Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base

Informe Final

Coordinación General de Crecimiento Verde

2017
Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base

Directorio

Instituto Nacional de Ecología y Cambio Climático (INECC – SEMARNAT)
Dra. María Amparo Martínez Arroyo
Directora General

Coordinación General de Crecimiento Verde (CGCV - INECC – SEMARNAT)
Mtro. Miguel Gerardo Breceda Lapeyre

Revisión:

Mtra. María del Pilar Salazar Vargas
Mtro. Carlos Matías Figueroa
Mtro. Dante Guillermo Ruiz Martínez

Elaboración de informe final:

José Alberto Lara Pulido
Consultor

Forma de citar:

D.R. © 2017 Instituto Nacional de Ecología y Cambio Climático
Periférico Sur 5000, Col. Insurgentes Cuicuilco
C.P. 04530, Delegación Coyoacán, México, Ciudad de México
http://www.gob.mx/inecc
Contenido

ACRÓNIMOS .. 13

GLOSARIO ... 15

CAPÍTULO I. IDENTIFICACIÓN Y DESCRIPCIÓN EL ENFOQUE METODOLÓGICO ... 18

I.1. CONTEXTO .. 18

I.2. MARCO TEÓRICO .. 18
 I.2.1. Definiciones y conceptos ... 19

I.3. MODELACIÓN ECONÓMICA .. 22
 I.3.1. Los consumidores ... 22
 I.3.2. Los productores .. 23
 I.3.3. El gobierno ... 25
 I.3.4. Solución al modelo de equilibrio general .. 26
 I.3.5. Extensiones al modelo de equilibrio general ... 27
 I.3.5.1. Modelos dinámicos ... 27
 I.3.5.2. Economía abierta .. 27

I.4. ENFOQUES METODOLOGICOS DE MODELACIÓN NO CONVENCIONALES ... 27
 I.4.1. Modelos Basados en Agentes .. 28
 I.4.2. Modelos biofísicos ... 29

I.5. INSTRUMENTACIÓN DE LOS MODELOS ECONÓMICOS ... 29

I.6. ENTREVISTAS A EXPERTOS ... 33
I.6.1 Elementos relevantes de la entrevista con Alejandra Elizondo .. 34
I.6.2 Elementos relevantes de la entrevista con George Dyer ... 36
I.6.3 Elementos relevantes de la entrevista con María Eugenia Ibarrarán .. 37
I.6.4 Elementos relevantes de la entrevista con Juan Manuel Torres Rojo .. 37
I.7. RELACIÓN DE LOS MODELOS ECONÓMICOS CON LA PROYECCIÓN DE EMISIONES .. 38

CAPÍTULO II. SELECCIÓN DEL ENFOQUE METODOLÓGICO ... 38
II.1. DESCRIPCIÓN DE LOS MODELOS SELECCIONADOS .. 41
II.2. ANÁLISIS COMPARATIVO DE MODELOS SELECCIONADOS .. 47

CAPÍTULO III. DESARROLLO TEÓRICO DEL ENFOQUE METODOLÓGICO SELECCIONADO .. 55
III.1. DETERMINACIÓN DEL ENFOQUE METODOLÓGICO .. 55
III.2 PROPUESTA TEÓRICA ... 56
III.2.1 Ejemplo de modelo de agentes basado en precios y cantidades observadas en el mercado mexicano ... 58
III.2.2 Modelo de agentes de Berger ... 64
III.2.3 Instrumentación empírica del modelo .. 66
III.2.4 Conversión a emisiones de GEI y CCVC .. 75

III.3 LISTADO DE FUENTES DE INFORMACIÓN ... 75
CONCLUSIONES .. 80
REFERENCIAS .. 82
ANEXO 1. PREGUNTAS GUÍA PARA LAS ENTREVISTAS .. 86
ANEXO 2. TRANSCRIPCIONES DE LAS ENTREVISTAS ... 86

Índice de Tablas e Ilustraciones

Tabla 1. Criterios de calificación ... 38
Tabla 2. Modelos y criterios ... 40
Tabla 3. Ventajas y desventajas de los enfoques metodológicos 52
Tabla 4. Valor de los parámetros utilizados en la simulación 60
Tabla 5. Resultados de la simulación ... 62
Tabla 6. Listado de fuentes de información ... 79

Ilustración 1. Equilibrio de mercado ... 20
Ilustración 2. Complejidad en la representación 33
Ilustración 3. Modelo de agentes básico ... 58
Ilustración 4. ScenarionManager.xls .. 69
Ilustración 5. Matriz de programación .. 71
Ilustración 6. mpmas.exe .. 74
Resumen ejecutivo

El estudio “Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base” tiene como objetivo identificar la metodología más apropiada para modelar la actividad económica prospectiva del sector agropecuario y sus emisiones de Gases de Efecto Invernadero (GEI) y de Contaminantes Climáticos de Vida Corta (CCVC) para robustecer las estimaciones de la línea base de emisiones de México.

Este estudio está alineado con el Programa Especial de Cambio Climático 2014-2018 (PECC), el cual establece en su objetivo 2 “Conservar, restaurar y manejar sustentablemente los ecosistemas, garantizando sus servicios ambientales para la mitigación y adaptación al cambio climático.

Para elegir el enfoque de modelación económica del sector agropecuario se condujo una revisión exhaustiva de la literatura y se desarrolló un análisis multicriterio (Ilustración 1).

Ilustración 1. Proceso de selección del modelo

Fuente: Elaboración propia.
Con base en los resultados obtenidos, se consideraron 5 enfoques metodológicos:

1. Modelos de Equilibrio General (MEG)
2. Modelos de Equilibrio Parcial (MEP)
3. Modelos Estáticos de Regresión (MER)
4. Modelos Basados en Agentes (MBA)
5. Modelos Biofísicos (MBF)

El enfoque de MEG se basa en la teoría económica tradicional, en la que la interacción de consumidores y productores generan un equilibrio de mercado, que se caracteriza por el intercambio de mercancías a precios determinados, que se fijan a partir de esta misma interacción. Los MEG permiten representar las interacciones de una economía completa, un país o a nivel mundial.

Los MEP se sustentan en la misma teoría económica que los MEG pero con la particularidad de que sólo se consideran las interacciones de los agentes económicos de un sector de la economía y se toman como exógenas las decisiones de otros sectores.

El enfoque de MER establece una regresión econométrica que considera las emisiones de GEI y CCVC como la variable dependiente y características económicas y físicas como las variables independientes.

Los MBA simulan el comportamiento de agentes heterogéneos, que interactúan a partir de reglas pre-establecidas. En este caso, no se considera que estas interacciones deban llevar a algún equilibrio, lo cual es la principal distinción con el enfoque de MEG y MEP.

Los MBF proyectan la actividad agropecuaria a partir de elementos físicos y biológicos del entorno. Generalmente, parten de un análisis cartográfico, en el que se establecen relaciones (ecuaciones) de las características físicas y biológicas. Estas relaciones permiten estimar un potencial productivo en un área determinada.
Cada uno de los enfoques considerados tiene ventajas y desventajas (Tabla 1).

Tabla 1. Ventajas y desventajas de los enfoques metodológicos

<table>
<thead>
<tr>
<th>Enfoque</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelos Equilibrio General</td>
<td>Marco de referencia coherente</td>
<td>Son rígidos</td>
</tr>
<tr>
<td></td>
<td>Respaldo de gobiernos y academia</td>
<td>Muy sensibles al valor de los parámetros</td>
</tr>
<tr>
<td></td>
<td>Poder predictivo generalmente alto</td>
<td>Están sujetos a la “maldición de la dimensión”</td>
</tr>
<tr>
<td></td>
<td>Pueden ser validados</td>
<td>Requieren establecer supuestos ad-hoc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suponen que no existen conflictos de interés entre agentes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suponen que el desempleo es voluntario</td>
</tr>
<tr>
<td>Modelos de Equilibrio Parcial</td>
<td>Marco de referencia coherente</td>
<td>Son rígidos</td>
</tr>
<tr>
<td></td>
<td>Respaldo de gobiernos y academia</td>
<td>Muy sensibles al valor de los parámetros</td>
</tr>
<tr>
<td></td>
<td>Poder predictivo generalmente alto</td>
<td>Están sujetos a la “maldición de la dimensión”</td>
</tr>
<tr>
<td></td>
<td>Exigen menos información que un modelo de equilibrio general</td>
<td>Requieren establecer supuestos ad-hoc</td>
</tr>
<tr>
<td></td>
<td>Pueden ser validados</td>
<td>Suponen que no existen conflictos de interés entre agentes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suponen que el desempleo es voluntario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ignoran algunas interrelaciones entre agentes</td>
</tr>
<tr>
<td>Modelos de Regresión</td>
<td>Son relativamente sencillos de estimar</td>
<td>Ignoran interrelaciones entre agentes</td>
</tr>
<tr>
<td></td>
<td>Pueden ser validados</td>
<td>Están sujetos a errores de especificación</td>
</tr>
<tr>
<td></td>
<td>Son sencillos de comunicar</td>
<td>Las predicciones sólo son válidas a corto plazo</td>
</tr>
<tr>
<td></td>
<td>Tienen alto poder predictivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pueden considerar variables económicas y físicas</td>
<td></td>
</tr>
<tr>
<td>Modelos Basados en Agentes</td>
<td>Permiten identificar fenómenos emergentes</td>
<td>No parten de una teoría estándar</td>
</tr>
<tr>
<td></td>
<td>Permiten representar fielmente la realidad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Son flexibles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permiten modelar heterogeneidad en los agentes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No dependen del supuesto de racionalidad</td>
<td></td>
</tr>
<tr>
<td>Modelos Biofísicos</td>
<td>Consideran aspectos espaciales (al compararlos con la producción real)</td>
<td>Ignoran las relaciones económicas</td>
</tr>
<tr>
<td></td>
<td>Pueden ser validados parcialmente</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
A partir del análisis multicriterio sobre las ventajas y desventajas de los distintos enfoques metodológicos que consideró características deseables que debiera tener el modelo específico elegido (Ver Anexo 1),\(^1\) y de la opinión de expertos\(^2\), se consideró que un MBA es una alternativa adecuada para la modelación de la actividad económica del sector agropecuario mexicano.

Este enfoque está relacionado con la economía del comportamiento, la cual es una rama de la economía que ha tenido un importante ímpetu a partir del trabajo seminal de Simon (1955), de las contribuciones posteriores de Tversky & Kahneman (1981) y de Thaler (1980)\(^3\).

Se propusieron dos modelos específicos basados en agentes. El primero es el desarrollado por Berger, Schreinemachers, & Arnold (2007). El cual cumple con 10 de los 12 criterios. Además, es de acceso libre y puede descargarse en un sitio de la Universidad de Hohenheim, Alemania.\(^4\) El modelo se desarrolla en tres pasos fundamentales:

1. Un conjunto de hojas de cálculo, en las cuales se establecen los parámetros de la actividad agropecuaria (precios, peso del ganado, características de la población, por ejemplo), y una matriz que especifica las restricciones que enfrentan los productores, así como sus ganancias.
2. A partir de la información que se proporciona en las hojas de cálculo se generan archivos de texto (con una macro de Excel, que se proporciona en el

\(^1\) Estos criterios fueron: (i) permite vincular variables económicas con GEI y CCVC, (ii) tiene un respaldo institucional, (iii) permite hacer proyecciones a 15 años, (iv) permite hacer análisis de incertidumbre, (v) utilizan datos de información de fuentes validadas, (vi) genera insumos para el Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero (INEGyCEI), (vii) reportan las ecuaciones, (viii) reportan el valor de parámetros, (ix) el código está disponible, (x) está adaptado al sector agropecuario, (xi) tiene integrado el cálculo de emisiones y (xii) está adaptado para México.

\(^2\) Dra. Alejandra Elizondo - CIDE, Dr. George Dyer – Consultor, Dra. María Eugenia Ibarraán – Ibero Puebla y Dr. Juan Manuel Torres Rojo – CIDE.

\(^3\) Cabe señalar que todos estos autores han sido galardonados con el Premio del Banco de Suecia en Ciencias Económicas (popularmente conocido como el premio Nobel de Economía) y es una rama que está transformando la teoría económica tradicional.

\(^4\) https://mp-mas.uni-hohenheim.de/startseite
mismo programa). Estos archivos de texto se procesan en un algoritmo de programación lineal, igualmente de acceso libre, que está integrado al mismo modelo. El algoritmo busca hallar el máximo ingreso disponible para los productores, a partir de las restricciones que enfrentan (financieras, físicas, de mercado, entre otras.)

3. Una vez procesada la información, el modelo genera archivos de salida, entre los cuales se encuentra la producción elegida por los distintos tipos de agentes.

Este modelo plantea el mismo principio básico de maximización de los beneficios de la teoría del productor a diferencia de un MEG o de un MEP, no hay un agente representativo que tome sus decisiones considerando su efecto sobre toda la economía, sino que toma decisiones acotadas por su entorno y por la información que dispone. Esta es la distinción básica entre un MBA y un enfoque tradicional.

Como demostró Simon (1955), las personas suelen tomar decisiones acotadas al entorno más próximo, sin considerar su efecto en todo el sistema. Por lo anterior, y también por considerar que adoptar este enfoque metodológico permitirá ampliar el conjunto de herramientas técnicas de las que dispone el Instituto Nacional de Ecología y Cambio Climático (INECC) se propuso el enfoque de agentes.

El segundo modelo propuesto fue desarrollado por el equipo consultor y está instrumentado en una hoja de cálculo en Excel. Esta hoja de cálculo simula a un productor del mercado mexicano que elige producir maíz o caña de azúcar (que son los dos cultivos de mayor producción en el país) a partir de los precios y rendimientos que observa a su alrededor. El productor tiene la alternativa de producir uno u otro cultivo, o salir del mercado. La característica básica de esta hoja de cálculo es que los precios y rendimientos que el productor enfrenta se le asignan de manera aleatoria, y por tanto él basa sus decisiones sobre su valor esperado. Esta hoja de cálculo se desarrolló para mostrar el planteamiento básico de un MBA y cómo éste puede ser
nutrido de información proveniente de fuentes oficiales como el Servicio de Información Agroalimentaria y Pesquera (SIAP).

La hoja de cálculo es básica, pero puede complejizarse gradualmente, por ejemplo, estableciendo agentes heterogéneos a nivel municipal. Este modelo permite establecer relaciones de influencia entre municipios; por ejemplo, las decisiones de un municipio afectan a los más próximos o simular opciones de innovación tecnológica a partir de modelos de difusión como el de Bass (1969). Lo que se quiere resaltar es que el enfoque de MBA es tan flexible como se requiera y todo depende de la información disponible. No obstante, a diferencia de los enfoques tradicionales (MEG, MEP y MER), los MBA permiten generar una alta heterogeneidad de agentes, sin que esto implique complejizar demasiado la estimación del modelo.

La adopción de este enfoque también impone retos, principalmente en la modelación de las reglas de comportamiento de los agentes y en la recopilación de información sobre sus decisiones. En este sentido, la recomendación principal es utilizar las fuentes de información oficial disponibles y partir de un principio de parsimonia, es decir, partir de lo simple e ir complejizando según las necesidades. Si bien esto representa un esfuerzo importante, un enfoque metodológico alternativo también supone retos similares, en especial en la recopilación de parámetros que de forma regular no se encuentran adaptados para México.

Respecto a la proyección de emisiones de GEI y CCVC, en los enfoques de MEG, MEP, MBA y MBF se proyectan las emisiones a partir de la producción agropecuaria y su posterior multiplicación por factores de emisión. Estos factores de emisión pueden ser los mismos que se utilizan para el Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero (INEGyGEI) y de los parámetros por defecto reportados por el Panel Intergubernamental de Cambio Climático (PICC). En el caso de los MER, las emisiones son la variable dependiente del modelo, lo que permite proyectarlas.
En resumen, los MBA permiten relajar el supuesto de racionalidad económica, el cual ha tenido fuertes cuestionamientos sobre su validez. Por tanto, adoptando un enfoque emergente y relativamente novedoso, pueden fortalecerse las capacidades técnicas del INECC y, en general, de fortalecer el enfoque técnico para la toma de decisiones en el sector público.

Este estudio ha permitido ampliar la gama de enfoques metodológicos tradicionales para modelar la actividad económica y puede resultar útil más allá de su objetivo, pues representa un diagnóstico del estado del arte en modelación económica del sector agropecuario, y especialmente adaptado al contexto mexicano. En este estudio más allá del MBA propuesto, se realizó un diagnóstico de los modelos disponibles de diferentes enfoques metodológicos, algunos de ellos que están disponibles de manera abierta y adaptados para México (ver Anexo 1), y que pueden ser eventualmente explorados para analizar la actividad económica del sector bajo análisis.
Acrónimos

<table>
<thead>
<tr>
<th>Acrónimo</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFPC</td>
<td>Agricultural and Food Policy Center (Centro de Agricultura y Política Alimentaria)</td>
</tr>
<tr>
<td>AGLINK-COSIMO</td>
<td>Agricultural Linkages-Commodity Simulation Model (Modelo de Simulación de Vínculos Agrícolas y Mercancías)</td>
</tr>
<tr>
<td>BANXICO</td>
<td>Banco de México</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines (Máquinas de Negocios Internacionales)</td>
</tr>
<tr>
<td>CCVC</td>
<td>Contaminantes Climáticos de Vida Corta</td>
</tr>
<tr>
<td>CIDÉ</td>
<td>Centro de Investigación y Docencia Económicas</td>
</tr>
<tr>
<td>COIN-OR</td>
<td>Computational Infrastructure for Operations Research (Infraestructura Computacional para Investigación de Operaciones)</td>
</tr>
<tr>
<td>CONAFOR</td>
<td>Comisión Nacional Forestal</td>
</tr>
<tr>
<td>DEVPEM</td>
<td>Development Policy Evaluation Model (Modelo de Evaluación de Política de Desarrollo)</td>
</tr>
<tr>
<td>ENIGH</td>
<td>Encuesta Nacional de Ingreso-Gasto de los Hogares de México</td>
</tr>
<tr>
<td>ENUT</td>
<td>Encuesta Nacional sobre Uso del Tiempo</td>
</tr>
<tr>
<td>ENV-Linkages</td>
<td>Environmental Linkages (Vínculos Ambientales)</td>
</tr>
<tr>
<td>FAF</td>
<td>Food, Agriculture and Fisheries (Alimentación, Agricultura y Pesquerías)</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization (Organización de las Naciones Unidas para la Alimentación y la Agricultura)</td>
</tr>
<tr>
<td>FAPRI</td>
<td>Food and Agricultural Policy Research Institute (Instituto de Investigación de Política Alimentaria y Agricultura)</td>
</tr>
<tr>
<td>FND</td>
<td>Financiera Rural de Desarrollo Agropecuario</td>
</tr>
<tr>
<td>GAMS</td>
<td>General Algebraic Modeling System (Sistema General de Modelación Algebraica)</td>
</tr>
<tr>
<td>GEI</td>
<td>Gases de Efecto Invernadero</td>
</tr>
<tr>
<td>GTAP</td>
<td>Global Trade Analysis Project (Proyecto de Análisis del Comercio Mundial)</td>
</tr>
<tr>
<td>INECC</td>
<td>Instituto Nacional de Ecología y Cambio Climático</td>
</tr>
<tr>
<td>INEGyGEI</td>
<td>Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero</td>
</tr>
<tr>
<td>INEGI</td>
<td>Instituto Nacional de Estadística y Geografía</td>
</tr>
<tr>
<td>INIFAP</td>
<td>Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias</td>
</tr>
<tr>
<td>IPFRI</td>
<td>International Food Policy Research Institute (Instituto Internacional de Investigación de Política Alimentaria)</td>
</tr>
<tr>
<td>MARCEG</td>
<td>Modelo de Agentes Rurales en un Contexto de Equilibrio General</td>
</tr>
</tbody>
</table>
Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCS</td>
<td>Matriz de contabilidad social</td>
</tr>
<tr>
<td>MEGC</td>
<td>Modelo de Equilibrio General Computable</td>
</tr>
<tr>
<td>MEP</td>
<td>Modelo de Equilibrio Parcial</td>
</tr>
<tr>
<td>MIP</td>
<td>Matriz Insumo-Producto</td>
</tr>
<tr>
<td>MPMAS</td>
<td>Mathematical Programming-based Multi-Agent Systems (Sistemas Multi-Agente Basados en Programación Matemática)</td>
</tr>
<tr>
<td>OCDE</td>
<td>Organización para la Cooperación y el Desarrollo Económicos</td>
</tr>
<tr>
<td>PECC</td>
<td>Programa Especial de Cambio Climático 2014-2018</td>
</tr>
<tr>
<td>PIB</td>
<td>Producto Interno Bruto</td>
</tr>
<tr>
<td>SAGARPA</td>
<td>Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación</td>
</tr>
<tr>
<td>SEMARNAT</td>
<td>Secretaría de Medio Ambiente y Recursos Naturales</td>
</tr>
<tr>
<td>SIAP</td>
<td>Servicio de Información Agroalimentaria y Pesquera</td>
</tr>
<tr>
<td>SNIM</td>
<td>Sistema Nacional de Información e Integración de Mercados</td>
</tr>
<tr>
<td>TdR</td>
<td>Términos de Referencia</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture (Departamento de Agricultura de los Estados Unidos)</td>
</tr>
</tbody>
</table>
Glosario

Equilibrio de mercado. La cantidad ofertada de un bien es igual a la demanda y esto determina el precio al que se realizan las transacciones económicas.

