Roya del frijol

\textit{Uromyces phaseoli} G. Winter 1881
(Sin. \textit{Uromyces appendiculatus} Unger)
CONTENIDO

IDENTIDAD...1
 Nombre científico...1
 Clasificación taxonómica...1
 Sinónimos...1
 Nombres comunes...1

SITUACIÓN FITOSANITARIA EN MÉXICO ..1

DISTRIBUCIÓN MUNDIAL...1

IMPORTANCIA ECONÓMICA DE LA PLAGA ..3

HOSPEDANTES ...4

ASPECTOS BIOLÓGICOS ..4

DESCRIPCIÓN MORFOLÓGICA ...4

SÍNTOMAS Y DAÑOS ...6

ASPECTOS EPIDEMIOLÓGICOS ..11

METODOS DE DETECCIÓN/DIAGNÓSTICO ...11

METODO DE MUESTREO ..12

MANEJO FITOSANITARIO ..13
 Cultural..13
 Genético...14
 Extractos vegetales con actividades antifungicas ..17
 Químico..17

LITERATURA CITADA ...18
IDENTIDAD

Nombre científico

Uromyces phaseoli G. Winter 1881

Clasificación taxonómica

Dominio o Reino: Fungi
Phylum: Basidiomycota
Clase: Pucciniomycotina
Orden: Pucciniales
Familia: Pucciniaceae
Género: *Uromyces*
Especie: *phaseoli*

(SINPO, 2019; NCBI, 2020).

Nombres comunes

Español
- Roya del frijol
- Roya de la judía
- Chahuixtle del frijol

Inglés
- Brown rust of vean
- Rust of vean

Francés
- Rouille brune du haricot
- Rouille du haricot

Alemán
- Rost: Bohne

Lituano
- Pupa rádys

SITUACIÓN FITOSANITARIA EN MÉXICO

En México de acuerdo a la NIMF No. 08, “Determinación de la situación de una plaga en un área” (CIPF, 2017), el estatus es Presente: en toda el área sembrada con cultivos hospederos por lo que se considera, según la NIMF No. 5 “Glosario de términos fitosanitarios”, plaga no cuarentenaria (CIPF, 2019).

DISTRIBUCIÓN MUNDIAL

Uromyces phaseoli (Sin.: *Uromyces appendiculatus*) se encuentra ampliamente distribuida en todas las regiones frijoleras del mundo. (CABI, 2020) [Cuadro 1 y 2; Figura 1].

<table>
<thead>
<tr>
<th>Continente</th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>África</td>
<td>Argelia, Angola, Camerún, Egipto, Etiopía, Gabón, Ghana, Guinea, Costa de Marfil, Kenia, Líbia, Madagascar, Malawi, Mauricio, Marruecos, Mozambique, Níger Nigeria, Islas Rodríguez, Senegal, Sierra Leona, Somalia, Sudáfrica, Sudán, Tanzania, Togo, Túnez, Uganda, Zaire, Zambia y Zimbabue.</td>
</tr>
<tr>
<td>Asia</td>
<td>Afganistán, Bangladés, Brunei, Birmania, Camboya, China Hong Kong, India (Assam), (Maharashtra), Indonesia (Java), Irán, Irak, Israel, Japón, Corea Libano, Malasia peninsular (Sabah, Sarawak), Nepal, Filipinas, Islas Ryukyu, Arabia Saudí, Singapur, Sri Lanka, Taiwán, Tailandia, Turquía, Urss (Uzbekistán & Zona de Tashkent), (República de Georgia), Vietnam, Yemen y República Árabe.</td>
</tr>
<tr>
<td>Oceania</td>
<td>Australia, Fiji, Guam, Hawaií, Nueva Caledonia, Nueva Zelanda, Islas Norfolk, Papúa Nueva Guinea e Islas Salomón.</td>
</tr>
<tr>
<td>Europa</td>
<td>Austria, Gran Bretaña, Bulgaria, Chipre, Checoslovaquia, Finlandia, Francia, Alemania, Grecia, Hungría, Italia (Cerdeña), (Sicilia), Malta, Países Bajos, Noruega, Polonia, Portugal (Azores), Rumania, España (Majorca), Suecia, Suiza, URSS (Cáucaso), (Lituania), (Letonia), (Estonia) y Yugoslavia.</td>
</tr>
<tr>
<td>América</td>
<td>Canadá, México, EE.UU., Antillas, Barbados, Belice, Bermudas, Costa, Rica, Cuba, Dominica, República Dominicana, Guadalupe, Guatemala, Haití, Honduras, Jamaica, Martinica, Nicaragua, Panamá, Puerto Rico, Salvador, Trinidad, Argentina (Tucumán), Bolivia, Brasil, (Amozonia), (Sao Paulo), Chile, Colombia, Ecuador, Paraguay, Perú, Surinam, Uruguay y Venezuela.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>País</th>
<th>Estados</th>
</tr>
</thead>
</table>
IMPORTANCIA ECONÓMICA DE LA PLAGA

