55.3 Energy Storage at utility scale as an enabler for CO₂ Mitigation

Appendix A

October, 2020

Danish Energy

Directory

María Amparo Martínez Arroyo, PhD General Director, National Institute for Ecology and Climate Change

Elaboration, edition, review and supervision:

Claudia Octaviano Villasana, PhD General Coordinator for Climate Change Mitigation Eduardo Olivares Lechuga, Eng. Director of Strategic Projects in Low Carbon Technologies Roberto Ulises Ruiz Saucedo, Eng. Dr. Deputy Director of Innovation and Technology Transfer Erick Rosas Lopez, Econ. Department of Mitigation Methodologies in the Energy, Transport and Industrial Processes Sectors Loui Algren, M.Sc. Adviser, Denmark Energy Agency Amalia Pizarro Alonso, PhD Adviser, Mexico-Denmark Partnership Program for Energy and Climate Change

This report is part of the study:

Technology Roadmap and Mitigation Potential of Utility-scale Electricity Storage in Mexico

Drafted by:

Mtro. Søren Storgaard Sørensen Adviser in Global Cooperation at the Danish Energy Agency Dra. Amalia Pizarro Alonso Adviser, Mexico-Denmark Partnership Program for Energy and Climate Change Erick Rosas López. Econ., INECC

Commissioned by INECC with support of the Mexico-Denmark Program for Energy and Climate Change

D.R. © 2020 National Institute for Ecology and Climate Change Blvd. Adolfo Ruíz Cortines 4209, Jardines en la Montaña, Ciudad de México. 14210 http://www.gob.mx/inecc

Appendix A – Detailed input data and assumptions

Technology costs and learning rates

Table A.1 and Figure A.1 contain key technical and financial data for power generation technologies available for investment. All financial terms are in 2018 USD.

Table A.1. Power generation technologies. The investment cost for wind, solar and Li-Ion follow a learning
curve as described in Figure A.1. *CAPEX is described both in kUSD/MW and kUSD/MWh

Technology Type	CAPEX	Fixed O&M	Variable O&M	Efficiency	Economica I lifetime
Units	(kusd/mw)	(USD/kW/year)	(USD/MWh)	(%)	(years)
Biomass Sugar Cane	2012	44.12	3.92	35.64	30
Biomass Wood Waste	2012	44.12	3.92	35.64	30
Biomass Biogas	3017	33.44	3.18	42.35	25
Combined Cycle Gas turbine	960	15.69	2.76	49.45	30
Cogeneration Sugar Cane	2012	44.12	3.92	35.64	30
Cogeneration Biogas	2765	62.35	8.09	42.35	25
Cogeneration Diesel	800	5	4.7	22.50	30
Cogeneration Natural Gas	777.21	15.69	2.76	48.65	30
Engine Fuel oil	3017	33.44	3.18	42.35	25
Engine Diesel	3017	33.44	3.18	42.35	25
Engine Natural Gas	3017	33.44	3.18	42.35	25
Wind	See X	37.5		100.00	25
Geothermal	See X	82.28	0.05	100.00	30
Hydro run-of-river	1900	30.34		100.00	40

Technology Type	CAPEX	Fixed O&M	Variable O&M	Efficiency	Economica I lifetime
Hydro reservoir	1900	17.92		100.00	40
Coal Fluidized bed	1415	34.03	2.45	30.00	40
Nuclear	3924	99.45	2.38	34.62	40
Solar PV	See X	10.5		10.00	30
Gas Turbine Natural Gas	800	5	4.7	40.91	30
Gast Turbine Diesel	800	5	4.7	40.91	30
Battery Li-ion	See X	0.6	2	95.00	25
Pumped Hydro Storage*	840/23	15.4	2	80	60

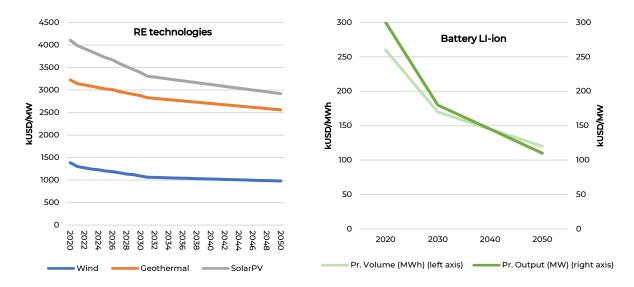


Figure A.1. Investment costs of wind, solar and geothermal (left) and Li-Ion Batteries (right).

Due to geographical constraints, investments in hydropower, geothermal, coal power, nuclear power and biomass from sugar cane are only allowed in certain regions according to Table A.2, based on resource availability. Pumped hydro storage is only allowed in regions with existing hydro dams.

