ANEXO III: ALGUNOS TÓPICOS DE INFERENCIA ESTADÍSTICA

Determinación de centiles

El centil es un estadístico, que representa todos aquellos valores que se encuentran por debajo de un porcentaje dado, el cual puede variar entre 1% y 100%. Se denota por \(P_k \), donde \(k \) indica el porcentaje de datos acumulados, y \(P_k \) es el valor de la variable que representa dicho porcentaje.

Para la determinación de los centiles se requiere que la información a analizar se encuentre previamente ordenada, por consiguiente, dependiendo cómo se encuentren agrupados los datos, se desprenden dos casos:

- Para un conjunto de datos agrupados por medio de intervalos de clase, se calcula de la siguiente manera:

\[
P_k = L_i + \left(\frac{n \times \frac{k}{100} - F_{i-1}}{f_i} \right) \times A
\]

Donde:

- \(L_i \) : Límite inferior del intervalo que contiene a \(P_k \).
- \(F_{i-1} \) : Frecuencia absoluta acumulada del intervalo \(I_{i-1} \).
- \(f_i \) : Frecuencia absoluta del intervalo que contiene a \(P_k \).
- \(A \) : Amplitud del intervalo.
\[n : \text{Número de datos agrupados.} \]
\[k : \text{Número del percentil.} \]

Para un conjunto de datos no agrupados se calcula de la siguiente manera:
\[
P_k = \begin{cases}
\frac{k \times n}{100}, & n \text{ es par} \\
\frac{k \times (n + 1)}{100}, & n \text{ es impar}
\end{cases}
\]

Donde:
\[k : \text{Número del percentil.} \]
\[n : \text{Número de elementos que conforman la información.} \]

Teorema central del límite

El teorema central de límite, consiste en un conjunto de resultados acerca del comportamiento de la distribución de la suma (o promedio) de variables aleatorias.

El teorema central del límite postula que la suma de un número determinado de eventos iguales e independientes entre sí, tiende a una distribución de probabilidad de ocurrencia del tipo normal, la cual se caracteriza por la agrupación de la mayor parte de los datos en torno a la media.

Formalmente:

Si \(X_1, X_2, \ldots, X_n\) es una secuencia de \(n\) variables aleatorias independientes con \(E(X_j) = \mu_j\) y \(Var(X_j) = \sigma^2_j \) (ambas finitas) y \(Y = C_0X_0 + C_1X_1 + \cdots + C_nX_n\), entonces bajo ciertas condiciones generales:

\[
Z = \frac{Y - \sum_{j=0}^{n} C_j \mu_j}{\sqrt{\sum_{j=0}^{n} C_j^2 \sigma^2_j}}
\]
Tiene una distribución $N(0,1)$ a medida que n se aproxima al infinito

FIGURA 2: TEOREMA CENTRAL DEL LÍMITE

En la figura anterior, se ilustra el teorema central del límite para el caso de cinco variables aleatorias independientes seleccionadas arbitrariamente, donde las variables aleatorias X_1, X_2, X_3 y X_4 son continuas, y la representación de sus funciones de densidad son mostradas en el gráfico. La variable aleatoria X_5 es discreta, de modo que su función de densidad es tal como se muestra en el gráfico.

Teorema de los grandes números

Si X_1, X_2, X_3, ..., X_n son variables aleatorias independientes e idénticas distribuidas y si existe $\mu = E(X_i)$ y $\overline{X} = \frac{X_1 + X_2 + X_3 + \cdots + X_n}{n}$ entonces: cuando n se convierte en un entero muy grande \overline{X} difiere de la media común μ de los X_i en más que cualquier pequeña diferencia arbitrariamente asignada.

$$P(|\overline{X} - \mu| < \varepsilon) \to 1 \text{ cuando } n \to \infty$$

Es decir, cuando n sea un entero muy grande, la probabilidad de que la distancia entre \overline{X} y μ sea muy pequeña es muy cercana a la unidad. En otras palabras la media de una muestra muy grande, tenderá a la media de la muestra poblacional.
Test de normalidad

Hasta ahora se ha supuesto una distribución de probabilidad para los datos, la cual tiene una forma determinada y sus parámetros verifican ciertas condiciones, de tal manera, que la estadística muestral correspondiente tenga una distribución de probabilidad conocida. A lo anterior, se le denomina métodos paramétricos. Sin embargo, existen aplicaciones donde no es posible conocer la distribución de la población de los datos analizados. En estos casos, se emplean métodos alternativos, equivalentes a los paramétricos, llamados métodos no paramétricos.

Supongamos que se cuenta con una cantidad finita de datos \(\{a_i\}_{i=1}^n \), de tal manera que se representa los siguientes pares ordenados \(\{a_i; F(a_i)\}_{i=1}^n \) y \(\{a_i; F_n(a_i)\}_{i=1}^n \), donde \(F_n \) representa la función de distribución acumulada del conjunto de datos y \(F \) la función de distribución acumulada esperada (por ejemplo, la distribución normal). Ambas curvas son representadas en un mismo gráfico de tal manera que los puntos \(\{a_i; F(a_i)\}_{i=1}^n \) se encuentran sobre la recta \(y = x \). Por consiguiente aceptaremos la hipótesis de normalidad siempre que los puntos \(\{a_i; F_n(a_i)\}_{i=1}^n \) se encuentren próximos a la recta.

![Gráfico de Normalidad](image)

Muchos métodos no paramétricos han sido creados para medir la bondad del ajuste de una distribución normal, con la finalidad de contrastar si una muestra sigue una determinada función de distribución (no solo la normal). A continuación se presentan los más usados:

◊ Test de Kolmogorov-Smirnov

Esta prueba se aplica solo para variables continuas y además en número de datos observados es superior a 4, y se utiliza para comprobar la hipótesis nula de que la muestra procede de
una distribución normal. Se fundamenta en la comparación de la función de distribución acumulada de los datos observados, con respecto a la función de distribución esperada, midiendo la máxima distancia entre ambas curvas, que no deberá exceder un valor crítico, que se obtiene de una tabla de probabilidad. Es decir,

\[D = \max \{ F_n(a_i) - F(a_i) \} \]

La hipótesis nula se acepta cuando el valor observado es inferior al valor esperado, que se encuentra en el siguiente cuadro para los respectivos valores de significancia.