La roya, causada por el hongo *Uromyces phaseoli*, es considerada la principal enfermedad fúngica del frijol en varios países. A nivel mundial causa pérdidas de importancia económica, las cuales dependen del grado de susceptibilidad de la variedad empleada, de la severidad de la enfermedad y de las condiciones ambientales que prevalezcan en el área en el momento del ataque. Esta enfermedad limita la producción de frijol en climas templados y con periodos húmedos de al menos 10 horas, en México se presenta en ambientes donde se siembra frijol y se ha convertido en una limitante para la producción de esta leguminosa, al causar pérdidas variables de hasta 80% (Bernal et al., 2016; Montero et al., 2010).

En el estado de Guanajuato, se han observado reducciones de hasta el 80% en el rendimiento atribuible a la infección del patógeno y disminución de 40 a 50% en el peso seco de la planta. Los principales daños ocurren en la etapa de prefloración y floración (SIAFEG, 2009). En 1988 el daño causado por esta enfermedad fue hasta del 100% en variedades criollas de la región (Vargas et al., 2000). Si la enfermedad infecta en las primeras etapas del crecimiento de la planta, la planta puede morir (CABI, 2017).

En Estados Unidos *U. appendiculatus* afecta a los frijoles secos en el este de Colorado, el oeste de Nebraska y las regiones circundantes, causando epidemias periódicas en esta región durante los últimos 50 años. Las pérdidas recientes por la enfermedad han
superado el 50% en algunas áreas (Schwartz et al., 2008), y hasta un millón de dólares. En ciertos condados de Florida han alcanzado pérdidas del 40% al 80% de la producción.

González y García (1996) informaron que la roya de frijol en la zona de Velasco, la provincia de Holguín, en Cuba, ha causado pérdidas de rendimiento que alcanzan los 28-54%, 8-33% y 13-29% en cultivos ICA-Pijao, Velasco Largo y Bonita 11, respectivamente, y como resultado disminuyó el número de vainas por planta y el peso de la semilla (Citado por: CABI, 2017).

En Colombia, la roya de frijol está distribuida en todos los departamentos productores del frijol, su presencia se debe a la alta humedad relativa, siendo mucho mayor en las zonas y periodos donde las lluvias son continuas. Bajo estas condiciones, la disminución en la producción ha alcanzado más el 40% en variedades susceptibles (Rey y Lozano, 1961). Cardona (1958), registra pérdidas ocasionadas por el ataque de la enfermedad en las siguientes variedades: Sangretoro (44%), Higuerillo (36%), Panameño (35%), Estrada Rosado (34%), Sánchez (22%) y Liberino (15%) (Citado por: Rey y Lozano, 1961).

HOSPEDANTES

U. phaseoli afecta principalmente las plantas de la familia de las leguminosas (CABI, 2017) [Cuadro 3].

ASPETOS BIOLÓGICOS

DESCRIPCIÓN MORFOLÓGICA

La roya del frijol, está compuesta por ecios, uredos y telias. Los picnidios se forman en pequeños grupos, mientras que los ecios se forman en grupos numerosos y cupulados de hasta 8 mm de diámetro. Las eciosporas son angulares de forma elipsoidal y tienen la pared rugosa e hialina; miden 15-26 µm de diámetro. Los uredios están esparcidos irregularmente y tienen color canela. Las urediosporas son elipsoidales con la pared finamente equinulada de color pardo pálido; son unicelulares y miden 20-30 x 20-26 µm. Los telios son como los uredios pero casi negros. Las teliosporas son elipsoidales, unicelulares, con la pared de color pardo claro, con los pedicelos frágiles de color hialino a amarillo pálido y miden 28-38 x 20-36 µm (MYCOBANK, 2020) [Figura 2].

