabilities

Materials

- Aluminum
- Carbon Fiber
- Stainless Steel
- Titanium
- Delrin
- 300M or Equivalent
- Aluminum
- Titanium

Services

- Design and Engineering
- Manufacturing and Assembly
- Testing and Certification

Certifications

- AS9100B
- ISO 9001:2000
- FAA
- DGAC
- MIL
- ITAR
- NADCAP
COMPANY

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>6 / Directory and Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zodiac Aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac Seat Shells LCC (Grupo American Industries, S. A. de C. V.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac Seat United States</td>
<td></td>
</tr>
<tr>
<td>Zodiac United States</td>
<td></td>
</tr>
<tr>
<td>Zodiac Interconnect Americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac Lighting Solutions/IDC Aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac AEROSPACE</td>
<td></td>
</tr>
<tr>
<td>Zodiac Seat United States/Weber Aircraft (Grupo American Industries, S. A. de C. V.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems/Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>The Nordam Group</td>
<td></td>
</tr>
<tr>
<td>Zodiac Seat United States/Weber Aircraft (Grupo American Industries, S. A. de C. V.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Lighting Solutions/IDC Aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac Interconnect Americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems/Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Seat United States/Weber Aircraft (Grupo American Industries, S. A. de C. V.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Lighting Solutions/IDC Aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac Interconnect Americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems/Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Seat United States/Weber Aircraft (Grupo American Industries, S. A. de C. V.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Lighting Solutions/IDC Aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac Interconnect Americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems/Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Seat United States/Weber Aircraft (Grupo American Industries, S. A. de C. V.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Lighting Solutions/IDC Aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac Interconnect Americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems/Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Seat United States/Weber Aircraft (Grupo American Industries, S. A. de C. V.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerosafety Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Aerevacuation Systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac Lighting Solutions/IDC Aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac Interconnect Americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems/zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac seat united states/weber aircraft (grupo american industries, s. a. de c. v.)</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerosafety systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac aerevacuation systems</td>
<td></td>
</tr>
<tr>
<td>Zodiac lighting solutions/idc aerospace</td>
<td></td>
</tr>
<tr>
<td>Zodiac interconnect americas</td>
<td></td>
</tr>
</tbody>
</table>
| Zodiac aero...
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>District</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company A, S.A. de C.V.</td>
<td>Distrito Federal</td>
<td>Av. de las Naciones, 123</td>
</tr>
<tr>
<td>Company B, S.A. de C.V.</td>
<td>Guanajuato</td>
<td>Blvd. de los Ingleses, 456</td>
</tr>
<tr>
<td>Company C, S.A. de C.V.</td>
<td>Coahuila</td>
<td>Calle de las Estrellas, 789</td>
</tr>
</tbody>
</table>

Services

- MRO
- Design
- Development
- Manufacturing
- Assembly
- Calculation
- Testing and Certification

Certifications

- AS9100
- NADCAP
- ISO 9001:2000
- DGAC
- ITAR
- MIL
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>MRO</th>
<th>I+D</th>
<th>Technology</th>
<th>Design</th>
<th>EM</th>
<th>TC</th>
<th>S</th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerovitro, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metrolab, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monterrey Jet Center, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Technologies Corporation Aerospace Systems, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZI Metales, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoltek de México, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Electronics de México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlatin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Manufacturing México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tata Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalsys, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Services NDT, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Technologies Corp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metrolab, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiservice Center, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ankorita Deobrutas Aeronautica, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exova de México, S. de R.L., de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aero Alterno, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Electronics de México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Manufacturing México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Technologies Corporation Aerospace Systems, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tata Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalsys, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiservice Center, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ankorita Deobrutas Aeronautica, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exova de México, S. de R.L., de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aero Alterno, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Electronics de México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Manufacturing México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Technologies Corporation Aerospace Systems, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tata Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalsys, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiservice Center, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ankorita Deobrutas Aeronautica, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exova de México, S. de R.L., de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aero Alterno, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Electronics de México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Manufacturing México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Technologies Corporation Aerospace Systems, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tata Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalsys, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiservice Center, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ankorita Deobrutas Aeronautica, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exova de México, S. de R.L., de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aero Alterno, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Electronics de México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark Manufacturing México, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Technologies Corporation Aerospace Systems, S.A. de C.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tata Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalsys, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiservice Center, S.A. de C.V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flight Plan // Mexico's Aerospace Industry Road Map