<table>
<thead>
<tr>
<th>n</th>
<th>20%</th>
<th>10%</th>
<th>5%</th>
<th>2%</th>
<th>1%</th>
<th>n</th>
<th>20%</th>
<th>10%</th>
<th>5%</th>
<th>2%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.900</td>
<td>0.950</td>
<td>0.975</td>
<td>0.990</td>
<td>0.995</td>
<td>21</td>
<td>0.226</td>
<td>0.259</td>
<td>0.287</td>
<td>0.321</td>
<td>0.344</td>
</tr>
<tr>
<td>2</td>
<td>0.684</td>
<td>0.776</td>
<td>0.842</td>
<td>0.900</td>
<td>0.929</td>
<td>22</td>
<td>0.221</td>
<td>0.253</td>
<td>0.281</td>
<td>0.314</td>
<td>0.337</td>
</tr>
<tr>
<td>3</td>
<td>0.565</td>
<td>0.636</td>
<td>0.780</td>
<td>0.785</td>
<td>0.829</td>
<td>23</td>
<td>0.216</td>
<td>0.247</td>
<td>0.275</td>
<td>0.307</td>
<td>0.330</td>
</tr>
<tr>
<td>4</td>
<td>0.493</td>
<td>0.565</td>
<td>0.624</td>
<td>0.689</td>
<td>0.734</td>
<td>24</td>
<td>0.212</td>
<td>0.242</td>
<td>0.269</td>
<td>0.301</td>
<td>0.323</td>
</tr>
<tr>
<td>5</td>
<td>0.447</td>
<td>0.509</td>
<td>0.563</td>
<td>0.627</td>
<td>0.669</td>
<td>25</td>
<td>0.208</td>
<td>0.238</td>
<td>0.264</td>
<td>0.295</td>
<td>0.317</td>
</tr>
<tr>
<td>6</td>
<td>0.410</td>
<td>0.468</td>
<td>0.519</td>
<td>0.577</td>
<td>0.617</td>
<td>26</td>
<td>0.204</td>
<td>0.233</td>
<td>0.259</td>
<td>0.290</td>
<td>0.311</td>
</tr>
<tr>
<td>7</td>
<td>0.381</td>
<td>0.436</td>
<td>0.483</td>
<td>0.538</td>
<td>0.576</td>
<td>27</td>
<td>0.200</td>
<td>0.229</td>
<td>0.254</td>
<td>0.284</td>
<td>0.305</td>
</tr>
<tr>
<td>8</td>
<td>0.358</td>
<td>0.410</td>
<td>0.454</td>
<td>0.507</td>
<td>0.542</td>
<td>28</td>
<td>0.197</td>
<td>0.225</td>
<td>0.250</td>
<td>0.279</td>
<td>0.300</td>
</tr>
<tr>
<td>9</td>
<td>0.339</td>
<td>0.387</td>
<td>0.430</td>
<td>0.480</td>
<td>0.513</td>
<td>29</td>
<td>0.193</td>
<td>0.221</td>
<td>0.246</td>
<td>0.275</td>
<td>0.295</td>
</tr>
<tr>
<td>10</td>
<td>0.323</td>
<td>0.369</td>
<td>0.409</td>
<td>0.457</td>
<td>0.489</td>
<td>30</td>
<td>0.190</td>
<td>0.218</td>
<td>0.242</td>
<td>0.270</td>
<td>0.290</td>
</tr>
<tr>
<td>11</td>
<td>0.308</td>
<td>0.352</td>
<td>0.391</td>
<td>0.437</td>
<td>0.468</td>
<td>31</td>
<td>0.187</td>
<td>0.214</td>
<td>0.238</td>
<td>0.266</td>
<td>0.285</td>
</tr>
<tr>
<td>12</td>
<td>0.296</td>
<td>0.338</td>
<td>0.375</td>
<td>0.419</td>
<td>0.449</td>
<td>32</td>
<td>0.184</td>
<td>0.211</td>
<td>0.234</td>
<td>0.262</td>
<td>0.281</td>
</tr>
<tr>
<td>13</td>
<td>0.285</td>
<td>0.325</td>
<td>0.361</td>
<td>0.404</td>
<td>0.432</td>
<td>33</td>
<td>0.182</td>
<td>0.208</td>
<td>0.231</td>
<td>0.258</td>
<td>0.277</td>
</tr>
<tr>
<td>14</td>
<td>0.275</td>
<td>0.314</td>
<td>0.349</td>
<td>0.390</td>
<td>0.418</td>
<td>34</td>
<td>0.179</td>
<td>0.205</td>
<td>0.227</td>
<td>0.254</td>
<td>0.273</td>
</tr>
<tr>
<td>15</td>
<td>0.266</td>
<td>0.304</td>
<td>0.338</td>
<td>0.377</td>
<td>0.404</td>
<td>35</td>
<td>0.177</td>
<td>0.202</td>
<td>0.224</td>
<td>0.251</td>
<td>0.269</td>
</tr>
<tr>
<td>16</td>
<td>0.258</td>
<td>0.295</td>
<td>0.327</td>
<td>0.366</td>
<td>0.392</td>
<td>36</td>
<td>0.174</td>
<td>0.199</td>
<td>0.221</td>
<td>0.247</td>
<td>0.265</td>
</tr>
<tr>
<td>17</td>
<td>0.250</td>
<td>0.286</td>
<td>0.318</td>
<td>0.355</td>
<td>0.381</td>
<td>37</td>
<td>0.172</td>
<td>0.196</td>
<td>0.218</td>
<td>0.244</td>
<td>0.262</td>
</tr>
<tr>
<td>18</td>
<td>0.244</td>
<td>0.279</td>
<td>0.309</td>
<td>0.346</td>
<td>0.371</td>
<td>38</td>
<td>0.170</td>
<td>0.194</td>
<td>0.215</td>
<td>0.241</td>
<td>0.258</td>
</tr>
<tr>
<td>19</td>
<td>0.237</td>
<td>0.271</td>
<td>0.301</td>
<td>0.337</td>
<td>0.361</td>
<td>39</td>
<td>0.168</td>
<td>0.191</td>
<td>0.213</td>
<td>0.238</td>
<td>0.255</td>
</tr>
<tr>
<td>20</td>
<td>0.232</td>
<td>0.265</td>
<td>0.294</td>
<td>0.329</td>
<td>0.352</td>
<td>40</td>
<td>0.165</td>
<td>0.189</td>
<td>0.210</td>
<td>0.235</td>
<td>0.252</td>
</tr>
</tbody>
</table>

Cuadro 1: Valores críticos para la prueba de Kolmogorov-Smirnov
Test de Shapiro-Wilk