Externalidad. Una externalidad está presente cuando el bienestar de un consumidor o las posibilidades de producción de una empresa están directamente afectadas por las acciones de otro agente en la economía.

Matriz de contabilidad social. Arreglo de renglones y columnas que expresa los flujos económicos entre todos los agentes de la economía.

Modelo. Descripción de un fenómeno que hace abstracción de los detalles presentes en el mundo real.

Modelo econométrico. Modelo estadístico que busca explicar cómo responde una variable (o variables) en función de variables exógenas. En el contexto de este estudio nos referimos a modelos que sólo analizan una parte del mercado, suponiendo que no existe una retroalimentación entre las variables explicativas del modelo.

Modelo basado en agentes. Es un modelo computarizado que simula a un número de tomadores de decisiones (agentes) e instituciones que interactúan a partir de reglas prescritas.

Modelo biofísico. Es un modelo matemático que estima el potencial de crecimiento de las plantas a partir de variables ambientales.

Modelo de equilibrio general. Modelo económico que analiza todas las interrelaciones existentes entre consumidores, productores y el gobierno.

Modelo de equilibrio general computable. Modelo de equilibrio general que se estima empíricamente a partir de información real de la economía.

Modelo de equilibrio parcial. Modela económico que analiza las decisiones de sólo algunos agentes económicos.

Modelo dinámico. Modelo económico que considera el efecto intertemporal de las decisiones de los agentes.

Modelo insumo-producto. Relación algebraica (matricial) entre productos finales y la demanda de insumos intermedios y la demanda final de los productos finales.

Teoría económica. Representación de la actividad económica como la interacción de agentes económicos individuales que persiguen sus intereses privados.
Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base

Introducción

Este documento presenta el informe final del estudio “Enfoque metodológico para la modelación económica del sector agropecuario para la línea base”, el cual tiene como objetivo determinar cuál es el enfoque metodológico que permita modelar la actividad económica prospectiva del sector agropecuario y sus emisiones de GEI y CCVC resultantes, para robustecer las estimaciones de la línea base de emisiones de México.

El estudio tiene los siguientes objetivos específicos:

1. Identificar y describir el enfoque metodológico de modelos económicos capaces de pronosticar la actividad y las emisiones de GEI y CCVC del sector agropecuario.
2. Seleccionar y comparar el enfoque metodológico de aquellos modelos económicos capaces de pronosticar la actividad y las emisiones de GEI y CCVC del sector agropecuario aplicables para México.
3. Determinar el enfoque metodológico y desarrollar teóricamente un modelo sobre la actividad económica del sector agropecuario y sus emisiones de GEI y CCVC prospectivas.

En la primera parte de este documento se plantea el marco teórico en que se desarrollan los modelos económicos que permiten pronosticar la actividad económica y las emisiones del sector agropecuario. Este marco teórico incluye un conjunto de definiciones y conceptos básicos que se utilizarán para describir la modelación económica. Adicionalmente, se presenta una sección que describe cómo se modelan empíricamente estos modelos y cómo se vinculan con la proyección de emisiones de GEI. Posteriormente, se describen los resultados de una revisión de la literatura sobre modelos económicos. Esta revisión partió de un análisis multicriterio que evalúa diferentes opciones para la modelación. También, se discuten los elementos clave de entrevistas a expertos en las que se recopilaron algunos puntos de vista y recomendaciones para la modelación.
En la segunda parte se hace una revisión de distintos enfoques metodológicos, incluyendo los económicos y no económicos. A partir de esta revisión se propone la selección de un enfoque metodológico específico para pronosticar la actividad y emisiones de GEI y CCVC del sector agropecuario en México. Esta propuesta parte de un análisis de las características de los distintos enfoques metodológicos, así como de una comparación de sus ventajas y desventajas.

En la tercera parte se describe el proceso de selección del enfoque metodológico para la modelación de la actividad económica del sector agropecuario y sus emisiones de GEI y CCVC. Asimismo, se desarrolla el modelo teórico seleccionado y finalmente se hace un listado de las fuentes de información necesarias para este modelaje. En la cuarta parte se presentan las conclusiones del estudio.
CAPÍTULO I. IDENTIFICACIÓN Y DESCRIPCIÓN EL ENFOQUE METODOLÓGICO

I.1. Contexto

El sector agropecuario en México genera 12% de las emisiones de Gases de Efecto Invernadero (GEI), igual a 80 megatoneladas de dióxido de carbono equivalente al año. La mayor parte de estas emisiones provienen de la fermentación entérica (7.7%), del manejo de estiércol (2.1%), de suelos agrícolas (2%), entre otros (INECC, 2015). Este sector ocupa el cuarto lugar en generación de emisiones, después de las fuentes móviles, generación eléctrica y petróleo y gas, a pesar de que sólo contribuye con el 1.7% del Producto Interno Bruto (PIB) del país.\(^5\)

Por lo anterior, resulta relevante generar información sobre las variables económicas que inciden en la generación de emisiones en este sector, con la finalidad de contribuir a la formulación de políticas públicas dirigidas a mitigar los efectos ambientales negativos de la actividad económica, sin menoscabo de la generación de beneficios socioeconómicos.

I.2. Marco teórico

En esta sección se plantea el marco teórico de la modelación de la actividad económica del sector agropecuario y de las emisiones de GEI y CCVC que se derivan de su actividad económica. Para ello, se partió de un conjunto de definiciones y conceptos básicos, que se tomaron de base para desarrollar el marco teórico. Una vez planteado, se presenta el desarrollo formal de un modelo económico. Después, se describe cómo se instrumentan empíricamente estos modelos. Posteriormente, se describe cómo este modelo económico se vincula a la generación de emisiones de GEI y CCVC.

I.2.1. Definiciones y conceptos

La modelación económica tiene el propósito de emular el comportamiento de los diversos agentes de la sociedad que toman decisiones económicas a partir de formulaciones matemáticas que sean consistentes con dichas decisiones. De acuerdo con Katz, Rosen, & Morgan (2006) un modelo es una: “descripción de un fenómeno que hace abstracción de los detalles presentes en el mundo real”.

En economía son muy usados los modelos que permiten hacer análisis positivos (Katz et al., 2006), los cuales tienen como objetivo identificar qué variables de control (por ejemplo, inversión pública) afectan a variables objetivo (por ejemplo, el nivel de producción de un país), y en consecuencia, llevar a cabo acciones para alcanzar un fin deseado (por ejemplo, el crecimiento económico).

Los modelos económicos se basan preponderantemente en la teoría económica neoclásica, que en esencia, modela la actividad económica como la interacción de agentes económicos individuales que persiguen sus intereses privados (Mas-Colell, Whinston, & Green, 1995). A grandes rasgos, esta teoría plantea el comportamiento de los consumidores y de los productores, así como sus interrelaciones.

Los consumidores eligen el mayor nivel de satisfacción que pueden alcanzar a partir de una restricción presupuestaria. Por su parte, los productores buscan alcanzar los mayores beneficios económicos a partir de una tecnología de producción, de los precios de los productos que quieren producir y de los costos en que tienen que incurrir para producirlos.

Las interrelaciones entre consumidores y productores se representan en un equilibrio de mercado. Este equilibrio está representado por las cantidades y precios a los que los consumidores están dispuestos a comprar los bienes y los productores están dispuestos a venderlos. En este equilibrio la cantidad ofertada de

6 Un análisis positivo es un conjunto de afirmaciones descriptivas que implican una relación de causa a efecto (Katz et al., 2006).
un bien es igual a la demanda y esto determina el precio al que se realizan las transacciones. En la Ilustración 1 se presenta un diagrama de este equilibrio.

Ilustración 1. Equilibrio de mercado

![Diagrama de equilibrio de mercado](image)

Fuente: Elaboración propia.

En este diagrama, los consumidores están dispuestos a comprar una cierta cantidad del bien Q, al precio P y conforme más bajo sea el precio, estarán dispuestos a comprar una cantidad mayor. Por el contrario, los productores estarán dispuestos a vender mayor cantidad del bien en tanto el precio sea mayor. La interacción entre estas diferentes posturas genera un equilibrio, en el que tanto consumidores como productores están dispuestos a hacer una transacción, así, esta situación está representada por precios y cantidades de equilibrio.

En el planteamiento descrito hasta ahora no se incluye al gobierno. Desde una perspectiva económica, se justifica que el gobierno intervenga en la economía cuando existen fallas de mercado (Mas-Colell et al., 1995). Estas fallas de mercado surgen cuando: (i) existen bienes públicos, (ii) los agentes no son tomadores de precios (existen monopolios y oligopolios) y (iii) hay presencia de externalidades (Parkin & Esquivel 2001).
Los **bienes públicos** se caracterizan por su condición de no rivalidad (Mas-Colell et al., 1995). En ausencia de la recaudación de impuestos que hace el gobierno, algunos de estos bienes públicos no se proveerían (o se proveerían a niveles ineficientes), dado que su condición de no rivalidad hace que la inversión privada en ellos no sea atractiva o cuando menos se invierta menos de lo que es eficiente.

Los agentes fijadores de precios (**monopolios u oligopolios**) surgen cuando una empresa tiene poder de mercado, lo cual significa que puede influir en el precio de venta de los productos que vende, o limitar la cantidad de producción. Si una empresa tiene esta capacidad, entonces fijará el precio (o limitará la cantidad producida) a un nivel tal que obtenga la mayor cantidad de ganancias posibles (Katz et al., 2006). Cuando esto sucede se genera una ineficiencia en la economía, porque no se produce todo lo que se pudiera producir y los consumidores pagan más por un producto que es posible vender a menores precios, sin poner en riesgo la rentabilidad de las empresas.

Las **externalidades** “están presentes cuando el bienestar de un consumidor o las posibilidades de producción de una empresa están directamente afectadas por las acciones de otro agente en la economía” (Mas-Colell et al., 1995). El ejemplo por excelencia de externalidad son las emisiones de gases de efecto invernadero; la generación de estas emisiones de algunos agentes económicos afecta a toda la humanidad.

7 La no rivalidad significa que si se provee de un bien público a la sociedad, toda la sociedad disfruta de dicho bien (por ejemplo, la seguridad pública). Generalmente, se asocia también la característica de no exclusión a un bien público, lo que significa que cuando se provee el bien público, no se puede excluir de su consumo a nadie. Sin embargo, esto no es exacto, porque existen bienes públicos (una autopista) en los que se puede establecer la exclusión (imponiendo un peaje por ejemplo).

8 Traducción propia.
I.3. Modelación económica

Hay dos formas clásicas de desarrollar un modelo económico, la primera es mediante un modelo que interrelacione a todos los agentes económicos, lo que se conoce como un MEG. La otra es sólo analizando a algunos agentes (por ejemplo, sólo a productores, o sólo un sector de la economía), a este tipo de modelos se les conoce como MEP. En este sentido, un MEP es un subconjunto de un MEG, en el que las decisiones de algunos agentes se consideran predeterminadas.

En el siguiente desarrollo se partió de una visión general, estableciendo de manera matemática las decisiones de consumidores y productores, su relación, y posteriormente se incorpora el papel del gobierno.

Adicionalmente, existe un enfoque no convencional que también permite modelar la actividad económica, pero que no parte de los supuestos tradicionales de la economía. En particular, no parte del supuesto de racionalidad económica que considera la teoría económica estándar. Este enfoque está relacionado con la economía del comportamiento, la cual es una rama de la economía que ha tenido un ímpetu muy importante a partir del trabajo seminal de Simon (1955), de las contribuciones posteriores de Tversky & Kahneman (1981) y de Thaler (1980). Cabe señalar que todos estos autores han sido galardonados con el Premio del Banco de Suecia en Ciencias Económicas (popularmente conocido como el premio Nobel de Economía) y es una rama que está transformando la teoría económica estándar. En particular, en este documento desarrollamos los modelos basados en agentes, que son consistentes con la economía del comportamiento. Este enfoque se desarrolla en una sección posterior. Antes de abordar dicho enfoque desarrollamos el marco teórico estándar.

I.3.1. Los consumidores

Los consumidores maximizan utilidad, al seleccionar un vector de bienes y servicios, a partir de una restricción presupuestaria. En la ecuación (1) se representa este planteamiento (Mas-Colell et al., 1995).
\[\max_{x} u(x) \] (1)
\[\text{s.a. } p \cdot x \leq w \]

Donde \(u(x) \) representa una función continua, con dominio en el espacio \(R^n \), \(x \) representa un vector de bienes y servicios tal que \(x \in R^n \), \(p \) es un vector de precios con \(n \) elementos, \(w \) es el ingreso disponible de una persona para comprar bienes y servicios. La solución al problema de maximización de utilidad es un vector de demandas \(x(p, w) \), en el que el elemento \(i \) representa la cantidad del bien que se demanda, dados los precios \(p \) y el ingreso disponible \(w \). En general, se cumple que cuando aumenta el precio \(p_i \) la demanda del bien \(x_i \) disminuye y cuando aumenta el ingreso \(w \), se incrementa la demanda de este bien.\(^9\)

1.3.2. Los productores

Por su parte, el productor se enfrenta a un problema de maximización de beneficios, en el cual elige una cantidad de insumos de producción, a partir de una tecnología y un vector de precios de dichos insumos. Este planteamiento se describe en la ecuación (2) (Mas-Colell et al., 1995).

\[\max_{z} p \cdot y - w \cdot z \] (2)
\[\text{s.a. } y \leq f(z) \]

Donde \(p \) representa el vector de precios de los productos producidos, \(w \) es el vector de precios de los insumos requeridos para la producción, \(y \) es el vector de productos finales, y \(f(z) \) es una función continua y convexa. La solución a este problema es un vector de demandas de insumos \(z(p, w) \), y al sustituir en la restricción se obtiene la función de oferta de los productos \(y \). Estas funciones de oferta tienen la característica de que cuando se incrementa el precio \(p_i \) del producto \(y_i \), la oferta se

\(^9\) Dos excepciones a esta regla son los bienes inferiores y los bienes Giffen, en estos casos la demanda del bien disminuye cuando el ingreso aumenta y la demanda del bien aumenta cuando el precio del bien aumenta, respectivamente.
incrementa y cuando se incrementa el precio del insumo w_i disminuye la cantidad ofertada. En ambos planteamientos, del productor y del consumidor, subyace el supuesto de que los precios de los productos finales y de los insumos son exógenos.10

De manera más formal, este proceso de “negociación” es aquel que determina de manera simultánea que los consumidores maximizan utilidad y los productores maximizan beneficios. En este caso, los precios de los productos y de los insumos pierden su carácter exógeno y son variables que se determinan de manera endógena por el modelo. Además, este planteamiento exige establecer otra restricción para que pueda tener solución, esto es, que la demanda de los productos x sea igual a la oferta de productos y. Además, se considera que el ingreso de los consumidores está determinado igualmente de manera endógena, en donde este ingreso se determina a partir de una dotación inicial fija de insumos \bar{z} que son propiedad de los consumidores y son vendidos a las empresas para que produzcan. También se considera que los consumidores (quienes son los propietarios de las empresas que producen) reciben los beneficios de la venta de productos. Con este planteamiento el consumidor maximiza la utilidad de la misma forma en que se muestra en la ecuación (1), pero su restricción se modifica de la forma en que se representa en la ecuación (3) (Mas-Colell et al., 1995).

$$p \cdot x \leq w \cdot \bar{z} + \pi$$ (3)

Donde π representa los beneficios obtenidos de la producción de los productos y. Como se mencionó anteriormente, además se requiere que los mercados se vacíen, esto significa que las demandas de los consumidores igualen a la oferta de productos. Esto se representa en la ecuación (4).

$$x(\bar{z}) = y(\bar{z})$$ (4)

10 Este supuesto es consistente con un mercado de competencia perfecta, en el que ni consumidores ni productores pueden afectar los precios. Este supuesto establece que los precios se determinan a partir de la interacción de consumidores y productores, en procesos de negociación en los cuales se determinan los precios en un punto intermedio entre la máxima disponibilidad a pagar de los consumidores y el costo marginal de producción de los productores (o dicho de otro modo, el mínimo monto a aceptar por la venta de un producto).
Nótese que en la ecuación (4) las ofertas y demandas ya no dependen de los precios de los productos ni de los insumos, ahora solo dependen de las dotaciones iniciales \(\bar{z} \), esto hace que la única variable exógena del modelo sean dichas dotaciones iniciales.

Además, se requiere que suponer que la suma de las demandas de insumos de producción es igual a la suma total de las dotaciones iniciales. Esto se describe en la ecuación (5).

\[
\sum_{i=1}^{N} z_i = \bar{z}_i \forall i \in L
\]

Donde \(N \) es el número total de consumidores y \(L \) es el número total de insumos.

1.3.3. El gobierno

Uno de los papeles del gobierno, como se mencionó, es el de proveer bienes públicos, esto lo realiza recaudando impuestos sobre los beneficios de la producción, sobre el consumo de los bienes y sobre el ingreso de los productos. Es posible modificar la restricción presupuestal de los consumidores para representar lo anterior, esto se muestra en la ecuación (6).

\[
(p \circ (1 + t_{IVAX})) \cdot x \leq (w \circ (1 + t_{IVAZ})) \cdot \bar{z}(1 + t_{ISR}) + \pi(1 + t_{IU})
\]

Donde \(t_{IVAX} \) representa el vector de tasas de impuesto sobre el valor agregado para los distintos productos y servicios, \(t_{IVAZ} \) el vector de impuesto sobre el valor agregado para los insumos, \(t_{ISR} \) el impuesto sobre la renta y \(t_{IU} \) el impuesto sobre las utilidades.

La solución a este modelo es un vector de precios y cantidades que se generan a partir de las dotaciones iniciales. Nótese que en este planteamiento los impuestos están tratados como variables exógenas. Si se desea darles un carácter endógeno a estas tasas se requiere establecer otras restricciones de carácter presupuestal para el gobierno (por ejemplo, establecer un déficit cero, dado un nivel de gasto exógeno). No obstante, para mantener la simplicidad, se consideran las tasas impositivas como
exógenas, porque ello permite describir cómo una modificación en la política fiscal impacta la solución del modelo.