MRO

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>Nuevo León</th>
<th>Querétaro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- PPG</td>
<td>- Curtiss Wright Controls Flyght Systems México</td>
</tr>
<tr>
<td></td>
<td>- ITP Turborreactores</td>
<td>- Hyrsa American Steel Crowners</td>
</tr>
<tr>
<td></td>
<td>- ITP TUBOS</td>
<td>- Aernnova Componentes México</td>
</tr>
<tr>
<td></td>
<td>- ITP Ingeneria y Fabricacion, S.A. de C.V.</td>
<td>- Centro de Ingeniería Avanzada en Turbomáquinas, S. de R. L. de C. V.</td>
</tr>
<tr>
<td></td>
<td>- ITP DISEÑO</td>
<td>- Wyman Gordon Monterrey, S de R.L. de C.V.</td>
</tr>
<tr>
<td></td>
<td>- Messier Services Americas, S.A. de C.V.</td>
<td>- Transpaís Aéreo, S.A. de C.V.</td>
</tr>
<tr>
<td></td>
<td>- Snecma America Engine Services, S. A. de C. V. (Grupo Safran)</td>
<td>- Tecnología, Procesos y Maquinados, S.A. de C.V.</td>
</tr>
<tr>
<td></td>
<td>- PCC Aerostructures Mexico, S.A. de C.V.</td>
<td>- Parker Hannifin de México S.A. De C.V.</td>
</tr>
<tr>
<td></td>
<td>- Gonzalez Aerospace</td>
<td>- Carbones Industriales Mexicanos, S.A. de C.V.</td>
</tr>
<tr>
<td></td>
<td>- A.E. Petsche Co. (Grupo American Industries, S.A. de C.V.)</td>
<td>- Aviones y Helicópteros del Norte, S.A. de C.V.</td>
</tr>
<tr>
<td></td>
<td>- Carbones Industriales Mexicanos, S.A. de C.V.</td>
<td>- Wyman Gordon Monterrey, S de R.L. de C.V.</td>
</tr>
</tbody>
</table>

Enhanced Manufacturing

- **Aeroengines:** Propellers/rotors/Power Plant
- **Fuselage:** Nacelles/Pylons, Stabilizers
- **Electrical power/Airborne Auxiliary Power**
- **Automation Systems and Equipment**
- **Communication Systems and equipment**

Manufacturing

- **Forging**
- **Machining:** Milling, Turning
- **Surface Treatments:** Quench & Tempering, Sulfuric Anodise, Chromic Anodise, Prime & Paint
- **Testing & Certification Services:** NDT, MPI, Acid Etch, Chemical Mechanical Polishing

Services

- **Testing and Certification:** NADCAP, DGAC, MIL, ISO 9001:2000
- **Flight Training**
- **Materials**
- **Stock Solutions**
- **Research, Design & Development**

Certification

- **Testing and Certification:** NADCAP, DGAC, MIL, ISO 9001:2000
- **Flight Training**
- **Materials**
- **Stock Solutions**
- **Research, Design & Development**
<table>
<thead>
<tr>
<th>COMPANY</th>
<th>Materials</th>
<th>Services</th>
<th>Certifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell IPO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horst Engineering de México</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffith Enterprises, Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.S. Precision, Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellison Surface Technologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ducommun AeroStructures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daher Aerospace, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRM Advanced Manufacturing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch - División de Sistemas de seguridad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodycote</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be Aerospace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark electronics precision technologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrow Electronics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenol Optimize México, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Precision Assemblers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidated Precision Products Nogales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acra Aerospace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tighitco Latinoamérica, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKN Aerospace San Luis Potosí, S. de R. L. de C. V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comercializadora del Centro Bonanza, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aearo Technologies de México, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dishon Limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonora Aerospace: Propellers/propellers/Power Plant¹(Parts & components)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace: Fuselage: Nacelles/Pylons, Stabilizers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Construction Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avionics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical power/Airborne Auxiliary Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Systems and equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Systems & Equipment/ Flight Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel & Fuel Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Systems & Hydraulic Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicating/ Recording Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety & Survival Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Protection / Ice & Rain Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Maintenance System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inert Gas System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo and Accessory Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fasteners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space systems & equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Textiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATIA V5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAD / CAM / CAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deburring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machinery Manufacture -CNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Querétaro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecnum Service, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ThyssenKrupp Aerospace Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AARDEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltron Limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltron Limited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaulipas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avanti Technologies de México, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercializaciones del Centro Bonanza, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKN Aerospace San Luis Potosí, S. de R. L. de C. V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin Manufacturing Company de México, S. de R. L. de C. V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tightfit Latinamérica, S. A. de C. V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aero Propellers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidated Precision Products Nogales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadence Aerospace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Precision Assemblers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenol Optimize México, S. A. de C. V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrow Electronic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrow Logistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAE Systems Products Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark electronics precision technologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Aerospace</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epsitec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch - División de Sistemas de seguridad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS Advanced Manufacturing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtis-Wright Control de México S.A. de C. V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daher Aerospace, S. A. de C. V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ducommun AeroStructures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elitech Surface Technologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidated Precision Products Guaymas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Electronics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G&H Precision Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTC Aerospace Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRIFFITH Enterprises, Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horco Engineering de Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honeywell PS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Magnéticas de Mexico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹: Non Conventional Machining and Surface Enhancement
Mexico's Aerospace Industry Road Map