Esta prueba de normalidad es recomendable, cuando se cuenta con muestras reducidas \((3 \leq n \leq 50)\). Este estadístico mide cómo los datos observados se ajusta a la recta \(^2\) (recta de 45°) y no a la distancia a la distribución normal. Este estadístico se formula de la siguiente manera:

\[
W = \frac{1}{\sum_{j=1}^{n}(x_j - \mu)^2} \left[\sum_{j=1}^{h} (a_{j,n} (x_{(n-j+1)} - x_j))^2 \right]
\]

Donde, \(n\) es el número de datos, \(x_j\) es el dato en orden ascendente de la muestra que ocupa el lugar \(j\), \(\mu\) es la media, \(h\) es \(n/2\) si \(n\) es par, o \((n-1)/2\) si \(n\) es impar, \(a_{j,n}\) es un valor tabulado. La hipótesis nula se acepta cuando el valor de \(W\) es superior al valor crítico que se encuentra tabulado en el siguiente cuadro.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
<th>10%</th>
<th>50%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0,753</td>
<td>0,756</td>
<td>0,767</td>
<td>0,789</td>
<td>0,959</td>
<td>0,998</td>
<td>0,999</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>4</td>
<td>0,687</td>
<td>0,707</td>
<td>0,748</td>
<td>0,792</td>
<td>0,935</td>
<td>0,987</td>
<td>0,992</td>
<td>0,996</td>
<td>0,997</td>
</tr>
<tr>
<td>5</td>
<td>0,686</td>
<td>0,715</td>
<td>0,762</td>
<td>0,806</td>
<td>0,927</td>
<td>0,979</td>
<td>0,986</td>
<td>0,991</td>
<td>0,993</td>
</tr>
<tr>
<td>6</td>
<td>0,713</td>
<td>0,743</td>
<td>0,788</td>
<td>0,826</td>
<td>0,927</td>
<td>0,974</td>
<td>0,981</td>
<td>0,986</td>
<td>0,989</td>
</tr>
<tr>
<td>7</td>
<td>0,730</td>
<td>0,760</td>
<td>0,803</td>
<td>0,838</td>
<td>0,928</td>
<td>0,972</td>
<td>0,979</td>
<td>0,985</td>
<td>0,988</td>
</tr>
<tr>
<td>8</td>
<td>0,749</td>
<td>0,778</td>
<td>0,818</td>
<td>0,851</td>
<td>0,932</td>
<td>0,972</td>
<td>0,978</td>
<td>0,984</td>
<td>0,987</td>
</tr>
<tr>
<td>9</td>
<td>0,764</td>
<td>0,791</td>
<td>0,829</td>
<td>0,859</td>
<td>0,935</td>
<td>0,972</td>
<td>0,978</td>
<td>0,984</td>
<td>0,986</td>
</tr>
<tr>
<td>10</td>
<td>0,781</td>
<td>0,806</td>
<td>0,842</td>
<td>0,869</td>
<td>0,938</td>
<td>0,972</td>
<td>0,978</td>
<td>0,983</td>
<td>0,986</td>
</tr>
<tr>
<td>11</td>
<td>0,792</td>
<td>0,817</td>
<td>0,850</td>
<td>0,876</td>
<td>0,940</td>
<td>0,973</td>
<td>0,979</td>
<td>0,984</td>
<td>0,986</td>
</tr>
<tr>
<td>12</td>
<td>0,805</td>
<td>0,828</td>
<td>0,859</td>
<td>0,883</td>
<td>0,943</td>
<td>0,973</td>
<td>0,979</td>
<td>0,984</td>
<td>0,986</td>
</tr>
<tr>
<td>13</td>
<td>0,814</td>
<td>0,837</td>
<td>0,866</td>
<td>0,889</td>
<td>0,945</td>
<td>0,974</td>
<td>0,979</td>
<td>0,984</td>
<td>0,986</td>
</tr>
<tr>
<td>14</td>
<td>0,825</td>
<td>0,846</td>
<td>0,874</td>
<td>0,895</td>
<td>0,947</td>
<td>0,975</td>
<td>0,980</td>
<td>0,984</td>
<td>0,986</td>
</tr>
<tr>
<td>15</td>
<td>0,835</td>
<td>0,855</td>
<td>0,881</td>
<td>0,901</td>
<td>0,950</td>
<td>0,975</td>
<td>0,980</td>
<td>0,984</td>
<td>0,987</td>
</tr>
<tr>
<td>16</td>
<td>0,844</td>
<td>0,863</td>
<td>0,887</td>
<td>0,906</td>
<td>0,952</td>
<td>0,976</td>
<td>0,981</td>
<td>0,985</td>
<td>0,987</td>
</tr>
<tr>
<td>17</td>
<td>0,851</td>
<td>0,869</td>
<td>0,892</td>
<td>0,910</td>
<td>0,954</td>
<td>0,977</td>
<td>0,981</td>
<td>0,985</td>
<td>0,987</td>
</tr>
<tr>
<td>18</td>
<td>0,858</td>
<td>0,874</td>
<td>0,897</td>
<td>0,914</td>
<td>0,956</td>
<td>0,978</td>
<td>0,982</td>
<td>0,986</td>
<td>0,988</td>
</tr>
<tr>
<td>19</td>
<td>0,863</td>
<td>0,879</td>
<td>0,901</td>
<td>0,917</td>
<td>0,957</td>
<td>0,978</td>
<td>0,982</td>
<td>0,986</td>
<td>0,988</td>
</tr>
<tr>
<td>20</td>
<td>0,868</td>
<td>0,884</td>
<td>0,905</td>
<td>0,920</td>
<td>0,959</td>
<td>0,979</td>
<td>0,983</td>
<td>0,986</td>
<td>0,988</td>
</tr>
</tbody>
</table>