Por ejemplo, supónase que se desea fijar un impuesto al carbono, esto se puede realizar, ya sea modificando la tasa impositiva de bienes finales de sectores que son intensivos en la generación de emisiones de GEI, o en modificar las tasas impositivas de los insumos que ocupan estos sectores. Con esta modificación, los precios y cantidades de insumos o productos se modifican. En particular, se espera que si se incrementa la tasa impositiva del producto final \(x_i \), el precio de este bien aumente y su producción disminuya, o si se incrementa la tasa impositiva del insumo \(z_i \), su precio aumente y su demanda disminuya.

1.3.4. Solución al modelo de equilibrio general

Cabe mencionar que un modelo de equilibrio general tiene la característica de tener infinitas soluciones si no se determina un precio con un valor fijo. Esto es resultado de la homogeneidad de grado cero de las funciones de demanda (Mas-Colell et al., 1995), lo cual significa que, si se duplican los precios, las demandas permanecerán sin cambio. Entonces, se requiere establecer el precio de un bien como numerario (por ejemplo, con el valor de 1) y los demás precios se determinan de manera relativa. Esto significa que el vector de precios estará expresado de manera relativa al bien numerario. Así, la solución a este modelo es:

\[
p(z, \theta), w(z, \theta), x(z, \theta), z(z, \theta)
\]

Donde \(p(z, \theta) \) representa el vector de precios de los productos finales, \(w(z, \theta) \) el vector de precios de los insumos de producción, \(x(z, \theta) \) las demandas de productos finales (que son iguales a la oferta de cada uno de estos productos) y las demandas de insumos finales \(z(z, \theta) \). Nótese que todos los vectores anteriormente señalados dependen de las dotaciones iniciales \(z \) y de un vector de parámetros \(\theta \), que representan parámetros de las preferencias de los consumidores, de las funciones de producción y de otros parámetros que afectan la economía, tales como los impuestos.
I.3.5. Extensiones al modelo de equilibrio general

I.3.5.1. Modelos dinámicos

Hasta ahora se ha ignorado el efecto intertemporal de las decisiones de las personas. Las decisiones tienen un efecto dinámico sobre los precios y cantidades. Esto es, las decisiones que se tomen sobre activos fijos el día de hoy tendrán repercusiones en el futuro. Una extensión al modelo es considerar que las personas maximizan la suma de las utilidades que se dan en un determinado periodo, y los productores por igual maximizan la suma de beneficios de este periodo. Si se considera esta modificación, se tendrá como solución al modelo un vector de precios y cantidades que varían en el tiempo.

I.3.5.2. Economía abierta

También hasta ahora se ha supuesto que la economía se comporta de manera cerrada, sin intercambio de bienes y servicios con el exterior. Este supuesto se puede relajar y ello implica establecer mayores restricciones al modelo. Por ejemplo, formulando que el consumo del bien final x_i resulta de la suma de la cantidad producida domésticamente más las importaciones menos las exportaciones (incluso considerando los costos de transacción). En este caso, se está suponiendo que el país es suficientemente pequeño como para impedir que sus importaciones o exportaciones afecten el precio internacional del producto. Esto es, se supone que los precios internacionales son exógenos.

I.4. Enfoques metodológicos de Modelación no Convencionales

Los modelos considerados en la sección anterior parten de un enfoque económico tradicional o convencional. A continuación se desarrollarán dos enfoques metodológicos que consideran variables fuera del estudio de la teoría económica.
I.4.1. Modelos Basados en Agentes

El primero de ellos son los modelos basados en agentes, los cuales suponen que las personas se comportan de manera racional. Sin embargo, ha habido un cuestionamiento a este supuesto desde la década de los 50, desde que Herbert Simon concluyó que las personas se comportan más como un organismo de conocimiento y habilidades limitadas, que a un ser totalmente racional que puede tomar las mejores decisiones ante situaciones complejas (Simon, 1955).\(^{11}\)

Posteriormente, Tversky & Kahneman (1981) ampliaron el cuestionamiento, demostrando que no sólo las personas se distancian del comportamiento racional ante situaciones complejas, sino que hasta en situaciones sencillas el comportamiento es inconsistente con el supuesto de racionalidad. Específicamente, los autores presentan evidencia que sugiere que existe una asimetría entre la valoración de una pérdida y una ganancia.

Thaler (1980) es otro autor que ha generado evidencia que cuestiona la supuesta racionalidad de las personas. El autor plantea que las personas subvaloran los costos de oportunidad, fallan en ignorar los costos hundidos, combinan las pérdidas (dos pérdidas separadas serán menos dolorosas si se combinan en una sola), eligen no elegir (porque elegir implica responsabilidad y posible arrepentimiento), y se pre-comprometen (por ejemplo, invirtiendo en instrumentos financieros no líquidos) porque no confían en tener autocontrol en el futuro.

De acuerdo con Bouchaud (2008) existen dos tipos de modelos con los que se suele tomar decisiones económicas: (i) los modelos de regresión, los cuales son útiles para predecir variables relevantes a corto plazo, en tanto las cosas no cambien; y (ii) los modelos dinámicos estocásticos de equilibrio general,\(^{12}\) los cuales suponen un mundo perfecto. En la opinión del autor, existe una mejor opción, los Modelos Basados en Agentes (MBA) porque este tipo de modelos no descansa sobre el

\(^{11}\) Para Simon la racionalidad limitada se refiere a que las personas no toman decisiones óptimas porque tienen límites cognitivos que les impiden hacerlo.

\(^{12}\) En un sentido amplio los modelos de equilibrio parcial estarían incluidos en esta categoría.
supuesto de equilibrio y tampoco pronostican comportamientos agregados o promedio.

Los MBA son modelos computarizados que simulan a entidades autónomas, que interactúan a partir de reglas prescritas. A diferencia de los modelos económicos convencionales, los MBA no parten del supuesto de equilibrio y tampoco buscan obtener predicciones de agentes promedio o agregadas. Por el contrario, cada agente actúa de acuerdo con su situación en determinado momento, sólo considerando las reglas que rigen su comportamiento (Farmer & Foley, 2009).

I.4.2. Modelos biofísicos

Por otra parte, los modelos biofísicos son representaciones matemáticas del crecimiento de la vegetación a partir de variables ambientales (Donatelli & Confalonieri, 2011). En el contexto agropecuario, este tipo de modelos considera las características físicas, geográficas y biológicas del entorno para proyectar el volumen de actividad (producción) agropecuaria. Evidentemente, las condiciones del entorno determinan en cierta medida la producción agropecuaria, las cuales los modelos económicos no toman en cuenta.

Con base en estos dos enfoques adicionales se consideró pertinente agregar a los enfoques de MEP, MEG y MRE, los modelos Global Agro-ecological Zones (Fischer et al., 2008), biofísico, y el modelo basado en agentes de (Berger et al., 2007). La razón de incorporar estos dos enfoques es incluir un ejemplo en el que no asuma por defecto la racionalidad y otro que considere variables físicas y biológicas del entorno, las cuales no logran ser representadas en los modelos de equilibrio general o parcial.

I.5. Instrumentación de los modelos económicos

La instrumentación de un modelo económico es útil porque permite representar la actividad económica a partir de información real. Esto a su vez, permite modelar choques exógenos en la economía, tales como el establecimiento de un impuesto y observar cómo se modifica la actividad económica. Dado el desarrollo teórico
expuesto hasta ahora, en términos empíricos, se pueden caracterizar cinco tipos de modelos a estimar:

Modelo de Equilibrio General Computable (MEGC). Analiza todas las interrelaciones existentes entre consumidores, productores y el gobierno.

Cuando un MEGC se traslada al terreno empírico, es común que la solución analítica sea muy compleja o incluso que no exista. Esto ocurre porque las funciones de utilidad de los consumidores y de producción de los productores generalmente no son lineales y por tanto, se genera un sistema de ecuaciones no lineales, que frecuentemente no pueden ser resueltas. Esta dificultad se soluciona al resolver de manera numérica (no analítica) los modelos. Los modelos de equilibrio general plantean ecuaciones que representan las demandas de los consumidores, las funciones de oferta y las funciones de demanda de insumos de los productores y las restricciones adicionales que se tienen que cumplir (que la oferta iguale a la demanda, que restricciones de comercio internacional y de déficit del gobierno, entre otras). Respecto a los modelos de equilibrio parcial, recuérdese que solo algunas de estas ecuaciones se consideran.

Para el caso de la estimación empírica de modelos de equilibrio general se plantean ecuaciones que se derivan de las condiciones de primer orden de los problemas de optimización y las restricciones anteriormente descritas. Una vez planteadas las ecuaciones se recurre a un sistema informático (frecuentemente GAMS) que permita obtener una solución de las incógnitas (precios y cantidades) de manera numérica. Este tipo de modelo requiere que se determinen las dotaciones iniciales y los parámetros del sistema (por ejemplo, la productividad marginal de producto

13 Una condición de primer orden permite identificar cuando una función alcanza un valor crítico (mínimo o máximo). Las condiciones de primer orden del consumidor establecen que la tasa marginal de sustitución de dos bienes sea igual a sus precios relativos. Para el productor, la condición de primer orden es que la tasa marginal de sustitución técnica de dos insumos de producción sea igual a sus precios relativos.

14 Generalized Algebraic Modeling System
En el caso de un MEG, los insumos que se requieren son una matriz de insumos iniciales y bienes finales, así como el vector de parámetros, que representa parámetros de las funciones de utilidad, de las funciones de producción, del nivel de impuestos, entre otros. La matriz referida puede tomar dos formas: (i) matriz de contabilidad social (MCS)15 o (ii) matriz de insumo producto (MIP)16.

Si bien ambas matrices representan el origen de los bienes y su destino final, las MCS se consideran un mejor instrumento que las MIP porque permite realizar análisis redistributivos (Polo & Valle, 2012). Por su parte, los parámetros relacionados con las funciones de utilidad y de las funciones de producción generalmente provienen de fuentes secundarias. Por ejemplo, en (M. E. Ibarrarán, Boyd, & Elizondo, 2015) en el apéndice se desarrolla el modelo estimado y se incluyen referencias bibliográficas de los parámetros utilizados.

Modelo de Equilibrio Parcial Computable (MEPC). Analiza las decisiones de algunos agentes económicos, por ejemplo, sólo analiza el sector agropecuario o sólo analiza la parte de la demanda de una economía. Un modelo de equilibrio parcial supone que las decisiones de algunos agentes de la economía no responden a las decisiones de los agentes que se están analizando. Por ejemplo, en un modelo de equilibrio parcial agropecuario, se está suponiendo que la decisión de los productores agropecuarios no afecta la decisión de productores de la industria.

En el caso de Modelos de Equilibrio Parcial (MEP) se definen ecuaciones que representan las decisiones de algunos agentes de la economía. Estas ecuaciones provienen de relaciones conocidas, por ejemplo, una ecuación que plantea la demanda

15 Es un matriz cuadrada, donde cada renglón representa los ingresos que reciben los agentes de la economía (hogares, empresas, gobierno, sector externo, etc.) y las columnas representan los egresos en que incurren estos mismos agentes. De esta forma, la celda j,k representa los ingresos que recibió el agente j del agente k. El margen horizontal de la matriz representa los egresos totales que realizó un determinado agente, el margen vertical representa los ingresos que recibió un determinado agente (Pyatt & Round, 1985).

16 Es matriz cuadrada, donde cada renglón representa la producción de los sectores productivos y las columnas la demanda intermedia de bienes de los sectores productivos y una columna adicional que representa la demanda final de los productos de cada sector (Garfield, 1986). La celda i,j representa la cantidad de factor j que se utilizó para producir el producto i.
de un determinado bien en función de su precio y otros factores. Los parámetros asociados a estas ecuaciones generalmente provienen de fuentes secundarias.

Modelos de regresión estáticos. Buscan explicar cómo responde una variable (o variables) de actividad económica (por ejemplo, el nivel de producción de un cultivo) en función de las características del mercado (por ejemplo, el nivel de inversión, los precios de los insumos). Este tipo de modelos sólo analiza una parte del mercado (suponiendo que no parte de un sistema de ecuaciones estructuradas, en las que las variables dependientes se interrelacionan entre sí).

Los modelos de regresión plantean una ecuación (o ecuaciones) que definen a una variable (o variables) dependiente(s) en función de variables que la explican. Posteriormente, se recopilan datos sobre estas variables para poder estimar un modelo de regresión. Este modelo supone que se tiene suficiente variación en las variables de interés, que permitirá estimar los parámetros que asocian a la variable dependiente con las variables explicativas.

Modelos basados en agentes. Simulan el resultado de las interacciones de agentes heterogéneos a partir de reglas básicas de comportamiento. Estos modelos pueden llegar a generar resultados que no podían ser previstos por otro tipo de enfoques y que resultan de las interacciones entre agentes, a pesar de que las reglas de comportamiento sean sencillas.

Modelos biofísicos. Estos modelos solamente consideran los elementos biológicos y físicos de un entorno determinado y a partir de relaciones entre ellos simulan la actividad agropecuaria. En este sentido, este tipo de modelos permiten estimar el potencial productivo de un área determinada pero dejan de lado las interacciones de variables económicas.

Existe un intercambio (trade-off) entre el grado de complejidad en la representación de la economía y la sencillez de estimación empírica entre los 5 enfoques (equilibrio general, equilibrio parcial, modelos de regresión, modelos basados en agentes y modelos biofísicos). En la ilustración 2 se representa esta
relación. A mayor complejidad en la representación de la economía, menor es la sencillez en la estimación, en este caso se ubican los modelos de equilibrio general, en el otro extremo se ubican los modelos de regresión, que generalmente son más sencillos de estimar pero ignoran las relaciones dinámicas que hay entre los agentes económicos.

Ilustración 2. Complejidad en la representación y sencillez en la estimación

Fuente: Elaboración propia.

i.6. Entrevistas a expertos

Se realizaron entrevistas a tres expertos que han estado involucrados en el desarrollo de modelos de equilibrio general computable (MECG) para México y a un experto en modelación económica y en el sector agropecuario y forestal. La entrevista consistió en identificar de manera general las ventajas y desventajas de utilizar la modelación económica para proyectar emisiones de GEI. También se discutió sobre las consideraciones que debían tomarse en cuenta para modelar el sector agropecuario. Para evitar sesgos en la entrevista se eligió un formato de entrevista libre, aunque se partió de un conjunto de preguntas guía (Ver Anexo 1). Los entrevistados fueron:
Alejandra Elizondo, académica del Centro de Investigación y Docencia Económicas (CIDE), y María Eugenia Ibarrarán, académica de la Universidad Iberoamericana Campus Puebla, quienes participaron en el desarrollo de un MEGC en conjunto con Roy Boyd y María Eugenia Ibarrarán. Este modelo está descrito ampliamente en el trabajo de Ibarrarán & Boyd (2006) y ha sido usado para simular distintas políticas, por ejemplo, la reducción de subsidios a la energía (M. E. Ibarrarán et al., 2015) y un sistema de seguridad social universal (Antón, Boyd, Elizondo, & Ibarrarán, 2016).

George Dyer, consultor independiente. Participó en el desarrollo de un modelo de equilibrio general computable para el sector agrícola para el Instituto Nacional de Ecología y Cambio Climático (INECC). Con este modelo se simuló un ajuste al gasto público, una política de fomento a la inversión pecuaria, y choques climáticos en la productividad agrícola. Los resultados de estas simulaciones están disponibles en (INECC, 2015a).

Juan Manuel Torres Rojo, académico del Centro de Investigación y Docencia Económicas (CIDE). Anteriormente dirigió la Comisión Nacional Forestal (CONAFOR), y es especialista en modelación económica, y del sector agropecuario y forestal.

I.6.1 Elementos relevantes de la entrevista con Alejandra Elizondo

La Dra. Elizondo comentó que sería recomendable utilizar los modelos que ya han sido desarrollados para el INECC. Comentó que un modelo de equilibrio general que considera a toda la economía puede no ser la mejor opción, porque el sector primario tiene una participación muy pequeña en la economía y, por ende, el efecto económico de una política agropecuaria difícilmente se ve reflejada en una magnitud considerable en el resto de la economía, además, otros efectos sociales importantes, no se ven reflejados. Por ejemplo, modelar mejores prácticas agrícolas probablemente no se vea reflejado en un cambio sustancial en los resultados generales del modelo. Por el contrario, es mejor si se utiliza un modelo solamente adaptado al sector
agropecuario, dado que estos cambios se verán más visibles en los resultados del modelo.

Abundó respecto a que modelar el sector primario es complejo, porque es un sector que emite, pero también absorbe emisiones. Comentó que un modelo de este tipo también debiera considerar prácticas “híbridas”, tales como los sistemas silvopastoriles, dado que en el sector ambiental se le ha dado un impulso a estas prácticas como medidas de mitigación. Asimismo, recomendó que un MEGC debería considerar en su diseño, otras políticas que también afectan las emisiones como subsidios agropecuarios, por ejemplo, los asociados a la energía. Otro grado de complejidad de un modelo agrícola es que existen un buen número de tecnologías para las que no se ha confirmado su rentabilidad, por lo que se debiera evitar incluirlas en el modelo. Respecto a la dificultad de obtener información sobre este tipo de tecnologías para nutrir estos modelos comentó que la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) cuenta con información muy vasta pero en ocasiones poco útil para los fines del modelo; por ejemplo, se cuenta con registros de cuántas personas han recibido apoyos para establecer agricultura protegida, pero no se dispone de información desagregada sobre las características de estos viveros, lo que dificulta la modelación.

La Dra. Elizondo trabajó sobre el modelo Ibarrarán & Boyd (2006) incluyendo el cambio de uso de suelo al modelo. Comentó que esta variable es muy relevante porque de ella proviene una buena parte de las emisiones de este sector y que en un modelo estático es posible incorporar el cambio de uso de suelo y aleatoriedad. El cambio de uso de suelo es una variable muy relevante para el sector agropecuario y la aleatoriedad permite realizar análisis de sensibilidad sobre los supuestos del modelo. En un modelo dinámico es posible incorporar ambos elementos, pero el planteamiento, programación y calibración evidentemente se complejiza.

Finalmente, la Dra. Elizondo recomendó utilizar herramientas más amigables en su uso que un modelo de equilibrio general para proyectar emisiones. Por ejemplo,
Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base

hizo referencia a la Calculadora 2050, desarrollada por la Secretaría de Energía, el Centro Mario Molina, la Embajada Británica en México y el Departamento de Energía y Cambio Climático del gobierno británico. Esta herramienta permite crear escenarios a largo plazo para asegurar los requerimientos de energía del país, pero a la vez reducir las emisiones de gases de efecto invernadero. En su opinión, es recomendable que el INECC recurra a este tipo de herramientas.

1.6.2 Elementos relevantes de la entrevista con George Dyer

Respecto al modelo que desarrolló el Dr. Dyer, comentó que ha desarrollado un modelo que incluye a productores no rurales (por ejemplo, industriales que usan insumos agrícolas) y considera explícitamente uso de suelo.

Mencionó dos modelos de proyección de producción, que pueden servir de referencia, realizados por SAGARPA, FAPRI, & AFPC (s.f.) y por SAGARPA (2011), respectivamente. Ambos son modelos de equilibrio parcial y proyectan la producción de algunos productos agropecuarios a largo plazo. No obstante, estos modelos consideran el cambio de uso de suelo de manera limitada, y por ende la proyección de las emisiones de GEI. Además, no toman en cuenta todos los factores sociales y económicos que pueden afectar la producción, tampoco las diferencias entre productores de autoconsumo y comerciales.