Table A.2. Technologies that are geographically limited. The technologies listed are only available in the
below regions. Sources: SENER (2018) and SENER-CFE (2018).

Hydro run-of- river	Hydro Reservoir	Geothermal	Coal fluidized bed	Nuclear	Biomass sugar cane/Cogeneration Sugar cane
Culiacan	Veracruz	Aguascalientes	Rio Escondido	Hermosillo	Campeche
Guadalajara	Grijalva	Carapan		Huasteca	Guadalajara
Tabasco	Acapulco	Chihuahua		Veracruz	Manzanillo
Grijalva	Chihuahua	Durango		La Paz	Puebla
Tabasco	Теріс	Ensenada			Temascal
Tijuana		Grijalva			
Poza_Rica		Guadalajara			
Veracruz		Mexicali			
Mazatlan		Obregón			
Central		Poza Rica			
Hermosillo		Puebla			
Puebla		Querétaro			
		Salamanca			
		Теріс			

Wind and solar potential

The wind resource potential in each transmission region has been identified by using the Mexican Renewable Energy Atlas AZEL (SENER, CFE, 2018), where the available potential, in terms of maximum installed capacity, has been identified as well as the capacity factor associated to it, using the so-called "Scenario 2" of the Atlas (see Figure A.2). The hourly profiles have been estimated through re-analysis data of Merra-2 (Renewables.ninja, 2017) by using wind speed time-series at a height of 100 m and the power curve from the latest Vestas wind turbine (3MW) as well as micro-localization defined in AZEL for siting the wind farms, ensuring the consistency between the capacity factor reported in AZEL and the one estimated through re-analysis data.

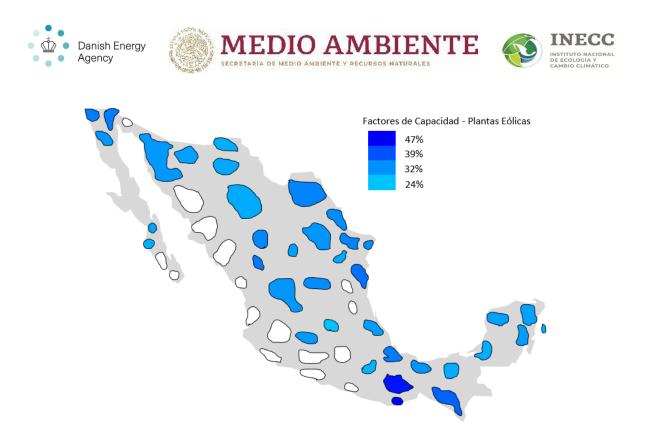


Figure A.2. Wind capacity factor per region

The capacity factor for solar PV in Mexico as well as the maximum installed capacity that could be potentially achieved in the "Scenario 2" of the Mexican RE Atlas AZEL were fed into the Balmorel model (see Figure A.3). The hourly profiles were estimated by re-analysis data of Merra-2 by using satellite data on global irradiation and temperature (Renewables.ninja, 2017).

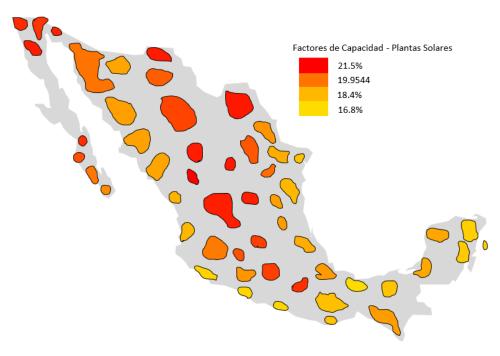
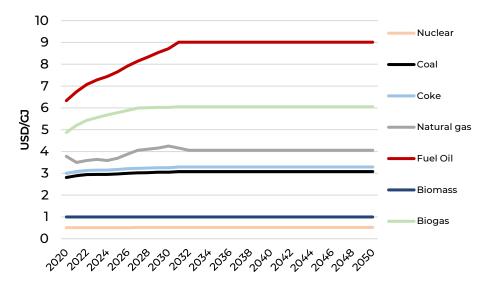


Figure A.3. Solar capacity factor per region

Table A.3. Full load hours (FLH) and capacity factor per transmission region for wind, solar (existing capacity). Note that small hydro has region specific FLHs while large hydro generators have plant specific information.