\(^2\) Recta probabilística normal.
<table>
<thead>
<tr>
<th>n</th>
<th>1%</th>
<th>2%</th>
<th>5%</th>
<th>10%</th>
<th>50%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>0,873</td>
<td>0,888</td>
<td>0,908</td>
<td>0,923</td>
<td>0,960</td>
<td>0,980</td>
<td>0,983</td>
<td>0,987</td>
<td>0,989</td>
</tr>
<tr>
<td>22</td>
<td>0,878</td>
<td>0,892</td>
<td>0,911</td>
<td>0,926</td>
<td>0,961</td>
<td>0,980</td>
<td>0,984</td>
<td>0,987</td>
<td>0,989</td>
</tr>
<tr>
<td>23</td>
<td>0,881</td>
<td>0,895</td>
<td>0,914</td>
<td>0,928</td>
<td>0,962</td>
<td>0,981</td>
<td>0,984</td>
<td>0,987</td>
<td>0,989</td>
</tr>
<tr>
<td>24</td>
<td>0,884</td>
<td>0,898</td>
<td>0,916</td>
<td>0,930</td>
<td>0,963</td>
<td>0,981</td>
<td>0,984</td>
<td>0,987</td>
<td>0,989</td>
</tr>
<tr>
<td>25</td>
<td>0,888</td>
<td>0,901</td>
<td>0,918</td>
<td>0,931</td>
<td>0,964</td>
<td>0,981</td>
<td>0,985</td>
<td>0,988</td>
<td>0,989</td>
</tr>
<tr>
<td>26</td>
<td>0,891</td>
<td>0,904</td>
<td>0,920</td>
<td>0,933</td>
<td>0,965</td>
<td>0,982</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
</tr>
<tr>
<td>27</td>
<td>0,894</td>
<td>0,906</td>
<td>0,923</td>
<td>0,935</td>
<td>0,965</td>
<td>0,982</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
</tr>
<tr>
<td>28</td>
<td>0,896</td>
<td>0,908</td>
<td>0,924</td>
<td>0,936</td>
<td>0,966</td>
<td>0,982</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
</tr>
<tr>
<td>29</td>
<td>0,898</td>
<td>0,910</td>
<td>0,926</td>
<td>0,937</td>
<td>0,966</td>
<td>0,982</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
</tr>
<tr>
<td>30</td>
<td>0,900</td>
<td>0,912</td>
<td>0,927</td>
<td>0,939</td>
<td>0,967</td>
<td>0,983</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
</tr>
<tr>
<td>31</td>
<td>0,902</td>
<td>0,914</td>
<td>0,929</td>
<td>0,940</td>
<td>0,967</td>
<td>0,983</td>
<td>0,986</td>
<td>0,988</td>
<td>0,990</td>
</tr>
<tr>
<td>32</td>
<td>0,904</td>
<td>0,915</td>
<td>0,930</td>
<td>0,941</td>
<td>0,968</td>
<td>0,983</td>
<td>0,986</td>
<td>0,988</td>
<td>0,990</td>
</tr>
<tr>
<td>33</td>
<td>0,906</td>
<td>0,917</td>
<td>0,931</td>
<td>0,942</td>
<td>0,968</td>
<td>0,983</td>
<td>0,986</td>
<td>0,989</td>
<td>0,990</td>
</tr>
<tr>
<td>34</td>
<td>0,908</td>
<td>0,919</td>
<td>0,933</td>
<td>0,943</td>
<td>0,969</td>
<td>0,983</td>
<td>0,986</td>
<td>0,989</td>
<td>0,990</td>
</tr>
<tr>
<td>35</td>
<td>0,910</td>
<td>0,920</td>
<td>0,934</td>
<td>0,944</td>
<td>0,969</td>
<td>0,984</td>
<td>0,986</td>
<td>0,989</td>
<td>0,990</td>
</tr>
<tr>
<td>36</td>
<td>0,912</td>
<td>0,922</td>
<td>0,935</td>
<td>0,945</td>
<td>0,970</td>
<td>0,984</td>
<td>0,986</td>
<td>0,989</td>
<td>0,990</td>
</tr>
<tr>
<td>37</td>
<td>0,914</td>
<td>0,924</td>
<td>0,936</td>
<td>0,946</td>
<td>0,970</td>
<td>0,984</td>
<td>0,987</td>
<td>0,989</td>
<td>0,990</td>
</tr>
<tr>
<td>38</td>
<td>0,916</td>
<td>0,925</td>
<td>0,938</td>
<td>0,947</td>
<td>0,971</td>
<td>0,984</td>
<td>0,987</td>
<td>0,989</td>
<td>0,990</td>
</tr>
<tr>
<td>39</td>
<td>0,917</td>
<td>0,927</td>
<td>0,939</td>
<td>0,948</td>
<td>0,971</td>
<td>0,984</td>
<td>0,987</td>
<td>0,989</td>
<td>0,991</td>
</tr>
<tr>
<td>40</td>
<td>0,919</td>
<td>0,928</td>
<td>0,940</td>
<td>0,949</td>
<td>0,972</td>
<td>0,985</td>
<td>0,987</td>
<td>0,989</td>
<td>0,991</td>
</tr>
<tr>
<td>41</td>
<td>0,920</td>
<td>0,929</td>
<td>0,941</td>
<td>0,950</td>
<td>0,972</td>
<td>0,985</td>
<td>0,987</td>
<td>0,989</td>
<td>0,991</td>
</tr>
<tr>
<td>42</td>
<td>0,922</td>
<td>0,930</td>
<td>0,942</td>
<td>0,951</td>
<td>0,972</td>
<td>0,985</td>
<td>0,987</td>
<td>0,989</td>
<td>0,991</td>
</tr>
<tr>
<td>43</td>
<td>0,923</td>
<td>0,932</td>
<td>0,943</td>
<td>0,951</td>
<td>0,973</td>
<td>0,985</td>
<td>0,987</td>
<td>0,990</td>
<td>0,991</td>
</tr>
<tr>
<td>44</td>
<td>0,924</td>
<td>0,933</td>
<td>0,944</td>
<td>0,952</td>
<td>0,973</td>
<td>0,985</td>
<td>0,987</td>
<td>0,990</td>
<td>0,991</td>
</tr>
<tr>
<td>45</td>
<td>0,926</td>
<td>0,934</td>
<td>0,945</td>
<td>0,953</td>
<td>0,973</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
<td>0,991</td>
</tr>
<tr>
<td>46</td>
<td>0,927</td>
<td>0,935</td>
<td>0,945</td>
<td>0,953</td>
<td>0,974</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
<td>0,991</td>
</tr>
<tr>
<td>47</td>
<td>0,928</td>
<td>0,936</td>
<td>0,946</td>
<td>0,954</td>
<td>0,974</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
<td>0,991</td>
</tr>
<tr>
<td>48</td>
<td>0,929</td>
<td>0,937</td>
<td>0,947</td>
<td>0,954</td>
<td>0,974</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
<td>0,991</td>
</tr>
<tr>
<td>49</td>
<td>0,929</td>
<td>0,937</td>
<td>0,947</td>
<td>0,955</td>
<td>0,974</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
<td>0,991</td>
</tr>
<tr>
<td>50</td>
<td>0,930</td>
<td>0,938</td>
<td>0,947</td>
<td>0,955</td>
<td>0,974</td>
<td>0,985</td>
<td>0,988</td>
<td>0,990</td>
<td>0,991</td>
</tr>
</tbody>
</table>