<table>
<thead>
<tr>
<th>Nombre científico</th>
<th>Nombre común</th>
<th>Familia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cajanus cajan</td>
<td>Frijol Chicharo</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Glicina máx</td>
<td>Soja</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Lablab purpureus</td>
<td>Frijol jacinto</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Phaseolus</td>
<td>Frijoles</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Phaseolus acutifolius</td>
<td>Frijol tepari</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Phaseolus coccineus</td>
<td>Frijol corredor</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Phaseolus lunatus</td>
<td>Frijol lima</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Phaseolus vulgaris</td>
<td>Frijol común</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vigna angularis</td>
<td>Haba adzuki</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vigna mungo</td>
<td>Frijol negro</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vigna radiata</td>
<td>Frijol verde</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vigna umbellata</td>
<td>Frijol de arroz</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vigna unguiculata</td>
<td>frijol cabecita negra</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vigna unguiculata subsp.</td>
<td>Sesquipedalis</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vigna vexillata</td>
<td>Dulce salvaje</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Voandzeia subterranea</td>
<td>Cacahuate bambara</td>
<td>Fabaceae</td>
</tr>
</tbody>
</table>

Requerimientos para su desarrollo
El desarrollo del patógeno de la roya del frijol es favorecido por temperaturas moderadamente frescas que van de 14 a 17 °C, con humedad relativa alta durante 8 a 10 horas, que dan lugar a periodos prolongado de roció en la superficie de la hoja durante prefloración y floración (Yero, 1998). Con mayor incidencia en zonas y en periodos donde las lluvias son continuas (Rey y Lozano, 1961). Las temperaturas mayores de 32°C pueden destruir al patógeno y menores de 15 °C retardan su desarrollo. En zonas secas la infección rara vez ocurre (Rio, 2003).

Ciclo de vida
U. phaseoli es un hongo que puede completar todo su ciclo de vida en la planta de frijol (roya autoica) y es macrocíclica porque tiene por lo menos dos o tres estados de esporas en su ciclo. El ciclo completo de la infección tiene una duración de 10 a 15 días aproximadamente. La enfermedad inicia a partir de la germinación de la teliospora que alcanza a sobrevivir a través del invierno, estas producen esporidios, las cuales son dispersadas por el viento e infectan las hojas tiernas de la planta de frijol. Bajo condiciones favorables de humedad, los esporidios germinan y su micelio se establece en los tejidos parenquimatosos de la hoja, como resultado de la infección aparecen los ecios que generan gran cantidad de eciosporas, estas son dispersadas y caen en otras hojas de la planta o en otras plantas, germinan y producen los uredos que forman las uredosporas. Las uredosporas diseminadas por el viento caen en otras hojas e inician nuevas infecciones con la producción de más uredos y uredosporas. La producción de uredosporas cesa hasta el final del periodo vegetativo de la planta y se inicia la formación de teliosporas de color marrón oscuro, que son esporas sexuales de reposo durante el invierno, al llegar la primavera las teliosporas germinan y producen esporidios, comenzando de nuevo el ciclo (Rey y Lozano, 1961) [Figura 3 y 4].

SÍNTOMAS Y DAÑOS
El hongo infecta a hojas, tallos y vainas, causando el mayor daño sobre las hojas. Los síntomas iniciales en las hojas son pequeños puntos blancos-amarillentos levantados, en el haz como el envés, los cuales crecen y rompen la epidermis, formando pústulas de 1 a 2 mm de diámetro, mostrando una gran cantidad de esporas como polvo rojizo. En algunos caso se presenta un halo de color amarillo alrededor de la pústula (Cabrera et al., 2012).