COMPANY

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Location</th>
<th>Aerosol</th>
<th>MRO</th>
<th>Fuselage</th>
<th>Aircraft Construction Assembly</th>
<th>Avionics</th>
<th>Landing Gear</th>
<th>Wings</th>
<th>Computer System & Software</th>
<th>Information Systems</th>
<th>Electrical Power</th>
<th>Auxiliary Power</th>
<th>Aircraft Systems</th>
<th>Materials</th>
<th>Services</th>
<th>Certifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tex, Mexico</td>
<td>Sonora</td>
<td>MRO</td>
<td>M</td>
<td>Fuselage</td>
<td>Aircraft Construction Assembly</td>
<td>Avionics</td>
<td>Landing Gear</td>
<td>Wings</td>
<td>Computer System & Software</td>
<td>Information Systems</td>
<td>Electrical Power</td>
<td>Auxiliary Power</td>
<td>Aircraft Systems</td>
<td>Materials</td>
<td>Services</td>
<td>Certifications</td>
</tr>
<tr>
<td>WinForm / Mexico</td>
<td>Sonora</td>
<td>MRO</td>
<td>M</td>
<td>Fuselage</td>
<td>Aircraft Construction Assembly</td>
<td>Avionics</td>
<td>Landing Gear</td>
<td>Wings</td>
<td>Computer System & Software</td>
<td>Information Systems</td>
<td>Electrical Power</td>
<td>Auxiliary Power</td>
<td>Aircraft Systems</td>
<td>Materials</td>
<td>Services</td>
<td>Certifications</td>
</tr>
</tbody>
</table>

Non-Conventional Machining and Surface Enhancement

- Sonora: Parker Hannifin Aerospace, Persian CGS de México, S. de R. L. de C. V.

Research, Design & Development

- Sonora: Micro Manufacturing, National Manufacturing Mexico, Pinnacle Aerospace

Raw Materials

- Sonora: Nordic Aeronautics Plan, S. A. de C. V., Rolls Royce (PSI), Safran Aerospace Mexico, General Dynamics, Inc., Sr. Gsa Technologies, Caterpillar Interconnect Technologies, Tex, Mexico, Scaletonline, Williams International, WinForm / Mexico

Services

- Sonora: Parker Hannifin Aerospace, Persian CGS de México, S. de R. L. de C. V.

Certifications

- Sonora: Micro Manufacturing, National Manufacturing Mexico, Pinnacle Aerospace, Nordic Aeronautics Plan, S. A. de C. V., Rolls Royce (PSI), Safran Aerospace Mexico, General Dynamics, Inc., Sr. Gsa Technologies, Caterpillar Interconnect Technologies, Tex, Mexico, Scaletonline, Williams International, WinForm / Mexico
México

PRO MÉXICO
Trade and Investment

HEADQUARTERS
Camino a Santa Teresa 1679, Col. Jardines del Pedregal, 01900, Mexico City, Mexico. Tel. +55 55 5447 7070
promexico@promexico.gob.mx
www.promexico.gob.mx
@ProMexico ProMexicoOfficial

Worldwide Offices

North America
Boston
boston@promexico.gob.mx
Chicago
chicago@promexico.gob.mx
Dallas
dallas@promexico.gob.mx
Detroit
detroit@promexico.gob.mx
Houston
houston@promexico.gob.mx
Los Angeles
losangeles@promexico.gob.mx
Miami
miami@promexico.gob.mx
Montreal
montreal@promexico.gob.mx
New York
ny@promexico.gob.mx
Phoenix
phoenix@promexico.gob.mx
San Francisco
sanfrancisco@promexico.gob.mx
Seattle
seattle@promexico.gob.mx
Toronto
toronto@promexico.gob.mx
Vancouver
vancouver@promexico.gob.mx
Washington, D.C.
Washington@promexico.gob.mx

Latin America
Bogota
colombia@promexico.gob.mx
Buenos Aires
argentina@promexico.gob.mx
Guatemala
guatemala@promexico.gob.mx
Havana
havana@promexico.gob.mx
Lima
lima@promexico.gob.mx
Santiago de Chile
santiago@promexico.gob.mx
Sao Paulo
brazil@promexico.gob.mx

Europe and Africa
Bern
bern@promexico.gob.mx
Berlin
berlin@promexico.gob.mx
Brussels
belgium@promexico.gob.mx
Casablanca
casablanca@promexico.gob.mx
Frankfurt
frankfurt@promexico.gob.mx
Istanbul (Pacific Alliance)
turkey@promexico.gob.mx
London
London@promexico.gob.mx
Madrid
spain@promexico.gob.mx
Milan
italy@promexico.gob.mx

Asia-Pacific
Beijing
beijing@promexico.gob.mx
Doha
doha@promexico.gob.mx
Dubai
dubai@promexico.gob.mx
Hong Kong
hongkong@promexico.gob.mx
Kuala Lumpur
kualalumpur@promexico.gob.mx
Melbourne
melbourne@promexico.gob.mx
New Delhi
newdelhi@promexico.gob.mx
Seoul
korea@promexico.gob.mx
Shanghai
shanghai@promexico.gob.mx
Singapore
singapore@promexico.gob.mx
Taipei
taiwan@promexico.gob.mx
Tokyo
japan@promexico.gob.mx