◇ Test de Chi-cuadrado

Con un cierto grado de confianza previamente establecido, nos permite determinar si los datos \(\{a_i\}_{i=1}^{n} \) están asociados con la distribución normal, mediante la siguiente expresión:

\[
\chi^2 = \sum_{j=1}^{n} \frac{(F_n(a_j) - F(a_j))^2}{F(a_j)}
\]
Test de Jarque Bera

Este test analiza la normalidad o no normalidad de un conjunto de datos, donde el número de observaciones mínimas es igual a 30. El proceso se realiza comparando la diferencia entre los coeficientes de asimetría y kurtosis de las observaciones, con respecto a una distribución normal. Esta es una prueba asintótica, o de grandes muestras. La expresión de este estadístico es el siguiente:

$$JB = n \left[\frac{S^2}{6} + \frac{(K - 3)^2}{24} \right] \sim \chi^2$$

Siendo S la asimetría y K la curtosis. Bajo la hipótesis nula de distribución normal, el estadístico Jarque Bera se distribuye como una Chi-cuadrado con 2 grados de Libertad. Este test contrasta la siguiente hipótesis nula: la distribución es normal, de las tablas correspondientes tenemos que con un 95% de confianza se tiene el valor de 5.99, es decir, se puede concluir que para valores menores a 6 del JB no se rechaza el supuesto de normalidad.

Por ejemplo, supongamos que contamos con una muestra de 97 sobrecostos del sector de infraestructura, los cuales tienen los siguientes estadísticos:

$$Simetría = 0.149 \quad Kurtosis = 2.942 \quad \Rightarrow \quad JB = 0.374$$

Esto nos permite aceptar la hipótesis de nula de la normalidad, con un grado de confianza superior al 99%.
ANEXO IV: MÉTODO DE MONTE CARLO Y BOOTSTRAP

Método de Monte Carlo

Si la función de densidad de probabilidad es \(f(x) \) definida en la recta real, su función de distribución acumulada (expresa la probabilidad que \(x \leq a \)) está dado por la siguiente ecuación:

\[
F(a) = P(X \leq a) = \int_{-\infty}^{a} f(t) dt
\]

Si se elige \(a \) con densidad de probabilidad \(f(a) \), entonces la probabilidad integrando hasta el punto \(a \), \(F(a) \), es sí misma una variable aleatoria que se producirá con densidad de probabilidad uniforme sobre \([0,1]\). Si \(x \) puede tomar cualquier valor, e ignorando los valores extremos, se encuentra un único \(x \) elegido de la función de densidad de probabilidad \(f(\cdot) \) para algún valor de su dominio, si se define \(u = F(x) \), siempre es posible encontrar la inversa de \(F \), definido por:

\[
x = F^{-1}(u)
\]

Este método se muestra en el gráfico siguiente:
Para el caso de una distribución discreta, $F(x)$ tendrá saltos discontinuos de tamaño $f(x_k)$ en cada x_k, $k = 1, 2, \ldots$. Siguiendo la misma idea del caso continuo, se toma un u de un distribución uniforme sobre $(0,1)$. Encontrando u_k tal que:

$$F(x_{k-1}) < u < F(x_k) \equiv \Pr(x < x_k) = \sum_{i=1}^{k} f(x_i)$$

Entonces u_k es el valor buscado (observar que $F(x_0) \equiv 0$). El algoritmo se muestra en el siguiente gráfico:

![Figura 2: Distribución discreta](image)

En ambas gráficas, se emplea un número aleatorio (pseudoaleatorios28) u elegido de una distribución uniforme $(0,1)$ para encontrar un número aleatorio x de una distribución con función de distribución acumulada F. En la actualidad, algunos paquetes estadísticos cuentan con este modelo para realizar simulaciones29.

El método Bootstrap

Consideremos el siguiente conjunto de datos (x_1, x_2, \ldots, x_n) de tamaño n, la cual corresponde a información histórica de riesgos de sobrecostos y sobreplazos asociados a proyectos.

28 Resulta contradictorio pensar que un método determinístico genere números aleatorios.

29 En la actualidad, existen software que complementan a Excel, tales como CrystalBall y @Risk, permitiendo entregar informes estadísticos completos del sistema simulado, en base a miles de iteraciones.
similares al proyecto en evaluación, los pasos para la aplicación de la metodología Bootstrap son los siguientes:

◊ Se procede a construir una muestra de tamaño \(n \), con los elementos de la muestra original. A la nueva muestra se le conoce como muestra Bootstrap.

◊ La construcción de cada uno de los elementos de la muestra es realizando extracciones con reemplazo de la muestra original, hasta completar \(n \) elementos, donde es posible que se repitan algunos de los elementos que conforman el conjunto de datos.

◊ Este proceso se repite una cantidad finita de veces. Para cada muestra Bootstrap se procede a calcular su media y desviación estándar.

◊ Para la cuantificación del riesgo, se procede a realizar el cálculo del valor promedio del conjunto de media y las volatilidades obtenidas para cada una de las muestras Bootstrap, es decir, \(\bar{\mu} \) y \(\bar{\sigma} \). Con estos nuevos valores, se procede a aplicar la Regla Percentil 5-50-95, de la siguiente manera:

<table>
<thead>
<tr>
<th>Cuadro 1: Regla Percentil 5-50-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_5)</td>
</tr>
<tr>
<td>(\bar{\mu} - 1.64\bar{\sigma})</td>
</tr>
</tbody>
</table>

Donde:

\[
\bar{\mu} = \frac{\sum_{i=1}^{m} \mu_i}{m} \quad \text{y} \quad \bar{\sigma} = \frac{\sum_{i=1}^{m} \sigma_i}{m}
\]