	Wind (FLH)	Solar (FLH)	Wind (Cap)	Solar (Cap)
Hermosillo	2,705	1,748	31%	20%
Nacozari	2,605	1,655	30%	19%
Obregón	-	1,667	-	19%
Los Mochis	-	1,664	-	19%
Culiacán	-	1,656	-	19%
Mazatlán	-	1,615	-	18%
Juárez	2,432	1,860	28%	21%
Moctezuma	2,503	1,780	29%	20%
Chihuahua	2,487	1,815	28%	21%
Durango	3,047	1,886	35%	22%
Laguna	2,897	1,858	33%	21%
Río Escondido	2,926	1,863	33%	21%
Nuevo Laredo	2,864	1,694	33%	19%
Reynosa	2,935	1,637	34%	19%
Matamoros	2,815	1,578	32%	18%
Monterrey	2,739	1,792	31%	20%
Saltillo	2,609	1,863	30%	21%
Valles	-	1,666	-	19%
Huasteca	3,149	1,606	36%	18%
Tamazunchale	-	1,673	-	19%
Güémez	2,508	1,760	29%	20%
Теріс	-	1,606	-	18%
Guadalajara	-	1,737	-	20%
Aguascalientes	2,720	1,856	31%	21%
San Luis Potosí	2,831	1,856	32%	21%
Salamanca	2,695	1,800	31%	21%
Manzanillo	-	1,520	-	17%
Carapán	-	1,689	-	19%
Lázaro Cárdenas	-	1,508	-	17%
Querétaro	2,144	1,821	24%	21%
Central	-	1,821	-	21%
Poza Rica	2,624	1,634	30%	19%
Veracruz	3,025	1,679	35%	19%
Puebla	2,343	1,836	27%	21%
Acapulco	-	1,504	-	17%
Temascal	3,942	1,583	45%	18%
Coatzacoalcos	2,758	1,472	31%	17%
Tabasco	2,458	1,571	28%	18%



	Wind (FLH)	Solar (FLH)	Wind (Cap)	Solar (Cap)
Grijalva	3,277	1,673	37%	19%
lxtepec	4,095	1,578	47%	18%
Campeche	2,433	1,646	28%	19%
Mérida	2,609	1,653	30%	19%
Cancún	2,597	1,531	30%	17%
Chetumal	2,638	1,548	30%	18%
Cozumel	2,425	1,537	28%	18%
Tijuana	3,021	1,843	34%	21%
Ensenada	2,714	1,858	31%	21%
Mexicali	3,021	1,833	34%	21%
San Luis Río Colorado	-	1,854	-	21%
Villa Constitución	2,387	1,800	27%	21%
La Paz	-	1,743	-	20%
Los Cabos	-	1,707	-	19%
Mulegé	2,594	1,840	30%	21%

Fuel prices

Fuel prices in the model are based on (SENER, 2019) with individual prices per regions. After 2030, fuel prices are kept constant. The projection of diverse fuel prices is shown for the Central region in Figure A.4. The fuel prices for coal, natural gas, fuel oil and light oil differ by region as shown, for natural gas and fuel oil, in Figure A.5

Figure A.4. Fuel price projections in the Central region 2020-2050, including fuel transport costs towards the region. Fuel prices are assumed to be constant after 2030. Fuel prices are taken from Prodesen 2019-2033 and fuel transport cost from Prodesen 2018-2032.

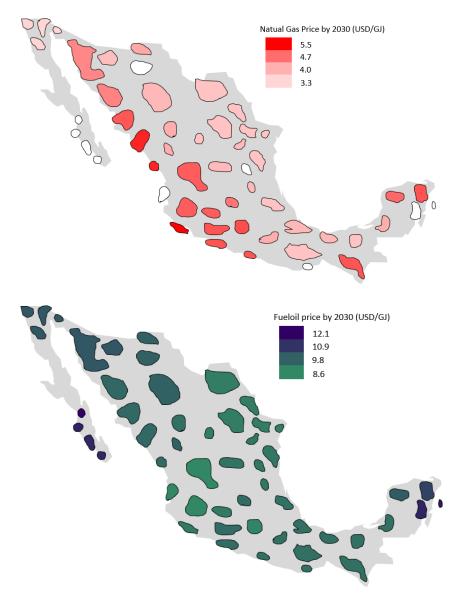


Figure A.5. Estimated Natural gas (top) and fuel oil (bottom) prices by 2030, adapted from Prodesen 2019-2033 (fuel price) and Prodesen 2018-2032 (fuel transmission/transport cost). The areas in white reflect that it is not predicted to have natural gas fuel availability by 2030.

Transmission system

The starting point of the interconnected grid within Mexico is all existing and committed interconnectors. In the Balmorel model used in this report, the country is divided into 53 transmission regions, which are equivalent to the PRODESEN regions. These regions are

connected through a transmission grid of existing and committed interconnectors, as well as the possibility to expand it through endogenous optimization of the transmission capacity.