En las regiones en donde el patógeno completa todo su ciclo de vida, se puede observar al inicio de la enfermedad, un pequeño abultamiento de color blanco en la parte superior de las hojas jóvenes, posteriormente cambia de color por la germinación de las teliosporas dando lugar a los esporidios, las cuales germinan y penetran la epidermis del hospedante, provocando la infección. Observándose en las hojas puntos amarillentos que después de cuatro días de su aparición, presentan en el centro un punto de color oscuro, que se abre y libera un polvo rojizo o color ladrillo. Estos puntos se distribuyen por toda la hoja y en ocasiones presentan bordes amarillos (Ferrufino y Araya, 2008). Cuando la planta se acerca a la madurez, los puntos rojizos se vuelven negros. Ataque muy severos que pueden causar amarillamiento y caída de hojas (Ferrufino y Araya, 2008). La enfermedad se presenta en variedades criolla, sobre todo al sembrarlas en fechas tardías. Cuando la infección es muy severa o aparece temprano antes de la floración, puede ocurrir defoliación prematura con una disminución drástica en la formación y llenado de vainas, cuanto más jóvenes sean las vainas, más susceptibles serán al ataque del patógeno (Martínez et al., 2007). Los daños en las vainas reducen también la calidad de frijol para su consumo verde (Knudsen, 2000) [Figura 5, 6, 7 y 8].

Figura 6. Síntomas y daños en hojas de frijol por *U. appendiculatus* (*U. phaseoli*). Crédito: Brick, 2018; Calderón, 2018; Holmes, 2018; Schwartz, 2018; Seethapathy, 2018; Watt, 218.

ASPECTOS EPIDEMIOLÓGICOS

Dispersión
El viento es el factor principal para la diseminación de las uredosporas, las transporta a tejidos no infectados, donde inician nuevas pústulas. También puede ser diseminado por el hombre, los animales, las herramientas agrícolas y por gotas de agua. Este hongo no es transmitido por semillas (Cabrera et al., 2012).

Sobrevivencia
El hongo sobrevive en los restos de cosechas, tutores, plantas de frijol, o malezas, de donde se disemina muy rápidamente por el viento (Ferrufino y Araya, 2008). Si las condiciones climáticas son favorables a la roya, el ciclo de aparición de nuevas pústulas se puede repetir varias veces durante la época en que el frijol está en el campo y las uredósparas pueden sobrevivir aproximadamente 60 días. Algunas veces la incidencia de la roya del frijol es menor en monocultivos de frijol que en asociaciones con maíz, posiblemente se deba a la mayor humedad relativa que se alcanza en este agroecosistema (Cabrera et al., 2012; CIAT, 1980).

En los países con las cuatro estaciones, el hongo sobrevive la época invernal en forma de telioporas, que son esporas sexuales de reposo (Rey y Lozano, 1961).

METODOS DE DETECCIÓN/DIAGNÓSTICO

Pruebas de patogenicidad:

Uromyces phaseoli es un parasito obligado, por lo tanto, las pruebas de patogenicidad se llevan a cabo, inoculando uredosporas recolectadas en campo, mediante aspersión en plantas sanas susceptibles a la enfermedad. Después de la apertura de los uredos, obtenidos por la infección de la primera inoculación, se recolecta las uredosporas y se usan para una segunda inoculación. Las esporas obtenidas de esta inoculación se emplean en una tercera (Rey y Lozano, 1961).

Para la recolecta de uredosporas de las hojas infectadas que se traen de campo, en laboratorio se sacuden las hojas sobre un tamiz de 0.355 mm, que permite que las esporas pasen a través del tamiz pero retiene el suelo contaminante y otros desechos. Estas esporas se pueden conservar a -72° para su almacenamiento a largo plazo y conservar su viabilidad. Otras se conservan a -4°C hasta -15°C si la inoculación será en poco tiempo (McMillan, 2003).

La inoculación de esporas de *U. phaseoli* en hojas de frijol en cajas Petri, agregando soluciones azucaradas al 5% y esparciendo el inoculo con pelos de camello, dieron buenos resultados para su desarrollo (Dundas y Scott, 1939). Yarwood (1948), estudió la germinación de las uredosporas en medios nutritivos con
agar, agar y sacarosa, permanganato de potasio y otros. Obteniendo hasta el desarrollo del tubo germinativo de las esporas sembradas. Naito (1953), determina la influencia de la temperatura en la germinación de uredosporas del patógeno. Sempio (1949), estudió la influencia de ciertos monos y disacáridos en el desarrollo del hongo, inoculadas en hojas, colocadas en cajas Petri, concluyendo que si el caldo nutritivo tiene glucosa, levadura y sacarosa, el ataque del hongo es fuerte, si contiene galactosa, lactosa y xylosa, manosa y maltosa el ataque es moderado; si contiene arabinosa y sorbosa, el ataque es generalmente débil y si es agua solamente, es muy leve.