También hizo referencia al Development Policy Evaluation Model (DEVPEM), (Brooks, Filipski, Jonasson, & Taylor, 2011), que consiste en un MEG adaptado para el sector agrícola. Este modelo es útil porque considera costos de transacción y hogares con autoconsumo. Al respecto, mencionó que el Modelo de Agentes Rurales en un Contexto de Equilibrio General - MARCEG) tiene incorporados productores de autoconsumo de manera implícita, pero que puede ser modificado para modelarlos de forma explícita. No obstante, indicó que es necesario modelarlos a mayor detalle.

17 http://www.calculadoramexico2050.org/
También comentó que el MARCEG puede ser modificado para darle un carácter dinámico, pues en su estatus actual es un modelo estático. Esto permitiría incluir el cambio de uso de suelo en el modelo.

I.6.3 Elementos relevantes de la entrevista con María Eugenia Ibarrarán

En opinión de la Dra. Ibarrarán, el enfoque adecuado para modelar la actividad económica depende de la disponibilidad de información. Independientemente de lo anterior, para ella un enfoque de equilibrio general puede ser adecuado, pero tendría que desagregarse este sector para que sea útil. No obstante, un nivel de desagregación mayor impondrá mayores requerimientos de información e incluso es posible que el modelo no pueda ser computable con la capacidad de las computadoras actuales.

I.6.4 Elementos relevantes de la entrevista con Juan Manuel Torres Rojo

En opinión del Dr. Torres, un enfoque útil para modelar la actividad económica en el sector es a partir del principio de parsimonia. Esto es, tratar de usar la solución más simple y poco a poco ir complejizando el modelo si no se está obteniendo el objetivo deseado. Bajo este principio entonces recomienda partir de un MEP e ir evolucionando el modelo de acuerdo a las necesidades.

Esta respuesta la dio a partir de que se le preguntó cuál era el enfoque adecuado considerando las opciones: modelo de equilibrio parcial, general o regresiones. No obstante, posteriormente hizo referencia a los modelos basados en agentes. Explicó el funcionamiento básico de estos modelos y argumentó que pueden ser muy útiles para representar la realidad de manera más precisa. Explicó que estos modelos permiten modelar agentes y tipos de agentes heterogéneos, algo que no permiten otros tipos de modelos. Finalmente, indicó que un buen modelo basado en agentes requiere que las reglas de comportamiento efectivamente representen la reacción de los agentes que se están modelando.
I.7. Relación de los modelos económicos con la proyección de emisiones

Los resultados de los modelos que se han descrito se pueden expresar en términos de emisiones, considerando factores de emisión por actividad económica. Por ejemplo, si se requiere estimar la reducción de emisiones que provocaría un impuesto al carbono en ciertos sectores económicos, se estima un modelo de equilibrio general computable simulando la situación con y sin impuesto al carbono. Se obtiene el cambio en las cantidades finales y se expresa ese cambio en términos de emisiones a partir de factores de emisión previamente estimados, por ejemplo, a partir de un inventario de emisiones. Supóngase que se fija un impuesto a actividades ganaderas y que este genera una disminución de la producción de este sector en 10%, entonces si en un inventario de emisiones se conoce que este sector genera 100 MtCO2e, entonces la reducción de emisiones por dicha política será de 10 MtCO2e.

En el caso de una regresión econométrica es posible modelar las emisiones de GEI como una variable dependiente del modelo o considerar el nivel de producción de los sectores económicos como variable dependiente. En el primer caso la proyección de emisiones se puede obtener del mismo modelo, en el segundo, es preciso realizar el mismo cálculo que en el modelo de equilibrio general, a partir de factores de emisión.

CAPITULO II. SELECCIÓN DEL ENFOQUE METODOLÓGICO

Para seleccionar un enfoque metodológico se establecieron un conjunto de criterios deseables, basados en los Términos de Referencia de este estudio (Tabla 1).

<table>
<thead>
<tr>
<th>Código</th>
<th>Criterio</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Vinculo de variables económicas con emisiones de GEI y CCVC?</td>
<td>¿Vincular variables económicas con emisiones de GEI y CCVC?</td>
</tr>
<tr>
<td></td>
<td>GEI y CCVC</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>Respaldo institucional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>¿Fueron desarrollados por universidades nacionales e internacionales, centros de investigación, agencias gubernamentales, organizaciones no gubernamentales u organismos internacionales?</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>Largo plazo<sup>(1)</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>¿Pueden proyectar intervalos de mínimo 15 años?</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>Incertidumbre</td>
<td></td>
</tr>
<tr>
<td></td>
<td>¿Pueden medir y, en su caso, minimizar la incertidumbre?</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>Datos validados</td>
<td></td>
</tr>
<tr>
<td></td>
<td>¿Utilizan como insumos datos de anuarios, prospectivas, informes o reportes oficiales desarrollados por instituciones gubernamentales, o por instituciones académicas, centros de investigación, organizaciones no gubernamentales mexicanas u organizaciones internacionales de forma consuetudinaria?</td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>Insumos para el INEGyCEI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>¿Generan variables de salida que se puedan emplear como insumos para el INEGyCEI y las estimaciones de la línea base sectorial o símiles de los mismos?</td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td>Ecuaciones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se reportan las ecuaciones</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>Parámetros</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Se reportan los parámetros</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>Código disponible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>El código está disponible</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>Adaptado al sector agropecuario</td>
<td></td>
</tr>
<tr>
<td></td>
<td>El modelo está adaptado al sector agropecuario</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>Emisiones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>El modelo tiene integrado el reporte de emisiones</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>Enfoque nacional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Está adaptado para México</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Con base en estos criterios se elaboró una matriz para calificar los modelos que se han identificado. En esta matriz se integran tanto los descritos en el primero producto como los modelos adicionales descritos en la sección anterior (Tabla 2). En esta tabla se presentan éstos agrupados dependiendo su enfoque metodológico, se identificaron 5 enfoques:

1. Modelos de equilibrio general
2. Modelos de equilibrio parcial
3. Modelos de regresión
4. Modelos basados en agentes
5. Modelos biofísicos
Tabla 2. Modelos y criterios

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre de la publicación</th>
<th>Autor</th>
<th>Año</th>
<th>Tipo</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
<th>C10</th>
<th>C11</th>
<th>C12</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modeling Land-use Related Greenhouse Gas Sources and Sinks and their Mitigation Potential</td>
<td>Hertel et al.</td>
<td>2008</td>
<td>EG</td>
<td>x</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>A Calibrated Dynamic General Equilibrium Model for Mexico</td>
<td>Montiel, P. J.</td>
<td>2007</td>
<td>EG</td>
<td>x</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>An Overview of the OECD ENV-Linkages Model</td>
<td>Château, J., et al.</td>
<td>2014</td>
<td>EG</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>The Development Policy Evaluation Model (DEVPEM)</td>
<td>Brooks, et al.</td>
<td>2011</td>
<td>EG</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Phoenix Model Documentation</td>
<td>Wing, I. S., et al.</td>
<td>2011</td>
<td>EG</td>
<td>x</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Hacia el Futuro</td>
<td>Ibarrarán, E., R. Boyd</td>
<td>2006</td>
<td>EG</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>A Standard Computable General Equilibrium (CGE) Model in GAMS</td>
<td>Lofgren, H., et al.</td>
<td>2002</td>
<td>EG</td>
<td>x</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Extensión al Modelo de Agentes Rurales en un Contexto de Equilibrio General</td>
<td>INECC (Dyer, G.)</td>
<td>2015</td>
<td>EP</td>
<td>x</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Proyecciones para el Sector Agropecuario de México</td>
<td>SAGARPA/ FAPRI/ AFPC</td>
<td>s.f.</td>
<td>EP</td>
<td>x</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>FAPRI-UK Model Documentation</td>
<td>Moss, J., M. et al.</td>
<td>2011</td>
<td>EP</td>
<td>x</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>Perspectivas de largo plazo para el sector agropecuario de México 2011-2020</td>
<td>OCDE</td>
<td>2007</td>
<td>EP</td>
<td>x</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies</td>
<td>Jovanovic et al.</td>
<td>2015</td>
<td>Reg</td>
<td>x</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>Price-induced changes in greenhouse gas emissions from agriculture, forestry, and other land use: A spatial panel econometric analysis</td>
<td>Chakir, R., S. De Cara, B. Vermont</td>
<td>2014</td>
<td>Reg</td>
<td>x</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>Long-term forecasting of agricultural indicators and GHG emissions in Latvia</td>
<td>Rívža et al.</td>
<td>2015</td>
<td>EP</td>
<td>x</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>Effects of agriculture on climate change: a cross country study of factors affecting carbon emissions</td>
<td>Prasad-Pant, K.</td>
<td>2009</td>
<td>Reg</td>
<td>x</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>Regression modelling of agriculture greenhouse gases emissions in Poland</td>
<td>Kolasa-Wiącek, A.</td>
<td>2012</td>
<td>Reg</td>
<td>x</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>Agent-based Modelling of Climate Adaptation and Mitigation Options in Agriculture</td>
<td>Berger et al.</td>
<td>2014</td>
<td>MBA</td>
<td>x</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>Global agro-ecological zones assessment for agriculture</td>
<td>Fischer et al.</td>
<td>2008</td>
<td>MBF</td>
<td>x</td>
<td>6</td>
</tr>
</tbody>
</table>

II.1. Descripción de los modelos seleccionados

En esta sección se describen los modelos que se consideraron como candidatos para modelar la actividad agropecuaria. En total se analizaron 21 modelos que consideran los 5 enfoques metodológicos anteriormente señalados. El orden en que se presentan corresponde a la numeración de la Tabla 2.

1. El modelo de Hertel, Lee, Rose, & Sohngen (2008) cumple con 9 de 12 criterios (ver Tabla 2). Es una adaptación al sector agropecuario del modelo desarrollado por el Global Trade Analysis Project (GTAP). El modelo original es de equilibrio general, multi-región y multi-sectorial. Este modelo fue adaptado al contexto agropecuario desagregando el uso de suelo para actividades agrícolas, pecuarias y forestales. El modelo puede adaptarse a un contexto dinámico, existe documentación que reporta ecuaciones y parámetros y está vinculado a la proyección de emisiones. La principal desventaja es que es un modelo de código cerrado, y su uso requiere la compra de una licencia.\(^{18}\)

2. El modelo de Montiel (2007) cumple con 8 de 12 criterios. Las virtudes de este modelo radican en que es dinámico, tiene incorporados elementos aleatorios, sus ecuaciones y el valor de los parámetros se reportan en la documentación, el código es abierto y está disponible y está adaptado para México. Por otro lado, la principal desventaja de este modelo es que no es exclusivo para el sector agrícola, sino para todos los sectores productivos, lo que implicaría ajustarlo para desagregar en mayor medida este sector.

3. El modelo de la OCDE ENV-Linkages también está calificado con 6 de 12 criterios. Este modelo es dinámico, se reportan las ecuaciones y el valor de sus parámetros y permite modelar distintos tipos de emisiones de consumo.

\(^{18}\) Al momento de la redacción de este documento la licencia tiene un costo de 3,560 dólares para instituciones de gobierno. Para más detalles ver https://www.gtap.agecon.purdue.edu/databases/pricing.asp
de combustibles, del sector agrícola, y forestal. El código no está disponible pero es posible, en principio, replicarlo a partir de las ecuaciones reportadas en la documentación. Si bien no es un modelo para el sector agrícola, tiene la ventaja de que está incorporada la modelación de las emisiones de este sector.

4. En Brooks et al. (2011) se presenta el modelo DEVPEM (Development Policy Evaluation Model), que es un modelo de equilibrio general dinámico, se reportan las ecuaciones y los valores de los parámetros. Su principal ventaja es que está adaptado al sector agrícola. En la documentación no se reporta en qué lenguaje está programado.

7. El modelo de Lofgren (2002) es un modelo de equilibrio general estático, para el que se provee de una documentación extensa, está adaptado al sector agrícola y se provee el código para replicarlo, las cuales son sus principales ventajas. Este modelo no está vinculado a emisiones ni adaptado para México.

8. El modelo de Garbaccio, Ho, & Jorgenson (2000) es un modelo de equilibrio general, de tipo dinámico, para el que se reportan las ecuaciones que lo conforman. Tiene la ventaja de que modela las emisiones de consumo de combustibles, sin embargo, está adaptado al contexto chino y no está enfocado al sector agropecuario.
9. El modelo de equilibrio parcial MARCEG (INECC, 2015a) está calificado con 7 de 12 criterios. Este modelo tiene un carácter estático y el código, ecuaciones y parámetros no son públicos. Sus principales desventajas son que es un modelo estático y no tiene incorporados aspectos aleatorios. Sin embargo, es un modelo exclusivo para el sector agrícola y adaptado para el contexto mexicano. Como se mencionó, es posible transformarlo a un modelo dinámico e incluir a productores no rurales, que tienen un papel importante en la producción agrícola. Para vincularlo con las emisiones sería necesario establecer funciones de transformación a partir de factores de emisión.

10. El modelo de equilibrio parcial desarrollado por el gobierno británico (Moss, Patton, Zhang, & Kim, 2011) cumple con 6 de 11 criterios. Éste permite proyectar la producción agropecuaria de una diversidad muy amplia de productos y al ser un modelo de equilibrio parcial tiene un menor grado de complejidad para su replicación. No obstante, está diseñado al contexto británico y si bien se reportan las ecuaciones y valor de los parámetros, su adaptación al contexto mexicano requeriría un trabajo considerable tanto por el ajuste de las ecuaciones al contexto de los productos mexicanos, como la obtención del valor de los parámetros.

11. SAGARPA cuenta con dos modelos de equilibrio parcial, SAGARPA et al. (s.f.) y SAGARPA (2011). Ambos modelos son similares, su objetivo es proyectar la producción agropecuaria. No obstante, como se comentó, no consideran aspectos de cambio de uso de suelo y tampoco las diferencias entre productores de autoconsumo y comerciales.

12. El modelo AGLINK-COSIMO es un modelo de equilibrio parcial, adaptado al sector agrícola, de tipo dinámico, y tiene incorporados elementos estocásticos (OCDE, 2007), no obstante no se reportan las ecuaciones, por lo que es poco probable que se pueda replicar.

13. (Ver inciso 11)
14. El modelo de Jovanović, Kašćelan, Despotović, & Kašćelan (2015) obtuvo el máximo de puntos posibles. La razón radica en que este modelo considera tanto variables físicas como económicas, que tienen un impacto en las emisiones de GEI. En particular, especifican un modelo de regresión panel que integra como variable dependiente las emisiones de GEI y como variables explicativas una variable de fertilizantes (nutrientes requeridos por unidad de tierra cultivable), el área agrícola y de bosque per cápita, un índice de la producción de cultivos, la tasa de crecimiento de la población rural, la tasa de crecimiento de la economía per cápita, el tamaño del sector agrícola, del industrial y el de servicios y un rezago de la variable de emisiones.

15. Chakir, De Cara, & Vermont (2014) estiman las emisiones de GEI en función del índice de precios agrícolas, de precios pecuarios, precios de productos forestales, precios de fertilizantes y de precios de tierras de pastizal. Las emisiones modeladas son las emisiones provenientes de uso de fertilizantes sintéticos, de fermentación entérica, del estiércol y las emisiones netas del sector de uso de suelo, cambio uso de suelo y silvicultura (USCUSS). Los autores plantean un modelo panel para Francia a nivel subnacional. Además, incluyen en su estimación correlación espacial. A partir de estas estimaciones generan mapas por departamento (estados) de los distintos tipos de emisiones.

16. Rīvža, Bārzīna, Mozga, & Lauva (2015) estiman un modelo tendencial a partir de series de tiempo del acervo de ganado, de cerdos y de áreas cultivadas en Latvia, en función del Producto Interno Bruto (PIB), de la participación de la actividad agropecuaria en el PIB, del tamaño de la población, de los precios agrícolas, del valor de las exportaciones y del consumo de cultivos agrícolas en hogares. Posteriormente, expresan la estimación de estos acervos en términos de emisiones a partir de factores de emisión.
17. El modelo de Prasad-Pant (2009) estima las emisiones de bióxido de carbono per cápita en función del área agrícola, del uso de sistemas de irrigación y de fertilizantes, de la presión poblacional sobre el área agrícola, del área forestal, del porcentaje de energía empleado que proviene de la biomasa, del uso de energía per cápita y de la eficiencia en el uso de energía. Cabe señalar que este modelo no incorpora elementos de actividad económica de manera directa (por ejemplo, el precio de insumos agrícolas) y tampoco analiza el sector pecuario.

18. El modelo del USDA (2016) tiene un carácter más parecido a un inventario de emisiones, modelando las emisiones agropecuarias de manera tendencial a partir de información de flujos netos de carbono de los sectores agrícola, pecuario, forestería y bosques urbanos, y del volumen de producción agropecuaria. Para la proyección se establecen escenarios tendenciales del crecimiento económico, de la construcción de casas (por el uso intensivo de madera de esta actividad en el contexto de Estados Unidos), y de tendencias en el uso de suelo.

19. El modelo de Kolas-Więcek (2012) estima emisiones de GEI provenientes del sector agropecuario en Polonia en función de variables de producción de cultivos y productos agropecuarios. Los autores encuentran que estas variables explican 87% de las emisiones.

20. El modelo Global Agro-ecological Zones es un modelo desarrollado por la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) y el Instituto Internacional para el Análisis de Sistemas Aplicados (IIASA) basado en aspectos físicos para estimar la producción agrícola potencial de la tierra y la brecha entre la producción real y la producción potencial para todo el mundo. El modelo utiliza como insumos las condiciones climáticas observadas y los diferentes escenarios climáticos futuros según predicciones de Modelos de Circulación General, el tipo de suelo, la elevación y la pendiente del terreno, la cobertura vegetal, la
La existencia de Áreas Naturales Protegidas, y las divisiones político-administrativas, a una resolución de 5 minutos de arco (Fischer et al., 2008).

Si bien el modelo Global Agro-ecological Zones no genera información sobre las emisiones de GEI ni CCVC, se pueden utilizar factores de conversión de cultivos para estimarlos con base en la información de producción agrícola que genera el modelo. La estimación del modelo es compleja pero los desarrolladores han creado una herramienta en línea de acceso abierto para estimar el modelo de forma fácil aplicado a diferentes escalas geográficas.

21. Los modelos de uso de suelo basados en agentes, utilizados por primera vez en Lansing & Kremer (1993), son un tipo de modelos con un enfoque que combina aspectos físicos de la producción agropecuaria, con decisiones de los productores (agentes) a nivel hogar. Estos modelos consisten en un número de agentes que interactúan entre ellos y con el medio ambiente. El comportamiento de los agentes puede basarse en su propio modelo del ambiente, el cual puede no ser acorde a la teoría económica en el sentido de que puede no estar basado en la racionalidad económica. Los agentes pueden tomar decisiones y cambiar su comportamiento como resultado de interacciones entre ellos y con el ambiente. Cabe señalar que al igual que el Global Agro-Ecological Zones, estos modelos necesitan de información climática, de agua y de suelos y producen información para una unidad de análisis espacial (Matthews, Gilbert, Roach, Polhill, & Gotts, 2007).

Los modelos de uso de suelo basados en agentes se pueden estimar para responder diferentes preguntas por ejemplo, medidas de adaptación al cambio climático y el cambio de uso de suelo relacionado con la expansión de la frontera agrícola (Berger & Troost, 2014). La complejidad es alta pero existen diferentes softwares de licencia abierta, uno de ellos llamado MP-MAS.
II.2. Análisis comparativo de modelos seleccionados

En esta sección se hace un recuento de las ventajas y desventajas de los enfoques metodológicos identificados. Posteriormente, se muestra una matriz que resume este listado en la Tabla 3 (Ventajas y desventajas de los enfoques metodológicos).

Al final de la sección se presenta una reflexión sobre el enfoque metodológico que se propone usar para el desarrollo del tercer producto de este estudio.