\(\mu_i \): Media de la muestra Bootstrap

\(\sigma_i \): Volatilidad de la muestra Bootstrap

\(m \): Número de muestras Bootstrap

A continuación, se muestra un ejemplo de aplicación de la metodología Bootstrap, donde la muestra original corresponde a inversiones iniciales de diferentes proyectos de infraestructura en un sector determinado de características similares:
<table>
<thead>
<tr>
<th>Número de datos</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
<th>30</th>
<th>μ</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra original</td>
<td>125</td>
<td>128</td>
<td>118</td>
<td>126</td>
<td>128</td>
<td>124</td>
<td>120</td>
<td>117</td>
<td>120</td>
<td>128</td>
<td>...</td>
<td>122</td>
<td>124,17</td>
<td>5,75</td>
</tr>
<tr>
<td>Bootstrap 1</td>
<td>129</td>
<td>127</td>
<td>132</td>
<td>132</td>
<td>125</td>
<td>128</td>
<td>120</td>
<td>129</td>
<td>116</td>
<td>124</td>
<td>124</td>
<td>124,07</td>
<td>4,63</td>
<td></td>
</tr>
<tr>
<td>Bootstrap 2</td>
<td>124</td>
<td>128</td>
<td>125</td>
<td>128</td>
<td>129</td>
<td>120</td>
<td>124</td>
<td>128</td>
<td>120</td>
<td>119</td>
<td>...</td>
<td>117</td>
<td>125,00</td>
<td>4,90</td>
</tr>
<tr>
<td>Bootstrap 3</td>
<td>117</td>
<td>117</td>
<td>120</td>
<td>126</td>
<td>120</td>
<td>124</td>
<td>129</td>
<td>128</td>
<td>129</td>
<td>126</td>
<td>...</td>
<td>124</td>
<td>123,60</td>
<td>4,61</td>
</tr>
<tr>
<td>Bootstrap 4</td>
<td>119</td>
<td>120</td>
<td>129</td>
<td>124</td>
<td>128</td>
<td>128</td>
<td>124</td>
<td>128</td>
<td>120</td>
<td>120</td>
<td>...</td>
<td>120</td>
<td>122,73</td>
<td>5,11</td>
</tr>
<tr>
<td>Bootstrap 5</td>
<td>128</td>
<td>122</td>
<td>127</td>
<td>125</td>
<td>115</td>
<td>128</td>
<td>116</td>
<td>128</td>
<td>115</td>
<td>129</td>
<td>...</td>
<td>120</td>
<td>124,93</td>
<td>5,04</td>
</tr>
<tr>
<td>Bootstrap 6</td>
<td>132</td>
<td>127</td>
<td>127</td>
<td>116</td>
<td>124</td>
<td>129</td>
<td>125</td>
<td>122</td>
<td>117</td>
<td>132</td>
<td>...</td>
<td>132</td>
<td>123,77</td>
<td>5,57</td>
</tr>
<tr>
<td>Bootstrap 7</td>
<td>132</td>
<td>122</td>
<td>127</td>
<td>125</td>
<td>126</td>
<td>120</td>
<td>125</td>
<td>127</td>
<td>129</td>
<td>120</td>
<td>...</td>
<td>120</td>
<td>124,40</td>
<td>4,48</td>
</tr>
<tr>
<td>Bootstrap 8</td>
<td>125</td>
<td>122</td>
<td>125</td>
<td>122</td>
<td>120</td>
<td>129</td>
<td>132</td>
<td>128</td>
<td>116</td>
<td>128</td>
<td>...</td>
<td>128</td>
<td>125,80</td>
<td>4,15</td>
</tr>
<tr>
<td>Bootstrap 9</td>
<td>123</td>
<td>129</td>
<td>128</td>
<td>128</td>
<td>126</td>
<td>117</td>
<td>128</td>
<td>125</td>
<td>120</td>
<td>129</td>
<td>...</td>
<td>122</td>
<td>124,70</td>
<td>3,55</td>
</tr>
<tr>
<td>Bootstrap 10</td>
<td>117</td>
<td>128</td>
<td>123</td>
<td>117</td>
<td>123</td>
<td>115</td>
<td>116</td>
<td>123</td>
<td>125</td>
<td>125</td>
<td>...</td>
<td>124</td>
<td>122,43</td>
<td>4,55</td>
</tr>
</tbody>
</table>

El cuadro anterior, muestra un ejemplo donde el tamaño de la muestra es igual a 30, y se han generado 10,000 muestras Bootstrap a partir de la muestra original, para cada una de las cuales se ha procedido a calcular su media y volatilidad. De dicho cálculo, se obtiene los siguientes resultados: $\bar{\mu} = 124,07$ y $\bar{\sigma} = 4,63$. Con estos valores se procede a cuantificar el riesgo asociado al proyecto en evaluación, aplicando la Regla Percentil 5-50-95.

<table>
<thead>
<tr>
<th>Cuadro 3: Regla Percentil 5-50-95 del ejemplo Bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_5</td>
</tr>
<tr>
<td>116,45</td>
</tr>
</tbody>
</table>

194
ANEXO V: MODELOS ESTOCÁSTICOS PARA VALORACIÓN DEL RIESGO DE DEMANDA

Se desarrolla el proceso de valoración de los ingresos, mediante el cálculo del valor esperado del costo del riesgo de los ingresos por terceras fuentes (\(E[\text{CRIN}] \)) cuya expresión es la siguiente:

\[
E[\text{CRIN}] = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{T} \max \left\{ \left(1 + \rho_{0} \right)^{t_{i}} - \prod_{j=1}^{i} \left(1 + \rho_{j, t_{j}} \right), 0 \right\} \frac{1}{(1 + r)^{t_{i}}}
\]

Donde el única variable es el parámetro \(\rho_{j, t_{j}} \), por consiguiente, la valoración del \(E[\text{CRIN}] \) implica modelar la tasa \(\rho_{j, t_{j}} \), por medio de modelos estocásticos. El primero modelo es conocido en la literatura financiera, porque, se emplea para modelar el precio de la acción (Dixit y Pindyck (1994)). El segundo modelo se fundamenta en la relación que existe con la proyección del crecimiento del PIB.

Modelo Browniano Geométrico

Un proceso de Markov es un tipo particular de proceso estocástico donde únicamente el valor presente de una variable es relevante para predecir el futuro. La historia pasada de la variable y la forma en que el presente ha surgido a partir del pasado son irrelevantes. Un Proceso de Wiener (PW) es un tipo de proceso estocástico de Markov en el cual el cambio promedio del valor de la variable es cero y el cambio de su varianza es igual a uno por unidad de tiempo. El PW primero fue aplicado en el campo de la física para describir el movimiento de una partícula que está sujeta a un gran número de pequeños choques moleculares y fue llamado Movimiento Browniano.