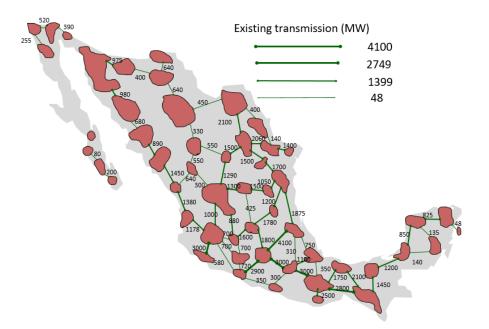
Committed interconnectors are projects that are under construction or projects that are decided and financed or are planned with a very high likelihood of being realized. The table below shows a list of existing and committed interconnectors as found in (SENER, 2019). These committed interconnection projects and their net transmission capacities will be considered as firm capacity just as existing interconnectors, after being operational.

To/From	From/To	Existing *	Committed **	Online
		(MW)	(MW)	(Year)
Acapulco	Puebla	300		
Aguascalientes	Salamanca	880		
Nacozari	Hermosillo	975		
Nacozari	Moctezuma	400		
Cancun	Cozumel	48	146	2021
Carapan	Salamanca	700		
Chihuahua	Laguna	330		
Coatzacoalcos	Temascal	1,750		
Culiacan	Los_Mochis	890	810	2019
Durango	Aguascalientes	300		
Durango	Mazatlan	640		
Grijalva	Coatzacoalcos	2,100		
Grijalva	Tabasco	1,450		
Grijalva	Temascal	2,800		
Guadalajara	Aguascalientes	1,000		
Guadalajara	Carapan	700		
Guadalajara	Lazaro_Cardenas	580		
Guadalajara	Salamanca	700		
Guemez	Monterrey	1,500	300	2019
Hermosillo	Obregon	980	280	2018
Huasteca	Guemez	1,700	100	2019
Huasteca	Tamazunchale	1,200		
Huasteca	Valles	1,050		
Huasteca	Poza_Rica	1,875		
Ixtepec	Temascal	2,500		
Juarez	Moctezuma	640	325	
Laguna	Durango	550		
Laguna	Saltillo	550		
La_Paz	Los_Cabos	200		
Lazaro_Cardenas	Acapulco	350		

Table A.4. Existing and committed interconnectors (MW). "Online" is the year when the committedprojects are expected to be operational.

To/From	From/To	Existing *	Committed **	Online
Lazaro_Cardenas	Carapan	720		
Lazaro_Cardenas	Central	2,900		
Campeche	Chetumal	140		
Campeche	Merida	850		
Manzanillo	Guadalajara	3000		
Matamoros	Reynosa	1,400		
Mazatlan	Culiacan	1,450		
Mazatlan	Теріс	1,380		
Merida	Cancun	825		
Merida	Chetumal	135		
Mexicali	San_Luis_Rio_Colorado	390		
Moctezuma	Chihuahua	640	175	2019
Monterrey	Saltillo	1,500	100	2019
Obregon	Los_Mochis	680	550	2019
Poza_Rica	Central	4,100		
Poza_Rica	Puebla	310		
Puebla	Central	3,000	2,500	2022
Queretaro	San_Luis_Potosi	425		
Queretaro	Central	1,800		
Reynosa	Monterrey	2,060	750	2022
Reynosa	Nuevo_Laredo	140		
Rio_Escondido	Chihuahua	450		
Rio_Escondido	Monterrey	2,100		
Rio_Escondido	Nuevo_Laredo	400		
Salamanca	Queretaro	1,600		
Saltillo	Aguascalientes	1,290	210	2019
San_Luis_Potosi	Aguascalientes	1,300		
Tabasco	Campeche	1,200		
Tamazunchale	Queretaro	1,780		
Temascal	Puebla	3,000		
Теріс	Guadalajara	1,178		
Tijuana	Ensenada	255		
Tijuana	Mexicali	520	480	2022
Valles	San_Luis_Potosi	1,500		
Veracruz	Poza_Rica	750		
Veracruz	Puebla	1,100		
Veracruz	Temascal	350		
Villa_Constitucion	La_Paz	80	760	2023
Mulege * Existing in 2017	Villa_Constitucion		180	2023

* Existing in 2017 ** Capacity additional to the existing capacity



INECC

NSTITUTO NACIONAL

The figure below shows a map of Mexico with all existing (upper) and committed interconnectors (lower).

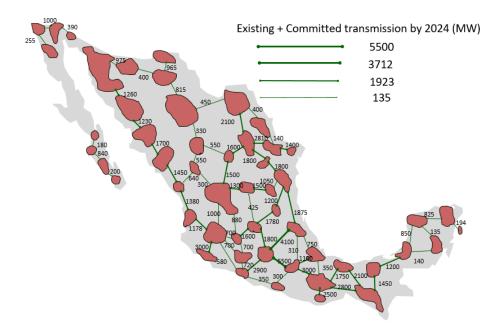


Figure A.6. Existing (2017, top) and Existing + committed (bottom) interconnectors in Mexico (MW).