Modelos de Equilibrio General

Ventajas

- Proveen de un marco de referencia coherente para el análisis de políticas (Tovar, 2008).
- Han sido adoptados por bancos centrales de varios países (Sbordone, Tambalotti, Rao, & Walsh, 2010), lo que refleja su aceptación como instrumento de política.
- Tienen un poder predictivo regularmente superior a modelos de equilibrio parcial (Christoffel, Coenen, & Warne, 2010).

Desventajas

- Son rígidos, pueden fallar en representar de manera fiel el Producto Interno Bruto si se especifican relaciones estructurales (funciones) de manera incorrecta (Tovar, 2008). Esto deriva en que son muy sensibles a los supuestos que se adoptan sobre las funciones de producción, de utilidad y otros parámetros que describen las decisiones de los agentes.
- Están sujetos a la “maldición de la dimensión” (Tovar, 2008), lo que significa que para representar de manera fiel la actividad económica la cantidad de información requerida crece exponencialmente. Esto implica
que el modelo sea difícil de entender, manejar, analizar y comunicar los resultados.

- Requieren establecer una gran cantidad de supuestos ad-hoc (De Grauwe, 2010).
- Suponen que no existen conflictos de interés ni expectativas incompatibles entre agentes (Solow, 2010).
- Suponen que no existe desempleo involuntario (Solow, 2010).
- No es posible determinar el nivel de incertidumbre que surge de los supuestos. Si bien se puede realizar un análisis de sensibilidad sobre los supuestos, generalmente no hay un punto de referencia para evaluar el margen de sensibilidad.
- Requiere de utilizar fuentes secundarias de información para asignar el valor de múltiples parámetros. Esto provoca que a veces no se cuente con toda la información o que no se pueda garantizar un nivel de calidad total sobre el valor de los parámetros.

Modelos de equilibrio parcial

Los modelos de equilibrio parcial heredan las ventajas y desventajas de los modelos de equilibrio general pero tienen la ventaja de que son más sencillos de instrumentar, pues exigen menos información. Su principal desventaja es que ignoran las interrelaciones de algunos agentes de la economía.

Modelos de regresión

Ventajas

- Son modelos que pueden ser relativamente fáciles de estimar, si se cuenta con suficientes observaciones.
- Son fácilmente comunicables, pues establecen relaciones causales o correlacionales entre variables.
- Pueden tener un poder predictivo bastante aceptable.
Pueden considerar tanto variables económicas como físicas.

Estos modelos pueden validarse a partir de su ajuste estadístico.

Desventajas

- Ignoran las interrelaciones que existen en algunas variables económicas.
- Existe el riesgo de identificar relaciones espurias, esto es, que se identifique una correlación entre variables pero no exista ningún vínculo causal entre ambas.
- Existe el riesgo de una mala especificación, esto es, información de la que no se dispone pero tendría que estar incluida en el modelo y ello potencialmente provoca que las estimaciones estén sesgadas.
- Las predicciones que pueden hacerse con ellos son válidas a corto plazo, en tanto no haya cambios estructurales, por lo que presentan limitaciones para realizar predicciones de mayor alcance.

Modelos basados en agentes

Ventajas

- De acuerdo con Bonabeau (2002) los MBA tienen 3 ventajas principales:
 - Identificar fenómenos emergentes. Para el autor, en un fenómeno emergente, el resultado del mismo no es la mera suma de las partes. Este tipo de fenómenos ocurren cuando los agentes toman decisiones emergentes, tomando solamente en cuenta su

19 Uno de sus ejemplos más ilustrativos es una situación en donde cientos de personas están en un auditorio que tiene una única salida y ocurre una emergencia, que obliga a las personas a evacuar el lugar. Se plantean dos situaciones: (i) la salida no tiene ningún tipo de obstrucción y (ii) la salida tiene un pilar cercano, colocado ligeramente a la derecha o izquierda de la puerta. El resultado de una simulación indica que en la situación en la que no existe ninguna obstrucción a la salida el número de heridos es mayor y las personas que logran evacuar es menor, que en la situación en la que se coloca un pilar. Este resultado es contra-intuitivo y solo puede observarse al utilizar herramientas como los MBA. Esto es, un modelo agregado basado en comportamientos racionales no permitiría predecir este tipo de comportamientos.
Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base

entorno inmediato y no todo el impacto de sus decisiones en un sistema.

- Proveer una descripción natural de un sistema. Se refiere a la capacidad de representar la realidad de manera más precisa, pues pueden ajustarse y calibrarse para tal fin.

- Incorporar flexibilidad. Los MBA son sumamente flexibles, pues permiten establecer reglas de comportamiento que no necesariamente tienen que cumplir con supuestos teóricos como en el caso de los modelos económicos y se pueden incluir una diversidad muy amplia de agentes en tanto la capacidad de cómputo lo permita.

- Permiten modelar agentes heterogéneos (Cristelli, Pietronero, & Zaccaria, 2011).

- No dependen del supuesto de equilibrio, del cual existe evidencia de que en algunas situaciones no representa fielmente a la realidad.

- Permiten incorporar elementos biofísicos.

Desventajas

- No es posible identificar si un resultado sorpresivo del modelo se debe a un error en la especificación de las reglas de comportamiento o en la programación, o a una verdadera consecuencia del modelo (Chen, 2012).

- La amplia heterogeneidad de los agentes que puede incluirse en el modelo provoca que no sea claro si el resultado de la simulación proviene de una manipulación ad-hoc de los parámetros o a una representación efectiva de la realidad (Chen, 2012).

- No existe un enfoque estándar de modelación, lo que impide contrastar modelos, validarlos y juzgar su replicabilidad (Chen, 2012).

- Requieren información detallada que generalmente se obtiene de grupos focales u otro tipo de instrumentos, pues requiere modelar los factores
que son relevantes para los agentes a la hora de tomar decisiones (en su defecto, pueden nutrirse de fuentes secundarias y posteriormente se calibran para que reflejen un resultado observado).

Modelos biofísicos

Ventajas

- Consideran elementos físicos y biológicos que ignoran los modelos económicos.

Desventajas

- Ignoran las interrelaciones de carácter económico que existen entre los agentes por sí mismos. Es necesario vincularlos de alguna forma con el comportamiento humano.
Tabla 3. Ventajas y desventajas de los enfoques metodológicos

<table>
<thead>
<tr>
<th>Enfoque</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelos Equilibrio</td>
<td>Marco de referencia coherente</td>
<td>Son rígidos</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td>Respaldo de gobiernos y academia Muy sensibles al valor de los parámetros</td>
</tr>
<tr>
<td>Poder predicción general</td>
<td>Está sujetos a la “maldición de la dimensión”</td>
<td>Requieren establecer supuestos ad-hoc</td>
</tr>
<tr>
<td>Pueden ser validados</td>
<td></td>
<td>Suponen que no existen conflictos de interés entre agentes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suponen que el desempleo es voluntario</td>
</tr>
<tr>
<td>Modelos Equilibrio</td>
<td>Marco de referencia coherente</td>
<td>Son rígidos</td>
</tr>
<tr>
<td>Parcial</td>
<td></td>
<td>Respaldo de gobiernos y academia Muy sensibles al valor de los parámetros</td>
</tr>
<tr>
<td>Poder predicción general</td>
<td>Está sujetos a la “maldición de la dimensión”</td>
<td>Requieren establecer supuestos ad-hoc</td>
</tr>
<tr>
<td>Exigen menos información que un modelo de equilibrio general</td>
<td></td>
<td>Suponen que no existen conflictos de interés entre agentes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suponen que el desempleo es voluntario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ignoran algunas interrelaciones entre agentes</td>
</tr>
<tr>
<td>Modelos de Regresión</td>
<td>Son relativamente sencillos de estimar</td>
<td>Ignoran interrelaciones entre agentes</td>
</tr>
<tr>
<td></td>
<td>Pueden ser validados</td>
<td>Están sujetos a errores de especificación</td>
</tr>
<tr>
<td></td>
<td>Son sencillos de comunicar</td>
<td>Las predicciones solo son válidas a corto plazo</td>
</tr>
<tr>
<td></td>
<td>Tienen alto poder predictivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pueden considerar variables económicas y físicas</td>
<td></td>
</tr>
<tr>
<td>Modelos Basados en</td>
<td>Permiten identificar fenómenos emergentes</td>
<td>No parten de una teoría estándar</td>
</tr>
<tr>
<td>Agentes</td>
<td>Permiten representar fielmente la realidad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Son flexibles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permiten modelar heterogeneidad en los agentes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No dependen del supuesto de racionalidad</td>
<td></td>
</tr>
<tr>
<td>Modelos Biofísicos</td>
<td>Consideran aspectos espaciales</td>
<td>Ignoran las relaciones económicas</td>
</tr>
<tr>
<td></td>
<td>Pueden ser validados parcialmente (al compararlos con la producción real)</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en información de (Bonabeau, 2002; Chen, 2012; Christoffel, Coenen, & Warne, 2010; Cristelli, Pietronero, & Zaccaria, 2011; De Grauwe, 2010; Solow, 2010)
A partir del análisis comparativo de enfoques metodológicos se propone la adopción de un modelo basado en agentes, y en particular, el modelo de Berger et al. (2007). Se recomienda esto por los importantes cuestionamientos y limitantes que se documentaron en este reporte acerca de los enfoques económicos. En particular, el supuesto de racionalidad puede ser una vía equivocada en el contexto rural. Si bien Schultz (1964) propone que las áreas rurales los hogares son “pobres pero eficientes”, desde entonces ha habido un amplio debate sobre la validez de este supuesto (Mendola, 2005). Por ejemplo, De Janvry, Fafchamps, & Sadoulet (1991) argumenta que los hogares se comportan como maximizadores de utilidad pero se enfrentan a la falta de mercados, lo que añade restricciones adicionales a su comportamiento, y por tanto, un enfoque microeconómico tradicional no es suficiente.

Adicionalmente, Mendola (2005) argumenta que estos hogares enfrentan un nivel de incertidumbre demasiado elevado (inseguridad sobre el control de los recursos, condiciones climáticas adversas, enfermedades, desastres naturales, entre otros), lo que provoca que se comporten como agentes muy adversos al riesgo que no pueden tomar decisiones de inversión riesgosas con miras a elevar su ingreso. No obstante, la autora argumenta que la sola aversión al riesgo no es suficiente para explicar las decisiones de los hogares rurales, pues también están sujetos a restricciones exógenas que les impiden tomar las mejores decisiones (restricciones al crédito, por ejemplo). Todo lo anterior impide suponer que los hogares toman decisiones riesgosas que elevarían su ingreso, lo cual es consistente con un enfoque de elección racional.

Finalmente, como propone Dasgupta (1995), las personas tienden a elegir entre un número limitado de objetivos con base en un su experiencia a partir de reglas heurísticas. Esto se complementa con lo descrito sobre los cuestionamientos al supuesto de racionalidad que se expuso al principio de este documento y por tanto,
se propone que el enfoque metodológico elegido sea uno alternativo al de la elección racional.

Además, un modelo basado en agentes permite incorporar heterogeneidad de agentes, lo cual es especialmente importante en el contexto mexicano, en la que la diversidad económica, social y ambiental es muy amplia, y además, en el cual convive la agricultura comercial a varias escalas y agricultura de traspatio o subsistencia. Asimismo, un modelo basado en agentes permite modelar comportamientos en los que hay conflicto de interés, expectativas incompatibles e incluso engaño entre los agentes. De manera general, este enfoque permite relajar otros supuestos económicos que pueden no ser adecuados (por ejemplo, el desempleo voluntario).

Cabe señalar también que el modelo de Berger et al. (2007) incorpora características biofísicas, adicional a las reglas de comportamiento de los agentes, lo cual añade la ventaja que representan los modelos biofísicos. Finalmente, este modelo ha sido adaptado a un contexto de cambio climático (Berger & Troost, 2014), por lo que es factible utilizarlo para los fines de proyección de emisiones.
CAPÍTULO III. DESARROLLO TEÓRICO DEL ENFOQUE METODOLÓGICO SELECCIONADO

III.1. Determinación del enfoque metodológico

En las secciones anteriores de este estudio se analizó un conjunto amplio de modelos que permiten representar la actividad económica del sector agropecuario, así como sus emisiones de GEI y CCVC. Estos modelos pueden ser clasificados en 5 enfoques metodológicos, a saber:

1. Modelos de equilibrio general
2. Modelos de equilibrio parcial
3. Modelos de regresión
4. Modelos basados en agentes
5. Modelos biofísicos

A partir de esta categorización de enfoques metodológicos se identificaron ventajas y desventajas para cada uno de ellos. Posteriormente, se presentaron los resultados del análisis a personal del INECC, así como una propuesta de un enfoque metodológico a seleccionar. La propuesta específica fue seleccionar un modelo basado en agentes dado que presenta una serie de ventajas sobre otros enfoques metodológicos. En particular, entre las principales ventajas de estos modelos están su amplia flexibilidad para modelar comportamientos, tipos de agentes y condiciones socioeconómicas, la capacidad de modelar agentes heterogéneos y que no descansan sobre el supuesto de racionalidad económica. Adicionalmente, se planteó al INECC que un modelo basado en agentes permitirá ampliar el conjunto de herramientas técnicas con las que cuenta este instituto.

Posterior a la propuesta de modelos se realizó una reunión con personal del INECC en la cual se discutieron las ventajas y desventajas de los distintos enfoques metodológicos. En esta reunión hubo un consenso respecto a que un modelo basado
en agentes es una opción adecuada de modelación porque parte de la teoría económica, aunque desde una perspectiva de racionalidad limitada, y además permite ampliar el conjunto de herramientas de análisis del instituto. A partir de esta exposición el personal del INECC estuvo de acuerdo en elegir este enfoque metodológico. En dicha reunión también se acordó que el modelo específico a utilizar sea el de Berger et al. (2007), el cual se desarrolla en una sección posterior de este documento, pero cabe señalar que cubre con las características de ser un modelo basado en agentes y además permite incorporar elementos biofísicos a la modelación.

III.2 Propuesta teórica

Los Modelos Basados en Agentes (MBA) son modelos computarizados que simulan a entidades autónomas, que interactúan a partir de reglas prescritas (Farmer & Foley, 2009). La definición es tan amplia que en ella caben una cantidad igualmente amplia de modelos, las condiciones que se requieren para que un modelo sea considerado de agentes es que se simulen agentes que son autónomos, que guíen su comportamiento a partir de reglas básicas y que exista interacción.

La virtud de este tipo de modelos es que las reglas de comportamiento generalmente son sencillas pero la interacción entre agentes y los resultados pueden ser complejos a pesar de la sencillez de la modelación (Jackson, Rand, Lewis, Norton, & Gray, 2016).

Jackson et al. (2016) establecen 7 pasos básicos para desarrollar un modelo de agentes:

1. Establecer la dimensión del mundo a modelar. Se refiere a identificar en cuántas dimensiones interactúan los agentes. Por ejemplo, en un universo en 2 dimensiones, los agentes están interactuando en una superficie (por ejemplo, deciden sobre el uso de suelo). Este paso aplica cuando las interacciones entre agentes están determinadas por el espacio.
Identificar cómo interactúan los agentes. Se refiere a determinar en qué grado y alcance interactúan los agentes. Por ejemplo, la decisión de los productores en un municipio de la península de Baja California quizá no impacte en las decisiones de los productores del sureste de México. Significa definir hasta qué punto las decisiones de unos agentes afectan a otros.

Definir cómo se comportan los agentes. Se refiere a identificar qué tipo de decisiones toman los agentes.

Identificar el pago de los agentes. A partir de su decisión qué es lo que reciben los agentes por tomar sus decisiones.

Identificar la dinámica de las decisiones. A partir de la decisión de los agentes en un momento, ¿cómo reaccionan? Este paso implica una dinámica del modelo y por lo tanto es opcional. Se refiere a modelos que son evolutivos, en donde los agentes ajustan su decisión a partir de sus decisiones pasadas y la decisiones de los demás.

Establecer un horizonte de vida de los agentes. Se refiere igualmente a un modelo de tipo dinámico y requiere establecer un periodo relevante y factible en los que los agentes adaptan sus decisiones. Por ejemplo, no sería realista establecer un modelo de productores que dure 100 años.

Análisis de robustez. Significa incorporar nuevos elementos al modelo y evaluar cómo cambia la dinámica del mismo. Por ejemplo, un análisis de sensibilidad es un análisis de robustez.

A diferencia de los modelos económicos, los MBA no parten del supuesto de equilibrio y tampoco buscan obtener predicciones de agentes promedio o agregadas. Por el contrario, cada agente actúa de acuerdo a su situación en determinado momento solo considerando las reglas que rigen su comportamiento. Esta definición amplia y flexible permite modelar prácticamente cualquier comportamiento, entre ellos las decisiones sobre la producción agropecuaria. Dado esto, el enfoque metodológico propuesto se basa en la maximización del ingreso disponible de hogares heterogéneos a partir de restricciones económicas y físicas.
Para ilustrar el funcionamiento básico de un modelo de este tipo se desarrolló un ejemplo en una hoja de cálculo (ver Ilustración 3)20, posteriormente, se describe a detalle el planteamiento teórico y de implementación del modelo de Berger et al. (2007).

Ilustración 3. Modelo de agentes básico

Fuente: Elaboración propia.

III.2.1 Ejemplo de modelo de agentes basado en precios y cantidades observadas en el mercado mexicano

Suponga que tenemos dos opciones de cultivo (caña de azúcar y maíz)21, cada uno de estos cultivos tiene un precio de venta y un rendimiento por hectárea distintos. Además, considérese que se puede utilizar maquinaria y/o trabajo para la producción. En un caso se supone que el cultivo puede realizarse totalmente con mano de obra, en el otro, se considera que el cultivo puede utilizar maquinaria, pero también se requiere trabajo (menos que en el primer caso) para la producción. La decisión del productor es elegir entre producir maíz, caña de azúcar o salir del

20 Junto con este producto se entregó al INECC ésta hoja de cálculo.

21 Estos dos cultivos representan el mayor volumen de producción agrícola de México.
mercado a partir de los precios de venta, de los rendimientos por hectárea, y de los precios de los insumos.22 Cabe señalar, que el productor enfrenta una asignación aleatoria de precios y rendimientos, y basa su decisión sobre la expectativa que tiene sobre éstos. Así, el productor se enfrenta a la siguiente función objetivo que proviene de la maximización del ingreso disponible. Esto se muestra en la ecuación (1).

$$\max_{m,c} \{p_m q_m - \min\{w L_m, w L_m + r K_m\}, p_c q_c - \min\{w L_c, w L_c + r K_c\}, 0\} \quad (1)$$

Donde los subíndices m y c representan al maíz y a la caña de azúcar, respectivamente, w es el precio del jornal, r es el costo por hora de renta de maquinaria, p el precio de venta, q el rendimiento por hectárea, L la cantidad de trabajo que se requiere si no se utiliza maquinaria, L_m la cantidad de trabajo si se utiliza maquinaria y K las horas máquina que se requieren para la producción. La fuente de variación que suponemos en nuestro ejemplo proviene del Servicio de Información Agroalimentaria y Pesquera (SIAP) de la SAGARPA.23 Para el caso del precio del jornal se usó información que proviene de trabajo de campo realizado por el equipo consultor en años recientes en las zonas de Jalisco, Oaxaca y Yucatán (Guevara-Sanginés, Lara, & Estrada, 2012). En particular, a partir de este trabajo se identificó que el precio del jornal es de alrededor de 90 pesos y varía entre 70 y 150 pesos dependiendo la región bajo estudio.24 Los demás parámetros de este ejemplo (número de jornales requerido para cada cultivo, el precio de renta de hora-máquina y la cantidad de horas-máquina por cultivo) se determinaron de manera arbitraria dado que la finalidad de este ejercicio solo es mostrar el concepto básico de cómo se genera un modelo basado en agentes. En la Tabla 4 se muestran los parámetros

\footnotesize

22 Específicamente estamos suponiendo que para producir maíz se puede elegir entre usar pura mano de obra o el 10% de mano de obra y sustituirla con maquinaria. En el caso de la caña de azúcar estamos suponiendo que sólo se puede realizar con maquinaria, dadas las características de este cultivo.