Rey y Lozano (1961), evaluaron tres métodos de inoculación (aspersión, pelos de camello y espolvoreo) en pruebas de patogenecidad en plantas de frijol, siendo el de aspersión con uredosporas suspendidas en agua destilada, tanto en plantas en macetas como en hojas en caja petri, la que dio mejores resultados. Mediante estas pruebas de patogenecidad demostraron que las lesiones iniciales de la enfermedad, representadas por puntos cloróticos, aparecen después del quinto y sexto día de efectuada la inoculación; la formación de los uredos ocurren entre el octavo y noveno día, alcanzando su máximo desarrollo a los 14 días después de la inoculación.

METODO DE MUESTREO

En el cultivo de frijol se requiere efectuar muestreos de campo cada siete días, iniciando en la etapa fenológica V4 (tercera hoja trifoliada) hasta la etapa R8 (llenado de vainas) (Cabrera et al., 2012). Cabrera et al., (2016), realizaron muestreos de 20 plantas de frijol al azar, ubicadas en los surcos centrales de cada parcela, para determinar el grado de ataque, número y diámetro de pústulas de U. phaseoli en las hojas, para evaluar la intensidad de la infección y distribución de la roya.

La escala utilizada regularmente para evaluar la incidencia de diferentes enfermedades del frijol, en este caso, la roya del frijol es la recomendada por Van Shoonhoven y Pastor Corrales (1987), que varía de 1 a 9, donde 1 corresponde a síntomas no visibles o muy leves y el 9 cuando la planta presenta síntomas severos (Vargas, 2000) [Cuadro 4].
Cuadro 4. Escala estándar para la evaluación de incidencia de la Roya del frijol. Crédito: CIAT, 1987.

<table>
<thead>
<tr>
<th>Grado</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ausencia a simple vista de pústulas de roya</td>
</tr>
<tr>
<td>3</td>
<td>Presencia, en la mayoría de las plantas, de solo unas pústulas, por lo regular pequeñas, que cubren aproximadamente el 2% del área foliar.</td>
</tr>
<tr>
<td>5</td>
<td>Presencia, en todas las plantas, de pústulas generalmente pequeñas o intermedias que cubren aproximadamente el 5% del área foliar.</td>
</tr>
<tr>
<td>6</td>
<td>Presencia de pústulas generalmente grandes y rodeadas, generalmente, de halos cloróticos que cubren aproximadamente el 10% del área foliar.</td>
</tr>
<tr>
<td>9</td>
<td>Presencia de pústulas grandes y muy grandes, con halos cloróticos que cubren aproximadamente el 25% del área foliar y causan defoliación prematura.</td>
</tr>
</tbody>
</table>

MANEJO FITOSANITARIO

Cultural

Se recomienda la realización de una buena preparación del suelo, la rotación de cultivo, eliminación oportuna de restos de cosecha, adecuada densidad de plantas y siembra en el momento óptimo para cada territorio, con el objetivo de evitar la incidencia del hongo patógeno en el periodo crítico del cultivo (fase de prefloración y floración). Otras prácticas que pueden ser utilizadas comprenden el manejo de variedades resistentes o tolerantes, adecuada fertilización, riego adecuado y eliminación de malezas en el cultivo y sus alrededores (Martínez et al., 2007). Cuando se hace un espaciamiento apropiado entre plantas y se mantiene el campo limpio de malezas se consigue una adecuada aireación, lo cual impide que alrededor de las plantas la atmósfera se sature de humedad, especialmente durante la estación lluviosa, condición que favorece el ataque. Ademá, la erradicación de las malezas antes del siguiente ciclo de cultivo, es una estrategia adicional importante para el manejo, porque previene que se complete el ciclo sexual, reduciendo el número de razas del hongo (López et al., 2002).

Se recomienda incorporar al suelo los residuos de plantas enfermas inmediatamente después de la cosecha para evitar la formación de esporas de invierno. La rotación de cultivos con cereales como avena o maíz por lo menos durante dos años (Mena y Velázquez, 2010). El frijol no debe sembrarse en áreas en donde el período anterior hubo un cultivo de frijol altamente infectado, ni cerca de cultivos que hayan presentado roya (CIAT, 1980). Bajo condiciones de riego pueden ajustarse las fechas de siembra para evitar que el cultivo se exponga a largos periodos con rocío que favorecen la
enfermedad. Es importante considerar que las plantas que sufren ataques moderados a severos de roya requieren ser suministradas con el doble de humedad para mantener el mismo rendimiento que las plantas sanas (Mena y Velazques, 2010).