Si un proceso estocástico \(\{z_{t}, t \geq 0\} \) sigue un movimiento Browniano, verifica las siguientes propiedades:
Propiedad I: El cambio en el valor de \(Z_t, \Delta Z_t \), sobre un intervalo de tiempo con longitud \(\Delta t \) es proporcional a la raíz cuadrada de \(\Delta t \) donde el multiplicador es una variable aleatoria; específicamente,

\[
\Delta Z_t = z_{t+\Delta t} - z_t = \varepsilon_t \sqrt{\Delta t}
\]

Donde \(\varepsilon_t \) es una variable aleatoria normal estándar. Por consiguiente, los valores de \(\Delta Z_t \) siguen una distribución normal con media cero y varianza igual a la variación del tiempo (\(\Delta t \)) sobre el cual se mide \(\Delta Z_t \).

Propiedad II: Los incrementos en el valor de \(Z_t \) para dos intervalos de tiempo disjuntos son independientes.

Utilizando los principios del cálculo ordinario donde es usual considerar el límite de pequeños cambios como cambios muy próximos a cero, el PW es el límite de \(\Delta t \to 0 \) del proceso descrito para \(Z_t \).

Un PW no es diferenciable con respecto al tiempo como demuestra el hecho de que:

\[
E\left[\frac{z_s - z_t}{s-t} \right]^2 = \frac{s-t}{(s-t)^2} = \frac{1}{s-t} \to \infty, \text{ cuando } s-t \to 0.
\]

Sin embargo, es útil para definir un término para la expresión \(\frac{dZ_t}{dt} \). Un término comúnmente usado en ingeniería para denotar a esta cantidad como ruido blanco. El proceso de ruido blanco es la derivada del Proceso del Movimiento Browniano (PMB), el cual no existe en el sentido normal. El PMB Estándar tiene una tasa de rendimiento esperado igual a cero y varianza igual a uno.

La tasa de rendimiento esperado igual a cero significa que el valor esperado de \(Z_t \) en cualquier tiempo futuro es igual al valor actual.

La varianza igual a uno significa que la varianza del cambio en \(Z \) en un intervalo de tiempo de longitud \(T \) es igual a \(T \).
El PMB es la base para una colección de procesos más generales. Estas generalizaciones son obtenidas al insertar ruido blanco en una ecuación diferencial ordinaria.

Un PMB Generalizado es del tipo $dx_t = adt + bdz_t$, donde a y b son constantes y Z_t es un PMB. Para comprender la ecuación, se considerarán cada uno de los componentes por separado.

◊ El primer término implica que x tiene una tasa de crecimiento esperado de a por unidad de tiempo.

◊ El segundo término implica que el dz_t puede ser considerada como la adición de ruido o variabilidad de la trayectoria seguida por x. La cantidad de este ruido es b veces el diferencial del PMB.

Por lo tanto, para un intervalo de tiempo pequeño, el cambio en el intervalo de x_t, Δx_t, es dado por:

$$\Delta x_t = a\Delta t + b\sqrt{\Delta t}$$

Así Δx_t tiene una distribución normal con media $a\Delta t$ y varianza $b^2\Delta t$.

Además de la generalización del PW es posible obtener el Proceso de Itô, donde las constantes a y b son funciones que dependen de x y t. El proceso de Itô es de la forma (Steele, 2000), (Hull, 2002):

$$dx_t = a(x,t)dt + b(x,t)dz_t$$

Definición del proceso del Movimiento Browniano Geométrico (PMBG)

El caso del precio de las acciones es ligeramente diferente del PMB Generalizado. En el caso del PMB, se asume una tasa de rendimiento esperado constante. Sin embargo, la tasa de rendimiento esperado del precio de las acciones no es constante. Para el precio de las acciones, el retorno de la inversión se asumirá que es constante, donde la tasa de retorno en un tiempo dado es la tasa de rendimiento esperado para el valor de la acción. Por lo tanto
suponer que la tasa de rendimiento esperado es constante para el caso del PMB es inapropiado y necesario (Hull, 2002).

Sea \(Y_t \) el precio de la acción en el tiempo \(t \) y se supondrá que la tasa del rendimiento esperado es \(\mu Y_t \) para alguna constante \(\mu \). Esto significa que en intervalo de tiempo \(\Delta t \), el incremento esperado en \(Y_t \) es \(\mu Y_t \Delta t \). El parámetro constante \(\mu \) es la tasa de retorno esperado. Si la volatilidad del precio de la acción es cero, entonces el modelo implica que \(\Delta Y_t = \mu Y_t \Delta t \), en el límite cuando \(\Delta t \to 0 \), el precio esperado de la acción en el tiempo \(T \) finalmente se convierte en \(E[Y_T] = Y_0 e^{\mu T} \), donde \(Y_0 \) es el precio de la acción en \(T = 0 \).

Sin embargo, el precio de la acción tiene volatilidad. Por consiguiente, teniendo esto en consideración, el modelo anterior puede ser expresado como:

\[
\frac{dY_t}{Y_t} = \mu \, dt + \sigma \varepsilon_t \sqrt{\Delta t}
\]

El primer término de la ecuación es el valor esperado del retorno de la acción para un periodo \(\Delta t \) y el segundo término es la componente estocástica del retorno. Donde \(\sigma \) es la tasa de la volatilidad.

\[
d(Ln(Y_t)) = \left(\mu - \frac{\sigma^2}{2} \right) \, dt + \sigma \, dz_t
\]

\[
Ln(Y_T) - Ln(Y_t) = Ln \left(\frac{Y_T}{Y_t} \right) \approx N \left[\left(\mu - \frac{\sigma^2}{2} \right) (T - t), \sigma^2 (T - t) \right]
\]

Sea \(r_t = Ln \left(\frac{Y_t}{Y_{t-1}} \right) \) la tasa de crecimiento del precio de la acción y \(\Delta \) un intervalo de tiempo dado entre dos observaciones. Por ejemplo, \(\Delta = 1 \) entre \(Y_t \) y \(Y_{t-1} \). La distribución de \(r_t \) sigue una distribución normal con parámetros especificados,

\[
r_t \approx N \left[\left(\mu - \frac{\sigma^2}{2} \right) \Delta, \sigma^2 \Delta \right]
\]
De las ecuaciones anteriores, la tasa de rendimiento esperado y la varianza del movimiento browniano geométrico pueden ser estimados a partir de la media muestral \(\bar{r} \) y el error estándar de los datos.