23 Este Servicio reporta el rendimiento promedio y su variación para todo el país, así como el precio medio rural de cada cultivo que se produce en México.

24 Dado que solo se realizaron entrevistas en 3 estados, no podemos considerar este rango de cifras como representativo del país.
utilizados para la simulación. Si bien este ejercicio es teórico, se trató de aproximar los valores y parámetros a la realidad con base en la información disponible.

Una vez determinados estos valores se asignan de manera aleatoria precios y cantidades y el productor elige si produce maíz, caña de azúcar o sale del mercado. Esto se realiza a partir de un análisis Monte Carlo, que consiste en generar números aleatorios a partir de una función de distribución de los parámetros considerados. Para realizar este ejercicio se partió del supuesto de que la distribución de los parámetros (precios y cantidades) se distribuyen de manera normal. Una distribución normal se caracteriza por la media y la desviación estándar, por lo que se requieren de estos dos valores para la asignación aleatoria. El valor promedio de precios y rendimientos se determinó con base en las fuentes de información que se detallaron en el párrafo anterior. Para tener un estimado de la desviación estándar de precios y rendimientos se utilizó la fórmula heurística de Triola (2004), que establece que

$$s \approx \frac{x_{MAX} - x_{MIN}}{4}$$

 Esto es, que la desviación estándar de una variable es aproximadamente igual al valor máximo de la variable menos el valor mínimo dividido por 4. Así, para cada parámetro es suficiente con contar con el dato mínimo, máximo y promedio para realizar un análisis Monte Carlo. Cabe señalar que no es estrictamente necesario que todos los parámetros varíen, puede suponerse que alguno de ellos se mantiene siempre constante. Por simplicidad en nuestro ejemplo, establecimos variaciones para todos los parámetros como se muestra en la Tabla 4.

Tabla 4. Valor de los parámetros utilizados en la simulación

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Criterio</th>
<th>Unidad</th>
<th>Valor nacional</th>
<th>Valor mínimo</th>
<th>Valor máximo</th>
<th>Desviación estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Precio del maíz</td>
<td>Pesos/Tonelada</td>
<td>3,530.00</td>
<td>2,015.00</td>
<td>4,921.00</td>
<td>726.50</td>
</tr>
<tr>
<td>2</td>
<td>Precio de la caña de azúcar</td>
<td>Pesos/Tonelada</td>
<td>549.10</td>
<td>408.33</td>
<td>894.00</td>
<td>121.42</td>
</tr>
<tr>
<td>3</td>
<td>Rendimiento del maíz</td>
<td>Tonelada/Hectárea</td>
<td>3.72</td>
<td>0.13</td>
<td>11.08</td>
<td>2.74</td>
</tr>
<tr>
<td>4</td>
<td>Rendimiento de la caña de azúcar</td>
<td>Tonelada/Hectárea</td>
<td>72.27</td>
<td>37.02</td>
<td>140.00</td>
<td>25.75</td>
</tr>
</tbody>
</table>
Con estos valores se generaron 50 mil rondas de números aleatorios. El número de rondas adecuado depende del error estándar de la variable de interés, en nuestro caso del ingreso disponible promedio que obtiene el productor. Este error estándar está definido como $E.E. = \frac{s}{\sqrt{n}}$, donde s representa la desviación estándar del ingreso disponible y n el número de rondas. Conforme el número de rondas se eleva, el error estándar tiende a cero. Para tener un criterio para determinar un error estándar aceptable se puede establecer un umbral en términos porcentuales que se define como $umbral = \frac{E.E.}{\bar{x}}$. Esto es, dividir el error estándar entre el valor promedio (del ingreso disponible) y determinar qué variación porcentual se está dispuesto a aceptar (por ejemplo $\pm 5\%$).

En el ejemplo desarrollado, este umbral tiene un valor de menos de 1% Cabe señalar que no existe una regla homogénea para el número de rondas de una simulación de este tipo, ya que todo depende del número de variables aleatorias que se consideren, así como de su variabilidad, en algunos casos algunos cientos de rondas son suficientes para tener un umbral aceptable, en otros incluso se requieren de millones de rondas para tener un error estándar aceptable.
Otro elemento importante de mencionar en este tipo de simulaciones es que el resultado siempre será distinto por la característica inherentemente aleatoria de la simulación. Una simulación siempre será diferente a otra, pero si el número de rondas es suficientemente elevado, entonces esta variación es estadísticamente no significativa. El ejemplo que se desarrolló se realizó en una hoja de Excel (se adjunta al presente documento la hoja de cálculo), para que sea fácil de consultar, sin embargo, es factible desarrollar este tipo de simulaciones en otro tipo de paquete informático, por ejemplo en el lenguaje R. La ventaja de programar un ejercicio de este tipo en este lenguaje es que a pesar de que una simulación es aleatoria, se puede replicar una determinada simulación, algo que Excel no permite.

En la tabla 5 se presentan los resultados de la simulación. Como se puede observar, el ingreso disponible promedio es de 12.5 mil pesos por hectárea, con una desviación estándar de 8.6 mil pesos. Además, 76% de los productores cultivan maíz, 7% caña de azúcar y 17% decide no producir porque obtendría pérdidas. A partir de esta situación base es posible generar escenarios, por ejemplo, el aumento de los precios de los productos. Si se supone que los precios se incrementan en 10%, los resultados indican que el ingreso promedio se incrementa en 14%, el porcentaje de productores de maíz se mantiene prácticamente igual (75%), pero el porcentaje de productores de caña de azúcar se incrementa a 10%. Es decir, para los productores que antes salían del mercado, el aumento de precios los atrae a la producción de caña de azúcar principalmente.

Tabla 5. Resultados de la simulación

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Variable</th>
<th>Unidad</th>
<th>Valor base</th>
<th>Escenario 1 (aumento de 10% en precios)</th>
<th>Cambio porcentual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingreso promedio</td>
<td>Pesos/ Hectárea</td>
<td>12,493</td>
<td>14,200</td>
<td>14%</td>
</tr>
<tr>
<td>2</td>
<td>Desviación estándar</td>
<td>Pesos/ Hectárea</td>
<td>8,595</td>
<td>9,555</td>
<td>11%</td>
</tr>
<tr>
<td>3</td>
<td>Ingreso promedio de maíz</td>
<td>Pesos/ Hectárea</td>
<td>12,233</td>
<td>13,791</td>
<td>13%</td>
</tr>
<tr>
<td>4</td>
<td>Desviación estándar</td>
<td>Pesos/ Hectárea</td>
<td>8,333</td>
<td>9,143</td>
<td>10%</td>
</tr>
</tbody>
</table>
Esta simulación permite ilustrar la forma esencial en que funciona un modelo de agentes y su flexibilidad. En particular, un modelo de agentes se basa en información empírica existente y permite simular el comportamiento de los agentes a partir de reglas de comportamiento, en nuestro caso, la maximización del ingreso disponible ante los precios y cantidades que se observan en el contexto mexicano. Es posible añadir tantas reglas de comportamiento como se desee, así como restricciones. Por ejemplo, una restricción que puede imponerse al ejercicio mostrado es que exista un costo de cambiar a otro cultivo dado que en un periodo anterior se produjo un cultivo diferente. También se pueden incorporar escenarios muy flexibles, por ejemplo, la innovación tecnológica solo en un contexto geográfico determinado. En este caso, la hoja de cálculo tendría que adaptarse a simular dos tipos de agentes, los expuestos a la innovación tecnológica y los que mantendrán la tecnología tradicional. Para los primeros, el rendimiento por hectárea aumentará pero habrá un costo extra por la adopción de una nueva tecnología.

Incluso, puede simularse un modelo de difusión tecnológica como el planteado por Bass (1969). Este modelo supone que existen dos tipos de agentes, los innovadores y los imitadores, el autor especifica una función de distribución que expresa el porcentaje de adopción de un nuevo producto (o tecnología) con base en el porcentaje de innovadores e imitadores. En el contexto de la simulación planteada,

25 Por el carácter aleatorio de la simulación, cada vez que se abre la hoja de cálculo, los resultados son ligeramente distintos, sin embargo, por el elevado número de rondas (50 mil), los valores mostrados en la Tabla 5 no variarán significativamente.

<table>
<thead>
<tr>
<th>Nro</th>
<th>Descripción</th>
<th>Pesos/Hectárea</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Ingreso promedio de caña de azúcar</td>
<td>15,485</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17,400</td>
</tr>
<tr>
<td>6</td>
<td>Desviación estándar</td>
<td>10,735</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,830</td>
</tr>
<tr>
<td>7</td>
<td>Productores de maíz</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>Productores de caña de azúcar</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Productores que salen del mercado</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
puede establecerse que un porcentaje aleatorio de agentes son innovadores y que sus vecinos imitan a los innovadores y eventualmente la nueva tecnología permea en un grupo determinado de agentes. Lo anterior evidentemente significaría adaptar la hoja de cálculo para incorporar los nuevos elementos aleatorios, así como de nuevos parámetros, para los cuales se deberá establecer si tienen una variación aleatoria o no. En este sentido, la flexibilidad de un modelo de agentes estará limitada solo por la información disponible, por ejemplo, en el modelo de difusión planteada se requerirá de conocer el costo de la nueva tecnología, y del porcentaje de innovadores e imitadores que existe en un contexto determinado. Un modelo de agentes generalmente se nutre de información recopilada en grupos focales, en los cuales se modelan situaciones y se recopila la respuesta de los agentes. Sin embargo, como se mostró en el ejemplo de simulación anterior, incluso sin contar con esta información es posible plantear un modelo básico de agentes.

III.2.2 Modelo de agentes de Berger

Una vez descrito el funcionamiento básico de un modelo de agentes a continuación describimos el modelo de Berger et al. (2007), que está adaptado al contexto agropecuario y se basa en elementos de economía agrícola.

De acuerdo con este modelo, los productores buscan la maximización de beneficios que están determinados por la resta de los ingresos totales menos los costos totales. Esto se muestra en la ecuación (2):

$$\max p_c S_c - v_c A_c$$ (2)

Donde \(c\) denota un tipo de cultivo, \(p\) es el precio de venta de dicho cultivo, \(S\) es la producción obtenida, \(v\) es el costo variable asociado a ese cultivo y \(A\) es el área disponible para sembrar el cultivo.

En este sentido, el modelo requiere que a cada productor se le asigne una dotación inicial de tierra (A). Adicionalmente, al productor se le asignan 3 tipos de recursos: dinero en efectivo, trabajo y maquinaria. El dinero en efectivo puede ser
utilizado para invertir en activos o para ser usado durante el ciclo agrícola para consumo. Cabe señalar que el número de periodos se determina como un parámetro del modelo. Dado que los productores agrícolas reciben los beneficios de la producción hasta después de concluir el ciclo agrícola pero tienen que desembolsar dinero antes para cubrir costos iniciales, el modelo supone que hay restricciones de necesidades de liquidez, las cuales plantean que si el productor obtiene un crédito para cubrir sus costos iniciales, el beneficio de la producción excede dicho crédito más los intereses. En este sentido, el productor no puede obtener un crédito sin límite. En el caso contrario en el que el productor tenga recursos suficientes que le permitan cubrir los costos iniciales y un excedente, el modelo permite considerar que el productor obtendrá intereses por tener ese dinero en el banco.

El modelo también incorpora una restricción respecto al empleo utilizado en la producción, el cual no puede exceder la capacidad de trabajo del hogar, no obstante, permite que el hogar emplee trabajo adicional de personas externas (jornaleros). Igualmente, el modelo incorpora una restricción que establece que las horas-máquina que se emplearán en la labor agrícola no superan la capacidad de las máquinas que el hogar posee. Sin embargo, al igual que con el trabajo, el hogar tiene la posibilidad de invertir en nueva maquinaria si le conviene hacerlo. En este caso, se considera que la maquinaria es indivisible, es decir, no se pueden comprar fracciones de máquina, por lo que esta variable es un número entero. Una tercera opción es la renta de maquinaria, lo cual también está incorporado como posibilidad en el modelo. El modelo también permite incorporar (de manera opcional) cultivos perennes, producción agropecuaria y asignación de volúmenes de agua. Estas restricciones toman forma en una matriz que relaciona las cantidades con sus restricciones.

A partir de esta formulación básica, el modelo maximiza el ingreso del hogar a partir de las restricciones planteadas usando un algoritmo de programación lineal. El algoritmo parte de la teoría de programación lineal, la cual busca alcanzar el valor máximo (o mínimo) de una función objetivo que está sujeta a un número
Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base
determinado de restricciones. A diferencia de la optimización no lineal, en donde se requiere que exista por lo menos alguna no linealidad en la función objetivo o en las restricciones, en la programación lineal todas las funciones son lineales o incluso discretas. El algoritmo busca que se cumplan todas las restricciones para alcanzar el valor máximo del ingreso disponible.

El resultado de la simulación es el nivel de producción y de demanda de insumos que determinan este ingreso máximo. Una vez obtenido el ingreso máximo el modelo simula las decisiones de consumo de los hogares. En particular, el modelo ofrece dos opciones: (i) un modelo keynesiano de consumo, en el que se busca garantizar un consumo mínimo de los miembros del hogar, y (ii) un modelo de 3 etapas, en el que el consumo se dirige a ahorro, a bienes no alimentarios y otros bienes alimentarios. Sin embargo, los autores señalan que esta segunda opción es mucho más compleja y no está totalmente documentada.

III.2.3 Instrumentación empírica del modelo

El modelo está disponible para su descarga en el sitio de la Universidad de Hohenheim, Alemania.26 Para la utilización del modelo se requiere descargar un archivo comprimido (llamado “Demo”), el cual se deberá descomprimir en cualquier carpeta del sistema. Una ventaja de esta estructura es que no se requiere la instalación de algún software adicional (con excepción de un complemento de Excel que se explica más adelante) y no se exige copiar la carpeta en algún destino en particular, pues todo el modelo está autocontenido en dicha carpeta.

El modelo tiene dos versiones, una adaptada a Excel y otra al manejador de bases de datos MySQL.27 La versión de Excel es más amigable al usuario pero también más limitada. La versión MySQL solo trabaja en la plataforma Linux, pero de acuerdo con los autores es más estable. A continuación, describimos la versión Excel, por ser la más fácil de comprender para el usuario. Los autores también ofrecen documentación

26 https://mp-mas.uni-hohenheim.de/startseite
27 MySQL es el nombre del programa que se basa en el lenguaje Structured Query Language, el cual permite realizar consultas estructuradas a bases de datos relacionadas.
de la versión MySQL, pero para su utilización se requiere de un conocimiento intermedio de esta plataforma. La plataforma MySQL generalmente se usa en un servidor Linux y consiste en un programa que almacena bases de datos de manera estructurada. Las bases de datos contienen tablas, que pueden o no estar interrelacionadas. En una analogía con el programa Excel, una base de datos en MySQL es una carpeta de archivos Excel, y las tablas son las pestañas de los libros de Excel, los cuales pueden estar vinculados o no entre sí. En estas bases de datos la plataforma MySQL permite realizar consultas (queries) de manera muy flexible. Por ejemplo, el comando “SELECT * FROM tabla1” selecciona todos los registros de la tabla con nombre tabla1. La plataforma MySQL es muy flexible pero a la vez su uso es a través de comandos, lo que dificulta su utilización por usuarios no especializados.

La versión Excel del modelo tiene 3 partes esenciales:

1. Generar tablas de datos
2. Implementar el algoritmo de programación lineal
3. Generar resultados en archivos de texto

Para generar las tablas de datos los autores desarrollaron un complemento de Excel llamado MPMAS (Mathematical Programming-based Multi-Agent Systems). Este complemento está escrito en lenguaje Visual Basic y convierte tablas de Excel a archivos de texto con un formato predeterminado que está ajustado para el algoritmo de programación lineal. El complemento debe ser instalado en Excel en la sección “Complementos” del menú “Opciones”, una vez en dicho lugar, se debe seleccionar el complemento llamado mpmas.xla. Este proceso de instalar el complemento es sencillo para una persona familiarizada con el uso de complementos en Excel. El complemento MPMAS funciona con 13 libros de Excel. De éstos, dos de ellos son los más importantes para entender el funcionamiento del modelo, a saber, el libro ScenarioManager.xls y el libro Matrix.xls.
El libro ScenarioManager.xls requiere estar abierto para usar el complemento MPMAS. En este libro se establece la ruta en el que se encuentra almacenada la carpeta y ofrece un menú para indicar cuáles de las características opcionales del modelo incluir o no (por ejemplo, incluir cultivos perenes). Además, el modelo permite simular escenarios, por ejemplo, un incremento de un determinado porcentaje en los precios agropecuarios. En la Ilustración 4 se muestra una captura de pantalla de este libro y el menú donde se debe establecer la ubicación de la carpeta donde se encuentra el modelo.
Ilustración 4. ScenarioManager.xls

El libro Matrix.xls es el más complejo de todos y es la base del modelo, pues establece las interrelaciones entre las restricciones y actividades económicas de los agentes. La parte fundamental de este libro está localizada en la sección Programming Matrix, que se ubica a partir del renglón 35 del libro. Esta matriz es una representación de las restricciones del modelo, en cada renglón se puede establecer si

Fuente: Elaboración propia
se refiere a una restricción de igualdad o desigualdad y se relacionan las variables contenidas en la restricción. Por ejemplo, un renglón puede indicar que el área destinada a la producción de un determinado cultivo no puede ser mayor al área cosechada. Como este ejemplo, todos los renglones tienen la misma lógica y representan las restricciones que se describieron con anterioridad (respecto al trabajo, a la maquinaria, a la liquidez, consumo y uso de la tierra).

Si se requiere incorporar un nuevo tipo de cultivo, se requiere de incluir dos nuevos renglones en la matriz, uno para indicar que hay una nueva actividad económica y otro para establecer la restricción acerca de que el trabajo disponible en el hogar no deberá exceder el trabajo elegido para la actividad (ver Ilustración 5). En las columnas, también se requiere añadir información relacionada con dicho cultivo. Por ejemplo, si se añade un nuevo cultivo se precisa añadir una columna nueva que indica el precio esperado del cultivo adicional, otra que indica los requerimientos de empleo temporal para este nuevo cultivo y n columnas adicionales para cada uno de los n tipos de suelo que están incorporados en el modelo, en los cuales se establece el costo de producción de este cultivo para cada tipo de suelo. Un recurso muy útil para entender estos cambios es consultar el tutorial del modelo está disponible en el sitio dedicado a este modelo.\(^{28}\) En este tutorial se guía paso a paso distintas modificaciones al modelo, específicamente, se muestra cómo:

1. Añadir más periodos de análisis
2. Añadir un nuevo cultivo
3. Añadir más tipos de suelo
4. Añadir más agentes
5. Añadir más opciones de inversión
6. Asignar de manera aleatoria los activos iniciales
7. Añadir ganado

\(^{28}\) https://www.uni-hohenheim.de/mas/Default/MPMAS_Tutorial.pdf
Los demás libros establecen características de las variables contenidas en el modelo. Por ejemplo, el libro Livestock.xls permite capturar la evolución del peso del ganado incorporado en el modelo, del volumen de leche producido y de los requerimientos de tierra para pastoreo. El libro Market.xls permite capturar los precios de venta esperados de los productos agropecuarios. El libro Map.xls identifica dónde se producen ciertos cultivos, esto lo representa a partir de un mapa de celdas, en donde cada celda representa un área geográfica determinada y la actividad que se realiza en dicha área (opcionalmente, el modelo permite utilizar archivos cartográficos para representar estos mapas).