Genético

En México los trabajos de mejoramiento del frijol común han sido prioritarios, principalmente los relacionados a la formación de variedades con resistencia a enfermedades en los principales tipos comerciales. De las variedades generadas, 30 son las más utilizadas de un total de 200 tipos diferentes de frijol común apreciados en los sistemas tradicionales de producción en México y 16 variedades son resistentes a roya del frijol y tienen genes de resistencia Ur3 y Ur5, tales como INIFAP-2, INIFAP-30, INIFAP-46, INIFAP-57, INIFAP-76, INIFAP-84, INIFAP-96, INIFAP-102, INIFAP-110, INIFAP-115, INIFAP-154, INIFAP-171, INIFAP-200, INIFAP-201, INIFAP-11 y INIFAP-25 (Vargas, 2000).

En el trópico húmedo de México, el uso de variedades resistentes o tolerantes a la roya ha sido la mejor opción para el control de la enfermedad, pero debido a la variación patogénica del hongo y a la formación de nuevas razas, algunas variedades han ido perdiendo la resistencia (Becerra et al., 1995). En Zacatecas las variedades recomendadas por el INIFAP para el área de temporal son susceptibles a esta enfermedad (Mena y Velazques, 2010). La respuesta varietal del frijol a la roya puede sufrir algunas variaciones entre localidades y entre años, dependiendo de la diversidad de patotipos de este hongo, como lo demuestra el estudio realizado en el Vivero Internacional de la Roya de Frijol (CIAT, 1979).

Investigaciones realizadas por diferentes investigadores en Cuba, tales como Hernández et al. (1995), encontraron que el cultivar rojo moteado Guamá 23 presentó resistencia a la roya; Quintero (2000), informó las variedades BAT 482, BAT 58 y CIAP 7247 con un comportamiento “sobresaliente” y las variedades CIAP 24, BAT 93, Rosas, BAT 304 y Mulangri 112 con comportamiento “bueno” en siembras tardías. Bernal et al. (2004), mencionaron la variedad Mulangri-112 como inmune y las variedades ICA Pijao, CIAP-7247, Turialba-4 y BAT-202 como resistentes a la infección por U. phaseoli en experimentos realizados en la época tardía en el municipio de Santa Clara, provincia de Villa Clara; Yero et al., (2005), indican a la variedad Tomeguín 93 y Cut-53 con resistencia intermedia al ataque de la roya, en siembras realizadas en época tardía en Cienfuegos. Cabrera et al., (2016), estudiaron la respuesta de 25 variedades de frijol común a la infección por Uromyces phaseoli var. typica en la época tardía en Cuba, utilizando dos metodologías informadas por el Centro Internacional de
Agricultura Tropical, CIAT (1979), la cual tiene en cuenta el tipo de pústula e intensidad de la infección y CIAT (1987), que combina el porcentaje del área foliar afectada y el tipo de pústula. Encontrando que la metodología CIAT (1979) (Cuadro 5 y 6), es la más factible para evaluar la resistencia a la roya del frijol, conforme a los resultados obtenidos (Cuadro 7).

Cuadro 5. Escala de incidencia para la evaluación de resistencia a roya del frijol conforme CIAT (1979). Crédito: CIAT, 1979.

<table>
<thead>
<tr>
<th>Grado</th>
<th>Descripción*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0% de afectación del área foliar</td>
</tr>
<tr>
<td>2</td>
<td>5% de afectación del área foliar</td>
</tr>
<tr>
<td>3</td>
<td>10% de afectación del área foliar</td>
</tr>
<tr>
<td>4</td>
<td>50% de afectación del área foliar</td>
</tr>
<tr>
<td>5</td>
<td>>50% de afectación del área foliar</td>
</tr>
</tbody>
</table>

*Incidencia (% de infección)

Cuadro 6. Tipos de pústula de roya del frijol para la evaluación de resistencia, conforme CIAT (1979). Crédito: CIAT, 1979.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Característica de las pústulas</th>
<th>Categoría</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sin evidencias de infección</td>
<td>Inmune</td>
</tr>
<tr>
<td>2</td>
<td>Manchas necróticas sin esporulación</td>
<td>Resistente</td>
</tr>
<tr>
<td>3</td>
<td>Con pústulas formadas, pero con un diámetro menor de 300 micras</td>
<td>Moderadamente resistente</td>
</tr>
<tr>
<td>4</td>
<td>Pústulas formadas con un diámetro de 300-500 micras.</td>
<td>Moderadamente susceptible</td>
</tr>
<tr>
<td>5</td>
<td>Pústulas formadas con un diámetro mayor de 500 micras y frecuentemente rodeadas por halo cloróticos</td>
<td>Susceptible</td>
</tr>
</tbody>
</table>

Cuadro 7. Repuesta de las variedades comerciales de frijol a *U. phaseoli* por las metodologías de evaluación. Crédito: Cabrera *et al.*, 2012.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Color del grano</th>
<th>Metodología</th>
<th>CIAT 1979</th>
<th>CIAT 1987</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIAP 24</td>
<td>Jaspeado grande</td>
<td>Susceptible</td>
<td></td>
<td>Resistente</td>
</tr>
<tr>
<td>BAT 304</td>
<td>Negro pequeño</td>
<td>Susceptible</td>
<td></td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>Varietales</td>
<td>Color</td>
<td>Tamaño</td>
<td>Resistencia</td>
<td>Sensibilidad</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Delicias 364</td>
<td>Rojo pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Cuba Cueto 25-9B</td>
<td>Blanco pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Resistente</td>
</tr>
<tr>
<td>BAT 58 (Tazumal)</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>BAT 93 (Engañador)</td>
<td>Crema pequeño</td>
<td></td>
<td>Intermedio</td>
<td>Resistentes</td>
</tr>
<tr>
<td>Holguín 518</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>BAT 482</td>
<td>Blanco pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Resistente</td>
</tr>
<tr>
<td>Cuba Cueto 25-9R</td>
<td>Rojo pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>Rad Kloud</td>
<td>Rojo grande</td>
<td></td>
<td>Intermedio</td>
<td>Resistente</td>
</tr>
<tr>
<td>INIVIT Puntublanco</td>
<td>Jaspeado grande</td>
<td></td>
<td>Intermedio</td>
<td>Resistente</td>
</tr>
<tr>
<td>Velasco Largo</td>
<td>Rojo grande</td>
<td></td>
<td>Susceptible</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Cuba Cueto 25-9N</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>Guamá 23</td>
<td>Jaspeado grande</td>
<td></td>
<td>Inmune</td>
<td>Inmune</td>
</tr>
<tr>
<td>BAT 832</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>Mulangri 112</td>
<td>Jaspeado mediano</td>
<td></td>
<td>Susceptible</td>
<td>Resistente</td>
</tr>
<tr>
<td>Rosas</td>
<td>Rojo grande</td>
<td></td>
<td>Susceptible</td>
<td>Resistente</td>
</tr>
<tr>
<td>Wacute</td>
<td>Crema pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>Hatuey 24</td>
<td>Rojo pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Bolita 42</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>CIAP 7247</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>Milargo Villaclareño</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Lengua de fuego</td>
<td>Jaspeado mediano</td>
<td></td>
<td>Susceptible</td>
<td>Resistente</td>
</tr>
<tr>
<td>Güira 89</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Muy susceptible</td>
</tr>
<tr>
<td>ICA Pijao</td>
<td>Negro pequeño</td>
<td></td>
<td>Susceptible</td>
<td>Resistente</td>
</tr>
</tbody>
</table>

Las variedades resistentes en un lugar o año no necesariamente lo son en otro. La mayoría de las variedades son resistentes solo a una raza del patógeno; sin embargo, se han identificado variedades resistentes a un gran número de razas. Es muy importante evitar sembrar una sola variedad de frijol en un área grande porque pueden no existir razas del patógeno que ataquen y destruyan el cultivo en toda el área sembrada (Bonilla, 2000).
Extractos vegetales con actividades antifungicas

El empleo de extractos vegetales para el control de plagas y enfermedades en el marco de una agricultura sostenible constituye una alternativa promisoria, por su elevada efectividad, bajo costo y ser menos contaminantes del ambiente (Cabrera et al., 2012). Cabrera et al., (2016), mencionan que los extractos acuosos de hojas y flores del Tulipán africano (*Spathodea campanulata*), mostraron actividad antifúngica contra *Uromyces phaseoli* Pers. (Wint) var. typica sobresaliendo los resultados alcanzados con los extractos acuosos al 10 %, de hojas y flores (Figura 9). Cabrera et al., (2012), evaluaron los extractos acuosos de *H. rosa-sinensis*, *H. elatus* y *S. campanulata*, los cuales mostraron actividad antifúngica contra *U. phaseoli*. El mejor control sobre la roya del frijol y rendimiento agrícola del cultivo en condiciones de campo se obtuvo al emplear el extracto acuoso de *H. rosa-sinensis* (Figura 9).