Es importante considerar que los 13 libros están vinculados, por lo que un cambio en uno de ellos debe ser consistente con lo expresado en otros libros. Por ejemplo, si en el libro ScenarioManager.xls se establece que los periodos de
simulación son 15, entonces se deberán modificar todos los parámetros que están relacionados con el número de periodos, específicamente, se deberán modificar los libros Market.xls, que establecen los precios de los productos para cada año y el archivo Livestock.xls, que establece las características del ganado para cada año de simulación. Este proceso puede resultar tedioso y puede dar lugar a errores, pues se debe garantizar que todas las vinculaciones estén correctas entre libros. El modelo usa “nombres” en Excel, los cuales son referencias relativas a otros libros de Excel, por ejemplo, si se define el nombre “Market Price factor” a una posición de un determinado libro de Excel, entonces cualquier referencia a ese nombre considerará las celdas que tienen asignado ese nombre. Para entender el uso de nombres en Excel se requiere de un conocimiento relativamente avanzado de este programa. Una vez comprendido este uso, entonces se entenderá de manera relativamente sencilla cómo deben modificarse los nombres y referencias a ellos cuando se hagan modificaciones a los libros de Excel.

Una vez establecidos los parámetros del modelo y sus valores, se requiere oprimir el botón “Create input files” en el complemento de Excel, este botón ejecutará una serie de comandos que convierten las tablas de Excel a archivos de texto con la extensión .dat, que se almacenan en la subcarpeta input->dat. En total deben generarse 12 archivos .dat, que contienen la misma información que los libros de Excel pero en un formato legible por el algoritmo de programación lineal.

Una vez realizado lo anterior, el complemento MPMAS de Excel permite aplicar al algoritmo de programación lineal mpmas.exe, que está programado a partir de la librería COIN-OR (Computational Infrastructure for Operations Research), la cual es un proyecto desarrollado a partir de un algoritmo de programación lineal inicialmente desarrollado por la compañía IBM (International Business Machines) y que posteriormente fue liberado para su desarrollo comunitario. Cabe señalar que en la documentación del modelo se menciona que se requiere el programa informático original desarrollado por IBM, lo cual puede dar lugar a confusiones, pues la versión más actual del modelo ya no requiere dicho programa y funciona íntegramente con la
librería COIN-OR. Esta librería está incluida en el programa mpamas.exe (que está contenido en la carpeta comprimida que se descarga del sitio de la Universidad de Hohenheim. También cabe señalar que en el sitio se proveen de ejemplos de aplicaciones a algunos países (Chile, Ghana, Tailandia, Vietnam y Uganda). Sin embargo, estos ejemplos solo funcionan con el algoritmo anterior de IBM, por lo que no es posible ejecutarlos en la versión actual del programa.

Para ejecutar el algoritmo de programación lineal se requiere oprimir el botón “Run MP-MAS”. Este botón ejecuta el programa mpmas.exe, que estima el ingreso disponible máximo a partir de la información contenida en los archivos .dat. Alternativamente, este programa puede ser ejecutado desde la consola MS-DOS, lo cual es preferible, pues se puede tener un rastreo de los posibles errores. Esto es, si se oprime el botón “Run MP-MAS” desde Excel el programa se ejecutará pero no será visible la ventana de comandos y en caso de que exista un error a la hora de ejecutar el algoritmo de programación lineal no se podrá observar el origen de dicho error. Por el contrario, si el programa mpmas.exe se ejecuta desde la consola MS-DOS es posible rastrear el origen del error, pues en la pantalla aparecerá la fuente del error. Si el algoritmo se ejecutó de manera exitosa aparecerá una pantalla similar a la presentada en la Ilustración 6.

El comando básico para ejecutar el algoritmo de programación lineal es “mpmas.exe -N[Nombre del escenario] -I/ -O/”. En el archivo ScenarioManager.xls se establece el nombre del escenario que se quiere simular. Por ejemplo, si el escenario base se llama BSL (Baseline), entonces el comando a utilizar es “mpmas.exe -NBSL_ -I/ -O/”. Si el escenario de un incremento de precios se llama S1, entonces el comando será “mpmas.exe -NS1_ -I/ -O/”. Cabe señalar que para simular escenarios no es necesario generar nuevamente los archivos de entrada (input).

29 https://mp-mas.uni-hohenheim.de/startseite
30 Para ejecutar una consola de MS-DOS se requiere oprimir la tecla de Windows simultáneamente con la tecla R (Ctrl + R), en la ventana que aparece deberá escribirse el comando “cmd” y posteriormente oprimir la tecla Ejecutar.
Una vez ejecutada con éxito la simulación se crearán archivos de salida que estarán contenidos en la subcarpeta “out”, la extensión de estos archivos será .out y el número de ellos dependerá del número de agentes que se estén simulando. Por ejemplo, si existen 5 agentes, se crearán 5 archivos por cada una de las variables de salida que tiene el modelo. El modelo presenta 8 diferentes variables de salida, entre las cuales se encuentran los recursos utilizados, las cantidades producidas, los insumos utilizados, entre otros. Para administrar estos archivos de salida puede programarse un algoritmo en R o Stata, que lea los archivos .dat y los organice en una base de datos consolidada. Alternativamente, el modelo permite generar un libro de Excel, llamado XResults.xls, que consolida los resultados del modelo para todos los agentes y periodos establecidos en el modelo. Para términos del presente estudio, la variable relevante son las cantidades de producción que resultan de la simulación.
III.2.4 Conversión a emisiones de GEI y CCVC

Estas cantidades de producción pueden ser expresadas en términos de emisiones a partir de factores de emisión por tipo de cultivo o ganado. Estos factores de emisión son multiplicados por el volumen de producción de cada cultivo y ganado simulado. Lo mismo se realiza para las cantidades de los escenarios simulados. Entonces comparando, las emisiones entre la línea base y un escenario se puede observar cómo impacta una política a las emisiones.

Los factores de emisión pueden obtenerse del Anexo B.3 del Inventario Nacional de Emisiones de Gases de Efecto Invernadero 1990-2010 (INECC, 2013). Adicionalmente, para las actividades agropecuarias para las que no se dispone de información nacional se sugiere utilizar los factores de emisión por defecto establecidos por las directrices del Panel Intergubernamental de Cambio Climático (PICC).\footnote{Disponibles en https://www.ipcc-nggip.iges.or.jp/public/2006gl/}

El insumo principal que el modelo de agentes proporcionaría son datos de la actividad agropecuaria en México (producción de cultivos, tipo de tecnología – riego, temporal, prácticas agrícolas, producción pecuaria, volumen de la producción, tecnología) que pueden ser aprovechados para obtener una mejor estimación de las emisiones.

III.3 Listado de fuentes de información

Para adaptar el modelo anteriormente descrito al contexto mexicano se requiere adaptar los 13 libros de entrada en Excel que se describieron en la sección anterior. A continuación detallamos la fuente de información y sus características que pueden ser utilizadas para adaptar cada libro.

1. BasicData.xls. No se requiere información externa, pues en este libro se establecen parámetros generales del modelo. En particular, en esta hoja se establecen parámetros sobre el número de tipos de agentes, el número de
mercados regionales, del tamaño de las unidades de superficie (hectárea por ejemplo), de parámetros de innovación, y de parámetros sobre la asignación aleatoria de dotaciones iniciales,

2. Demography.xls. Este libro captura las características sociodemográficas de los agentes, en específico el número de horas trabajadas, la tasa de mortalidad y de fertilidad de hombres y mujeres. Para ello, es posible utilizar estadísticas de la Encuesta Nacional sobre Uso del Tiempo (ENUT) para tener un aproximado de las horas de trabajo por edad. Para el caso de mortalidad y fertilidad están disponibles las estadísticas de mortalidad de México, así como estadísticas de natalidad en el sitio de INEGI. En el caso de estadísticas de natalidad es preciso vincularlas con estadísticas de población, disponibles en el sitio de INEGI.

3. Livestok.xls. En este libro se requiere enlistar los productos pecuarios, así como sus características (peso, producción de leche, requerimientos de tierra, jornales requeridos, precios de mercado, vida útil). Estas características pueden obtenerse del SIAP para conocer el precio promedio por kilogramo y el peso promedio, así como el precio de la leche. Para conocer la producción de leche promedio, los jornales requeridos y la vida útil se requiere consultar fuentes secundarias de información. No obstante, la Encuesta Nacional Agropecuaria (ENA) también presenta información útil sobre las características de la producción pecuaria.

4. Map.xls. Este libro requiere establecer el área destinada a cultivos. Para ello se puede utilizar la información del SIAP a nivel municipal, la cual reporta qué cultivos se producen en cada municipio de México. Esta información tiene que ser georreferenciada, lo cual se puede realizar al vincular la clave municipal a un archivo cartográfico de división política, el cual está disponible en INEGI. Alternativamente, se puede realizar una petición de información al SIAP para que proporcionen un archivo cartográfico de los cultivos a nivel municipal. El SIAP ofrece información geoespacial de información.
agropecuaria, sin embargo, el mapa solo está disponible para consulta, sin posibilidad de descargar los datos, por lo que se precisaría realizar una solicitud de información sobre estos datos.

5. Market.xls. En este libro se establecen los precios agropecuarios. Dicha información puede obtenerse del SIAP o alternativamente del Sistema Nacional de Información e Integración de Mercados (SNIIM), el cual reporta precios de productos e insumos agropecuarios en mercados finales. La principal diferencia entre los precios del SIAP y del SNIIM es que el primero reporta el valor de la producción en el entorno rural y el SNIIM en mercado finales.

6. Matrix.xls. En este libro se establecen los costos de la producción. Al respecto se puede utilizar información del SNIIM sobre los precios de los insumos agropecuarios. Para obtener información sobre las cantidades de insumos se precisa realizar una revisión de literatura sobre análisis costo beneficio, este tipo de análisis generalmente provienen del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), de tesis de posgrado de la Universidad Autónoma de Chapingo.

7. Network.xls. En este libro se registran las innovaciones tecnológicas disponibles. Una referencia útil para este tipo de innovaciones es la biblioteca digital del INIFAP. Asimismo, para costear servicios de asistencia técnica se sugiere utilizar los conceptos de apoyo establecidos en las reglas de operación de la Comisión Nacional Forestal (CONAFOR).

8. Perennials.xls. Este libro requiere que se establezcan las tasas de interés de depósitos y créditos a corto plazo. Para el caso de créditos se sugiere utilizar tasas de interés asignadas por la banca de desarrollo en México, en particular por la Financiera Rural de Desarrollo Agropecuario (FND) y por los Fideicomisos Instituidos en Relación con la Agricultura (FIRA). Para el caso de depósitos está disponible la información del Banco de México (BANXICO).
9. Population.xlsx. En este libro se registra información sobre la edad y género de la población, así como de la composición de activos de la población. Para esto se sugiere el uso de datos de los censos y conteos de población de INEGI, así como de la Encuesta Nacional Agropecuaria.

10. Region.xlsx. En este libro se requiere establecer los volúmenes de agua asignado a cada agente. Este libro es opcional, sin embargo, si se requiere usar esta opción es posible hacer una solicitud de información a la Comisión Nacional del Agua (CONAGUA) respecto al volumen otorgado por distrito de riego.

11. ScenarioManager.xlsx. En este libro se establecen parámetros globales del modelo y no requiere información adicional.

12. XResults.xlsx. Este libro consolida los resultados del modelo, por lo que no requiere información adicional.

13. XSingleAgents.xlsx. Este libro sirve para simular el modelo sin hacer uso del algoritmo de programación lineal mpmas.exe, sin embargo, solo es útil con modelos relativamente simples, pues las capacidades de Excel no son suficientes para modelos complejos. Por tanto, este libro no requiere información adicional.
Tabla 6. Listado de fuentes de información

<table>
<thead>
<tr>
<th>Variable</th>
<th>Fuente de información</th>
<th>Institución</th>
<th>Repositorio</th>
<th>Libro del modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precios pecuarios</td>
<td>SIAP</td>
<td>SAGARPA</td>
<td>http://infosiap.siap.gob.mx/anpecuario_siapx_gobmx/indexmpio.jsp</td>
<td>Market.xls</td>
</tr>
<tr>
<td>Peso promedio pecuario</td>
<td>SIAP</td>
<td>SAGARPA</td>
<td>http://infosiap.siap.gob.mx/anpecuario_siapx_gobmx/indexmpio.jsp</td>
<td>Livestock.xls</td>
</tr>
<tr>
<td>Area por cultivo</td>
<td>SIAP</td>
<td>SAGARPA</td>
<td>https://www.gob.mx/siap/acciones-y-programas/informacion-geoespcial-32571</td>
<td>Matrix.xls</td>
</tr>
<tr>
<td>Precios agropecuarios en el mercado final</td>
<td>SNIIM</td>
<td>Secretaría de Economía</td>
<td>http://www.economia-sniim.gob.mx/nuevo/</td>
<td>Matrix.xls</td>
</tr>
<tr>
<td>Análisis costo beneficio de actividades agropecuarias</td>
<td>INIFAP</td>
<td>SAGARPA</td>
<td>http://biblioteca.inifap.gob.mx/portal/</td>
<td>Matrix.xls</td>
</tr>
<tr>
<td>Análisis costo beneficio de actividades agropecuarias</td>
<td>Biblioteca Digital</td>
<td>Universidad Autónoma de Chapingo</td>
<td>http://biblioteca.chapingo.mx/biblioteca-digital-master/</td>
<td>Matrix.xls</td>
</tr>
<tr>
<td>Innovación tecnológica</td>
<td>INIFAP</td>
<td>SAGARPA</td>
<td>http://biblioteca.inifap.gob.mx/portal/</td>
<td>Network.xls</td>
</tr>
<tr>
<td>Tasas de interés créditos</td>
<td>FND</td>
<td>Solicitud de información</td>
<td>Perennials.xls</td>
<td>Perennials.xls</td>
</tr>
<tr>
<td>Tasas de interés créditos</td>
<td>FIRA</td>
<td>Solicitud de información</td>
<td>Perennials.xls</td>
<td>Perennials.xls</td>
</tr>
<tr>
<td>Tasas de interés depósitos</td>
<td>BANXICO</td>
<td>Solicitud de información</td>
<td>Perennials.xls</td>
<td>Perennials.xls</td>
</tr>
<tr>
<td>Volúmenes de agua asignados</td>
<td>CONAGUA</td>
<td>Solicitud de información</td>
<td>Region.xls</td>
<td>Region.xls</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Conclusiones

El análisis realizado permitió caracterizar las ventajas y desventajas de los diversos enfoques metodológicos considerados. Esto hizo posible identificar que el enfoque basado en agentes tiene virtudes importantes para modelar las emisiones de GEI y CCVC. En particular el modelo específico de Berger et al. (2007) tiene la capacidad de: (i) incorporar agentes heterogéneos, (ii) incorporar aspectos biofísicos, y (iii) modelar emisiones. Adicionalmente, este modelo está disponible de manera gratuita y está ampliamente documentado.

El enfoque propuesto permite relajar el supuesto de racionalidad económica, el cual ha tenido fuertes cuestionamientos sobre su validez. Por tanto, adoptando un enfoque emergente y relativamente novedoso hay potencial de fortalecer las capacidades técnicas del INECC y en general, de fortalecer el enfoque técnico para la toma de decisiones en el sector público.

Se considera que este estudio ha permitido ampliar la gama de enfoques metodológicos tradicionales para modelar la actividad económica. No obstante, también se analizaron enfoques tradicionales y de hecho se considera que este análisis puede resultar útil más allá del presente estudio, pues representa un diagnóstico del estado del arte en modelación económica en México.

Se considera que este enfoque permitirá ampliar el portafolio de herramientas del Instituto Nacional de Ecología y Cambio Climático (INECC) y a la vez generar insumos valiosos para fortalecer el cálculo de la línea base de emisiones que provienen del sector agropecuario.

A partir del proceso de selección del enfoque metodológico, del desarrollo teórico planteado, así como de la disponibilidad de fuentes de información, se considera que es factible desarrollar un modelo basado en agentes para la simular la actividad agropecuaria en México. Este modelo puede ser de gran utilidad para modelar las emisiones del sector agropecuario a partir de factores de emisión.
Además, este modelo permite establecer escenarios muy detallados y específicos, o de gran generalidad. El costo computacional de simular estos escenarios es significativamente menor al de un modelo de equilibrio general, por lo que se considera que puede ser muy útil para simular diferentes políticas en el sector agropecuario.

En este documento se planteó un modelo simplificado de la actividad agropecuaria y de detalló un modelo más complejo desarrollado por Berger et al. (2007). Esto tiene la ventaja de ofrecer dos opciones de modelación que son complementarias y pueden satisfacer diferentes necesidades. Esto es, un modelo simplificado puede ser implementado de manera relativamente sencilla y en un tiempo muy corto, por el otro lado, el modelo complejo requiere mayor información y una curva de aprendizaje relativamente pronunciada para su manejo, pero ofrece una mejor representación de la actividad en el sector agropecuario. Se considera que al ofrecer ambas opciones se da al INECC un rango de posibilidades amplio y útil para la modelación de la actividad agropecuaria y de la proyección de emisiones generadas por el sector.
Referencias

INECC. (2015a) Extensión al Modelo de Agentes Rurales en un Contexto de Equilibrio General. Recuperado de WWW:
Enfoques metodológicos para la modelación económica del sector agropecuario para la línea base

SAGARPA, FAPRI, & AFPC. (s.f.). Proyecciones para el Sector Agropecuario de México (SAGARPA/ FAPRI/ AFPC Ed.).

ANEXO 1. Preguntas guía para las entrevistas

1. ¿Cómo modelar actividad económica y emisiones del sector agropecuario?
2. ¿Qué es mejor un modelo de equilibrio general, uno parcial, regresiones?
3. ¿Qué variables son esenciales para modelar el sector agropecuario (p.e. cambio de uso de suelo)?
4. ¿Cuáles son los retos y limitantes de la modelación?
5. ¿Si usted tuviera que modelar el sector, qué enfoque elegiría?

ANEXO 2. Transcripciones de las entrevistas

George Dyer:
- Un modelo dinámico tiene bemoles, si se quiere proyectar a 15 años, las cosas cambian mucho.
- Convendría enfocar el modelo a lo maderable.
- El modelo que desarrollé es un modelo de zonas rurales, no incluye productores no rurales (landowners), que representan una buena parte del sector agrícola y una superficie considerable. Sin embargo, desarrollo otro modelo que sí los considera.
- El primer modelo desarrollado era muy general, no se tenía con precisión qué políticas se querían impulsar.
- En el sexenio de Calderón la Universidad de Missouri desarrolló un modelo.
- En el sexenio de Peña Nieto fue la USDA quien generó otro modelo.
- Estos modelos son dinámicos [los de SAGARPA], sectoriales, pero tienen incorporado el uso del suelo de manera limitada, por lo tanto no se puede hablar de emisiones, no considera a distintos factores sociales y económicos, no consideran diferencias entre autoconsumo y comerciales.
- He trabajado en modelos de subsistencia.
- Sugiere revisar el Policy Evaluation Module.
- La pregunta relevante es ¿Cómo combinar modelos?
- Sugiere modificar el MARCEG para que incluya prod. autoconsumo.
- Una dificultad siempre es la falta de información para estos modelos.
El MARCEG no es un modelo dinámico, pero se puede correr año con año.

Para hacer un modelo dinámico:

- Hay que determinar variables de activo (por ejemplo, uso de suelo)
- Después se debe responder a ¿Cómo esperas que la inv. productiva cambie año con año.
- Hay que introducir ecuación de consolidación de activos.

Si las políticas agropecuarias funcionaran habría acumulación de activos.

En un modelo de este tipo es relevante responder ¿Cuántas cabezas de ganado se están acumulando?