Químico

El control químico es más efectivo durante las etapas iniciales del ataque. Se han reportado buenos resultados en el control de la roya del frijol tanto con fungicidas protectantes como con sistémicos. En general, los protectantes tales como Daconil (Bravo o cloratalonil) no son tan eficientes en áreas con lluvias frecuentes que tienden a lavar el fungicida impregnado en las plantas. Una gran cantidad de agroquímicos se utilizan en el control de éste patógeno; sin embargo, los que están autorizados para su uso en el cultivo de frijol se pueden observar en COFEPRIS (Cuadro 8).

Para poder tomar una decisión sobre el control químico en frijol se requiere efectuar muestreos de campo cada siete días, iniciando en la etapa fenológica V4 (tercera hoja trifoliada) hasta la etapa R8 (llenado de vainas). Para medir el daño de la plaga se usará la escala 1-9; cuando una observación de campo de en promedio el nivel 3, será indicado aplicar el control químico (Cabrera et al., 2012).

<table>
<thead>
<tr>
<th>Fungicidas</th>
<th>Grupo químico</th>
<th>Registro</th>
<th>Nombre comercial</th>
<th>Cultivos autorizados</th>
<th>Dosis recomendada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clorotalonil</td>
<td>Cloronitrilos</td>
<td>RSCO-FUNG-0309-003-002-075</td>
<td>DACONIL 2787 W-75%</td>
<td>Pío, brócoli, cacahuate, cacao, cafeto, calabacita, calabaza, cebolla, cempasúchil, césped, chabacano, col, col de bruselas, coliflor, crisantemo, durazno, frijol, frijol ejotero, jitomate, maíz y melón</td>
<td>1.5-2.5 Kg/Ha</td>
</tr>
<tr>
<td></td>
<td>Cloronitrilos</td>
<td>RSCO-FUNG-0309-432-034-083</td>
<td>BRAVO ULTREX</td>
<td>Brócoli, calabacita, calabaza, col, col de bruselas, coliflor, frijol, frijol ejotero, jitomate, melón, papa, pepino, rosal, sandía y soya</td>
<td>1.25 - 1.8 Kg/ha</td>
</tr>
</tbody>
</table>

LITERATURA CITADA

CIAT. 1979. Vivero Internacional de Roya del Frijol. Cali, Colombia, 19pp.

CIAT. 1980. La roya del frijol y su control. Guía de estudio Serie 04 5B -06.06. Cali. Colombia: 5-17.

CIAT. 1987. Sistema estándar para la evaluación de germoplasma de Frijol. Cali, Colombia, 55pp.

CIPF. 2017. Norma Internacional para Medidas Fitosanitarias (NIMF) No. 8 Determinación de...

Laboratorio sistemático de micología y microbiología; Fondo Mundial para la Información sobre la Diversidad Biológica; Natalista; Storey, Malcolm, 2020. *Uromyces appendiculatus*. The Polistes Corporation. En línea:
https://www.discoverlife.org/mp/20m?kind=Uromyces+appendiculatus&m_i=t&m_order=0.
Fecha de consulta: agosto de 2020.

Yarwood CE. 1948. Germ tube growth of some obligate parasites on agar media. Abs. in Phytopath. 38: 920.

Forma recomendada de citar:

Nota: Las imágenes contenidas son utilizadas únicamente con fines ilustrativos e informativos, las cuales han sido tomadas de diferentes fuentes otorgando los créditos correspondientes.
DIRECTORIO

Secretario de Agricultura y Desarrollo Rural
Dr. Víctor Manuel Villalobos Arámbula

Director en Jefe del Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria
Dr. Francisco Javier Trujillo Arriaga

Director General de Sanidad Vegetal
Ing. Francisco Ramírez y Ramírez

Director del Centro Nacional de Referencia Fitosanitaria
M.C. Guillermo Santiago Martínez