Lo que debiera hacer esta consultoría es caracterizar las deficiencias de los modelos y como se remediarían.

Considera que es un estudio ambicioso.

No existe un modelo único, por lo que la respuesta es compleja.

Alejandra Elizondo:

- Sugiere no crear el modelo desde cero
- El sector primario es pequeño respecto al resto de la economía. Las medidas que proponen no son visibles en el modelo. Por ejemplo, prácticas. Por tanto, si se parte de un modelo que ya existe se puede jugar con esas complejidades.
- El agropecuario es un sector que consume combustibles pero también absorbe emisiones.
- Al modelo de Boyd e Ibarrarán, ella agregó el cambio de uso de suelo.
- ¿Cómo modelar sectores híbridos (silvopastoril)?
- Un modelo debe tener identificados subsidios y de generación eléctrica
- Hay varias tecnologías que todavía no están probadas
- Equipos de bombeo, viveros, la información es a veces limitada para nutrir estos modelos
- A un modelo estático le puedes meter aleatoriedad y también le metes el cambio de uso de suelo
- Lo que ha hecho ella en modelación es identificar medidas costo-efectivas de mitigación y después simularlo en un modelo de equilibrio general.
- Sugiere revisar el modelo GTAP
- Sugiere que se haga uso de herramienta sencillas
Juan Manuel Torres Rojo:
JA: José Alberto Lara Pulido; JM: Juan Manuel Torres Rojo

JA: El INECC mando hacer esta consultoría, que se trata de hacer una revisión de modelos económicos para proyectar la actividad económica y las emisiones del sector agropecuario. Lo que quieren es con este estudio es cómo identificar un modelo que permita mejorar la línea base de emisiones. Ya hicimos una revisión bibliográfica de qué tipos de modelos hay, estoy clasificando los distintos modelos en 3 categorías. A pesar de que no está esta pregunta en mi lista, sería la primera pregunta que te haría. ¿Crees que esta clasificación es correcta? Estamos clasificando en modelos de equilibrio general, modelos de equilibrio parcial y regresiones econométricas. La división es un poco difusa porque podríamos decir que un modelo de regresión se pudiera interpretar como de equilibrio parcial, si le pones cierta dinámica. No obstante, son como 3 cajitas que estamos sugiriendo, no se tu qué opinión tengas al respecto.

JM: Pues yo creo que sí coincidiría con la clasificación.

JA: En los modelos de equilibrio parcial consideramos que lo que hacen es trabajar sobre ecuaciones de demanda, oferta que, que ya están estimadas en algún lado, a partir de elasticidades. Lo único que se hace es ver como se modifica la cantidad ante nuevos precios.

JM: Es que mira si los vemos desde un punto de vista más como evolutivo, tú tienes el primer grupo que son regresiones que únicamente te miden un efecto, un probable efecto o relación. Luego si en esas relaciones tu identificas que hay problemas de endogenidad o que se requieren modelar, pues haces los de equilibrio parcial. En estos modelos ya tienes un conjunto más amplio de ecuaciones idealmente interrelacionadas, y de ahí deriva los multiplicadores o parámetros que te ayuden a encontrar mayor cantidad de relaciones a través de un modelo de equilibrio general. Así es como lo vería yo.

JA: Tu visión es que evoluciona el modelo de regresión dependiendo de las necesidades hasta ya algo muy sofisticado.

JM: Correcto, claro que en la medida que vas evolucionando, el objetivo es mejorar la información y ser más específico, pero también, bueno se supone que aumentas precisión, sin embargo, pues no sucede por la cantidad de información que hay.

JA: Necesitas mil parámetros y cada uno de esos parámetros tienen que estar validado en una buena estimación.
JM: Exacto, o haces el modelo de equilibrio parcial y tienes un montón de ecuaciones y no tienes la suficiente información, para tener el ajuste apropiado o te faltan variables o no conoces, o a veces ni idea tienes de los no observados.

JM: La primera pregunta dice, ¿cómo estimar la actividad económica y emisiones del sector agropecuario, en términos de los modelos que acabamos de platicar?

JA: Si crees que esa clasificación está muy acotada, no es suficientemente general para agrupar todo tipo de modelación puedes darme otra clasificación.

JM: Yo podría incluir otro tipo de modelos, que son los modelos de agente, que básicamente son simulaciones, ese es otro gran grupo de modelos.

JA: ¿Y cómo funcionan estos modelos?

JM: En esos modelos identificas el comportamiento de los agentes y sobre eso los posibles resultados de la toma de decisiones, que obviamente también va a ser variable de acuerdo a la estrategia que tu elijas, de toma de decisiones, y tienes agentes que son consumidores, que son productores, agentes que ayudan hacer el intercambio etc. Entonces para esto también necesitas una serie de parámetros que te permita modelar diferentes agentes, diversidad, ya sea de diversidad o en número de agentes que entran al proceso. Haz de cuenta que tienes a varios agentes que a través de ciertas relaciones que tu identicas de producción y de consumo van a realizar cierta actividad y la gran ventaja de estos modelos es que te permite ser más específico y además variar mucho, las posibilidades en cuanto a la diversidad de comportamientos que puedes tener, en la toma de decisiones, tanto de producción como de consumo.

JA: Ok, ¿parte de ecuaciones, modelas la producción en función variables de comportamiento?

JM: Sí, por ejemplo tú producción agrícola depende para un productor de los precios, la cantidad de programas disponibles, de la ubicación geográfica, de la factibilidad de venta y todo eso está definido por algún modelo o una ecuación diferencial y el consumidor. Por otro lado, ese producto también tiene ciertos atributos, entonces tú identificas la relación de producción, tienes una relación de equilibrio en un mercado, incluso tú lo puedes modelar, a lo mejor el mercado no se satura y puedes tener excedentes. En fin, es hacerlo más real.

JA: Es como un modelo de equilibrio general, pero considerando factores que no considera la teoría.

JM: Exactamente, porque el modelo de equilibrio general tú ya tienes las relaciones básicamente preestablecidas y casi son de sector a sector, rara vez tienes algunos otros elementos que no sean del sector.
JA: Oye e identificas algún ejemplo así ya puntual, de algún tipo de modelos de sector agropecuario o forestal por lo menos.
JM: De agente, hay varios de cambio de uso de suelo.
JA: ¿Sí buscamos en Google “modelo de agente” o en inglés salen los resultados?
JM: Sí, por su puesto.
JA: Ok entonces los buscamos, a mi entender sería como meter algo como de equilibrio parcial con variables de control, o estoy siendo muy simplista.
JM: Sí, porque en un modelo de los 3 que acabamos de platicar le metes un dato y tienes un resultado, y en estos modelos tienes que hacer una simulación, del efecto.
JA: ¿Y esa simulación la hace a partir de la ecuación diferencial?
JM: De todo el conjunto de ecuaciones diferenciales que están modelando el comportamiento de consumidores, productores y los mecanismos de equilibrio.
JA: Pero tú en algún momento tienes que identificar la forma de las ecuaciones diferenciales.
JM: Claro, hay que empezar desde que va a hacer la cabeza para identificar bien el procedimiento.
JA: ¿Y esas ecuaciones se identifican con regresiones?
JM: Pueden ser regresiones o simples parámetros que obtengas de información bibliográfica.
JA: Segunda pregunta, ¿qué es mejor un modelo de equilibrio general, parcial o regresiones?
JM: Es una muy buena pregunta. Uno supondría que el modelo de equilibrio general te podría dar más información, pero yo tengo mis dudas porque son un montón de parámetros, los cuales no puedes juzgar. Es como una caja cerrada, no puedes juzgar la precisión que tiene cada uno de esos parámetros, y aunque sí se puede calcular el efecto en el sesgo que pueda tener, rara vez te dan la información para poderlo hacer.
JA: Yo me imagino que es como si tuviéramos 1000 matrices de contabilidad social a lo mejor ahí sí podríamos hacer un Análisis de esta incertidumbre, no.
JM: Claro.
JA: Pero como tienes dos fotos en una década o dos décadas pues no puedes hacer nada.
JM: Es bien difícil, entonces a pesar de que es más específico y es más sectorial yo si le tengo más desconfianza a esos modelos que a unos de una regresión donde simplemente te den un resultado genérico y que además depende para qué lo quieren.
JA: En este estudio se quiere proyectar emisiones a largo plazo, entonces un modelo de regresión solo captura algo en el momento digo al menos que hagas un panel o algo así pero difícilmente va a servir para proyectar, ¿qué opinas?
JM: Pues es que el equilibrio general está igual, porque todos los parámetros están basados en sectores. La gran ventaja que tendrías sobre el otro es de que tú puedes modelar el efecto que tienen otros sectores, en lo que tú quieres hacer, pero también ese efecto es basado en la información histórica.

JA: ¿Y este modelo de agentes crees que sea superior?

JM: Superior a los tres, pero por supuesto porque ahí tú puedes modelar diferentes escenarios mucho más específicos que en uno de equilibrio general o parcial.

JA: ¿Y no tiene la misma desventaja que evaluar los parámetros de los que no tienes un punto de referencia? Sobre si son válidos los parámetros, las relaciones.

JM: Te voy a poner un ejemplo en qué puedes evaluar esta diferencia, en un análisis costo beneficio tú tienes un valor presente neto, cuando tú haces el análisis de riesgo, tienes una distribución de ese valor presente neto; bueno lo que te da el modelo de agente es esa distribución.

JA: Si tendrías ahí que simular muchísimas veces.

JM: Así es, la gran ventaja es que aquí tú puedes simular todo adentro.

JA: Suena bastante bien porque en un modelo de equilibrio general le mueves parámetros y tienes que hacer mil simulaciones a ver si esas son suficientes para calcular incertidumbre ¿no? Ok muy bien pues me voy a meter al tema de modelo de agentes, me estás cambiando todo el panorama, pero está bien.

JM: Claro que son más difíciles de hacer, si es más complicado, porque tienes que identificar muy claro el proceso y cuáles son las variables opciones sobre las cuales tienes que tomar la decisión, y obviamente vas a querer ver sus caras. Entonces sí requiere un poquito más de experiencia, sobre todo en simulación.

JA: ¿Simulación en cuánto a qué?

JM: A simular el proceso, cuáles son para un agente las variables que toma en cuenta para tomar la decisión, y qué peso tienen esas variables, cómo las utiliza para tomar la decisión, en términos del entorno que tú le simules.

JA: ¿Entonces se necesitaría trabajo de campo?

JM: Sí, es recomendable.

JA: Ok vamos a la siguiente pregunta, ¿qué variables son esenciales para modelar el sector agropecuario, el modelo es para predecir emisiones?

JM: Yo creo que una variable que es bien difícil de encontrar y muy importante van a ser los sistemas agropecuarios que se utilizan, los sistemas de producción como están integrados, si más intensivo, menos intensivo y en cada uno de ellos que tanto se utilizan los insumos importantes en términos desde riego hasta fertilizantes de agro químicos. En la parte pecuaria que también hacen falta variables, cómo se
distribuyen los diferentes sistemas de producción, que es el sector que pesa más en términos de emisión.

JA: ¿Sería básicamente como caracterizar los sistemas de producción, como describir sus funciones de producción?

JM: Los sistemas de producción, sí yo creo que eso es lo fundamental, y de ahí la información de campo para alimentar, eso sí la veo medio complicado. Habría que checar el Censo 2007, a ver qué hay, incluso el nuevo censo, ya están por ahí los cuestionarios.

JA: Ya hicieron censo agropecuario otra vez, porque estaban haciendo una encuesta.

JM: No, no lo hicieron, hicieron la encuesta la ENA y de esa ENA ya están los cuestionarios, ahí puedes tomar la referencia de que es lo que están preguntando, sí, pero en mi opinión, sí hay que caracterizar bien el tema de producción y sobre todo los insumos que se requiere para cada tipo de sistema.

JA: ¿Cuáles son los retos y limitantes de la modelación de este tipo?

JM: Creo que la falta de datos, y la falta sin duda de una tipología clara de estos sistemas productivos. La otra es que pueden tener diferentes resultados, las mezclas, o sea, lo tienes que hacer aún nivel de desegregación importante; porque si te vas a nivel de una unidad productiva, esa unidad productiva puede tener agricultura, fruticultura, ganadería, muchas otras no, incluso hasta forestal. Entonces el definir la modelación a qué nivel va a ser importante, y de aquí que a lo mejor lo más interesante es sacar información a nivel agregado y utilizar los modelos más simples de tal forma que reduzcas ese enorme riesgo, qué hay.

JA: Si este proyecto se te encargara, ¿cómo lo harías?

JM: Pues va a depender del presupuesto.

JA: Supongamos que tenemos todo el presupuesto.

JM: Yo haría un conjunto de ecuaciones que me ayudaran, como un modelo de equilibrio parcial. Porque las ecuaciones solitas sí te dan información, pero el hecho de hacer las estimaciones con regresiones separadas, en el largo plazo no controlas por muchos factores; hay tantas endogeneidades como correlaciones. Entonces, si ya tienes conjunto de ecuaciones creo que saldrían mejores estimaciones.

JA: ¿Y por qué no general?

JM: Porque general para mí, ya es meterse a mucho detalle y es un trabajo de años, y tú lo quieres para una estimación ¿no?

JA: Sí.

JM: Yo creo que un modelo de equilibrio general es trabajo de una vida, y no creo yo que el INECC debería de encargarse de eso, mejor dejárselo a INEGI. Que el INECC
tenga toda la información y demás, pero como una institución que concentra toda esa información genérica.

JA: Y si tú en el otro extremo, tuvieras poco tiempo y poco dinero.

JM: Pues con ecuaciones separadas. Ya si no hay casi dinero pues hacer escenarios

JA: ¿Cómo serían los escenarios?

JM: Con información base, identificando algún efecto marginal que tengas por ahí con dos observaciones, y no vas tener mucho.

María Eugenia Ibarrarán

JALP: José Alberto Lara Pulido; **MARU**: María Eugenia Ibarrarán

JALP: Hola Maru buenas tardes, muchas gracias por tu tiempo.

MARU: No te preocupes cuéntame.

JALP: Tengo entendido que ya te buscaron de otra consultoría.

MARU: Sí, ¿qué es lo que quieren hacer, es un modelo de equilibrio general enorme?

JALP: No, más bien es identificar un modelo no necesariamente de equilibrio general, un modelo que les permita proyectar emisiones a largo plazo, evidentemente ahí están metidos los de equilibrio general, pero no están casados con esa idea.

MARU: En mi opinión lo que necesitan es correr escenarios, no hacer un nuevo modelo.

MARU: Francisco Estrada tiene un modelo a nivel mundial que se puede escalar para la región que quieras en México, para destinar emisiones y al mismo tiempo para dar el impacto de cambio climático en economía y después del impacto de la economía en el cambio climático, o sea todo.

JALP: Suena bien, nada más que se me olvidó mencionarte, aquí se están enfocando al sector USCUSS y Agropecuario, en mi caso estamos analizando el sector agropecuario, plati
cue con Ale Elizondo y lo que me decía es.

MARU: Ella sabe más de eso, porque ella ha hecho lo del etanol y todo eso.

JALP: Lo que me decía es que cuando metes el sector primario, pues obviamente no pinta nada, es menos de uno por ciento del PIB.

Maru: Sí, es chiquito.

JALP: Entonces, lo que hagas ahí adentro pues difícilmente se va a reflejar en emisiones, ahora no se si este modelo de Francisco Estrada, supongo que es de toda la economía.

MARU: Es de toda la economía, pero tiene el sector agropecuario, porque ahorita algo estaba haciendo con el sector agropecuario, yo hablé con él ayer apenas.
MARU: El problema es que la gente se va, entonces ya nadie sabe que hay, ni que ha habido, ni que se usa, ni nada, eso es lo que pasa, entonces lo que tienen que hacer es hacerles ver que eso no importa, que lo que van hacer va a ser exactamente lo mismo, entonces mejor recurro a un modelo existente, para las evaluaciones que quieren.

JALP: Tengo algunas preguntas ¿cómo modelar la actividad económica y emisiones al sector agropecuario, qué es mejor, un enfoque de equilibrio general, uno parcial, una mera regresión? Ayer hablé con Juan Manuel Torres y me hablaba de modelos basados en agentes, que no están basados en teoría económica, sino más bien en modelar el comportamiento de las personas a partir de ecuaciones diferenciales y hacer simulaciones.

MARU: Falta ver para que hay información.

JALP: ¿Qué variables son esenciales para modelar el sector agropecuario, que modelos piensas que están más relacionadas, cuáles serán los retos y limitantes de esta modelación, si tu tuvieras a tu cargo esta consultoría, ósea que te dijeran tienes que proyectar las emisiones, cómo y por dónde te irías?

MARU: Ok, por lo que conozco, es el modelo equilibrio general. Ahora probablemente tendría como más desagregado el sector agropecuario para poder ver el impacto, yo creo que sí sería de equilibrio general. Aunque por el tamaño no sé si mejor parcial. Haz de cuenta como el de George Dyer, porque así puedes ver bien qué está pasando. Pero el punto es que sí tiene conexión con otros sectores y por ejemplo ahora importa saber si el tratado de libre comercio tendrá un impacto en el sector agropecuario.

JALP: Pues si tienes razón.

MARU: Entonces yo creo que con un modelo de equilibrio general que tenga más desagregado el sector agropecuario y al final como aquí nada más son valores no sacas cantidades de producción, ni nada así, lo que creo que tendrías que hacer, es tener como factores fijos de emisión dependiendo del tipo de productos que se produzcan. Entonces si tú sabes que el 20% es maíz, el 40% es frijol etc.; cuáles son las emisiones de eso. Por un lado, que quede clarísimo que los modelos de equilibrio general son muy poco precisos para calcular emisiones de gases efecto invernadero, siempre se calculan fuera del modelo. Por otro lado, que cuando sean los impactos de equilibrio general, las emisiones son mayores de lo que esperaría cuando no es efecto de equilibrio general, entonces si tú haces políticas para reducir emisiones pero nada más ves un sector, es posible que veas reducciones importantes, pero si tú estás viendo otros sectores entonces no va a ser así.

MARU: Entonces esto sería importante haz de cuenta, lo que nos ha pasado sobre todo con sectores grandes, que todo eléctrico, o que combustibles, a bueno...
pues hay que poner una política de emisiones, pero le voy a mitigar emisiones como por ejemplo poner un aumento de precios en combustibles, también hay un ajuste de la demanda y entonces cae la demanda por eso se vuelve más barato y otros sectores empiezan a consumirlos más y entonces la reducción no fue tan grande como esperaban.

MARU: Entonces eso es una cosa que sería importante que vieran, como que están preparados para que no sea tanto como quien está poniendo las políticas o quisiera encontrar.

MARU: El modelo de equilibrio general te da producción total del sector agropecuario y te da P x Q, el valor de la producción., El problema es que tú tienes muchos productos a diferentes precios cada uno, entonces no te estima cuanto produces de maíz al menos el nuestro que tenemos. Hay otros que sí tienen ciertos productos agropecuarios y otros productos.

JALP: Sería desagregar el sector agropecuario en maíz y los otros.

MARU: Exacto ese es el problema que te da el modelo general, porque si quieres hacerlo con mucho detalle entonces si no existirá la información o la computadora se quedará corta.

JALP: Por lo que hemos visto, los modelos que integran emisiones al final lo que hacen es multiplicar por factores de emisión.

MARU: Es que, si no, no se puede.

JALP: Porque al final en todo caso estarías suponiendo al integrarlo al modelo que ya está internalizado como un insumo de producción la contaminación y no tiene un precio.

MARU: Exacto es que el modelo de equilibrio general nada más refleja cosas de mercado, entonces las externalidades no las refleja. Entonces por un lado sacas las emisiones y por otro lado, sacas la producción y todo eso. Ahora no vas a tener el impacto sobre las emisiones sobre el clima, por ejemplo.