\[
r_i = \ln(Y_i) - \ln(Y_{i-1}) \quad , \quad E(r_i) = \left(\mu - \frac{\sigma^2}{2} \right) \Delta \quad , \quad V(r_i) = \sigma^2 \Delta
\]

\[
\bar{r} = \frac{\sum_{i=1}^{n} r_i}{n} \quad , \quad s_r = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (r_i - \bar{r})^2}
\]

\[
\sigma = \frac{s_r}{\Delta}, \quad \hat{\mu} = \frac{\bar{r}}{\Delta} + \frac{\sigma^2}{2}, \quad \hat{\sigma} = \frac{s_r}{2 \Delta}
\]

Con los parámetros estimados, es posible modelar las trayectorias muestrales de cualquier forma de las formas siguientes. La primera es por medio de las ecuaciones en diferencias de la ecuación de difusión,

\[
\frac{dY_i}{Y_{i-1}} = \mu dt + \sigma dz_i = \mu dt + \sigma \varepsilon_i \sqrt{dt}
\]

\[
dY_i = \mu Y_{i-1} dt + \sigma Y_{i-1} dz_i
\]

\[
Y_i - Y_{i-1} = \mu Y_{i-1} dt + \sigma Y_{i-1} \varepsilon_i \sqrt{dt}
\]

\[
Y_i = (1 + \mu dt) Y_{i-1} + (\sigma \sqrt{dt}) Y_{i-1} \varepsilon_i, \quad \text{donde} \quad \varepsilon_i \sim N(0,1)
\]

Alternativamente, los datos pueden ser modelados con los resultados obtenidos luego de aplicar el Lema de Itô. Este procedimiento requiere de cálculo estocástico para la obtención de los resultados (Allen, 2007).

\[
\ln(Y_i) = \ln(Y_0) + \left(\mu - \frac{\sigma^2}{2} \right) t + \sigma \varepsilon_t
\]

\[
Y_i = Y_0 e^{\left(\mu - \frac{\sigma^2}{2} \right) t + \sigma \varepsilon_t} = Y_0 e^{\left(\mu - \frac{\sigma^2}{2} \right) t + \varepsilon_t \sigma \sqrt{t}}
\]
De aquí se observa, que la distribución de Y_t, la varianza será mayor a medida que se aleje del punto t, dado que está positivamente relacionado con t. Además de ser un excelente enfoque para simular la dinámica de la demanda.

Es recomendable realizar pruebas de hipótesis estadísticas que verifiquen la idoneidad tanto de la información original como de la simulada. En este sentido se recomienda la prueba de Dickey-Fuller aumentada y otras pruebas de co-integración de series para estimar raíces unitaristas.

Modelo en tasa de crecimiento

En este caso la metodología consiste en asumir un valor para la elasticidad y con ella predecir los ingresos de la demanda a través de la proyección del crecimiento del PIB. Se asume que la elasticidad de los ingresos es igual a 1.

Dado la distribución de probabilidad de la tasa de crecimiento del PIB, por medio del método de Monte Carlo se obtiene una tasa de crecimiento del PIB ($\hat{\lambda}_{PIB}$) y por lo tanto una tasa de crecimiento de los ingresos de demanda (ρ_j), dado que:

$$\rho_j = \eta \times \lambda_j$$

Como se tiene el punto de partida de los ingresos y su tasa de crecimiento, es posible estimar los ingresos de cualquier año:

$$Y_t = Y_0 \times \prod_{j=1}^{N}(1 + \rho_j), \quad \rho_j \sim iid(\bar{\rho}, \sigma^2) \quad (1)$$

Si la expresión (1) que describe el movimiento de los ingresos es transformada por medio de la función logaritmo, se obtiene:

$$\ln\left(\frac{Y_t}{Y_0}\right) = \ln\left(\prod_{j=0}^{N}(1 + \lambda_j)\right) \Rightarrow \ln(Y_t) = \ln(Y_0) + \sum_{j=1}^{N}\ln(1 + \lambda_j) \quad (2)$$
La expresión en (2), corresponde a una ecuación estocástica de la demanda, la cual se puede expresar en función de la distribución Lognormal (LN) de la siguiente manera:

$$\ln(Y_t) = \ln(Y_0) + \ln(e^{\mu_1 + \frac{1}{2}\sigma_1^2} - 1)$$

Es decir, el valor de la variable cambia en una unidad de tiempo en una cantidad que se distribuye Lognormal.

Bajo este procedimiento se puede estimar el perfil de la demanda para todo el horizonte del proyecto. De esta forma si el periodo establecido para el contrato es de k años, en cada una de las muestras, de las 10,000 muestras que genera el método Monte Carlo, generará k tasas de crecimiento del tráfico de cargas para cada año, es decir, desde el año 1 hasta el año k, y en consecuencia se obtiene $k \times 10,000$ ingresos de demanda, las cuales deberán ser comparadas con el perfil de requerimientos financieros garantizados por el Estado.
ANEXO VI: MODELO ECONÓMICO-FINANCIERO

En esteanexo se describe el modelo económico-financiero que simula y sistematiza la perspectiva de evaluación del desarrollador frente a un proyecto de infraestructura y servicios relacionados, determinando las condiciones económicas y financieras para que el proyecto sometido a evaluación sea viable y atractivo. En el modelo de evaluación está basado el cálculo de presupuesto de capital y valoración de empresas, que es ampliamente usado en el campo de las finanzas. Lo anterior, implica descontar una corriente de flujos futuros a una tasa de descuento privada, y calcular su valor actual neto.

Dentro de estas condiciones, el beneficio que presta el modelo económico-financiero tiene relación con determinar si distintas variables vinculadas tanto a las inversiones iniciales del proyecto, a los costos de mantenimiento, operación y administración y conservación relacionadas con el modelo de negocio, así como también al financiamiento del mismo, son las adecuadas para que un desarrollador pueda interesarse en participar en la licitación del proyecto, y su posterior financiación con recursos del mercado financiero.

Estructura del modelo de evaluación

El modelo económico-financiero que se proporciona como ejemplo, presenta los siguientes componentes:

Flujo de ingresos:
- Ingresos provenientes del sector público (pagos que se dividen en fijos y periódicos en el tiempo, pagos contingentes que dependen de una condición, pagos en función de la cantidad que el desarrollador efectivamente preste (tarifas sombra).
- Ingresos de terceras fuentes (tarifas al usuario, arrendamientos, valor residual si corresponde, entre otros).

Flujos de egresos:
- Gastos o costos de operación.
- Gastos o costos de mantenimiento mayor y/o rutinario.
- Gastos de administración.
Otros componentes:
◇ Inversión inicial.
◇ Depreciación y amortización de las inversiones.
◇ Impuestos.
◇ Flujo de caja del proyecto.
◇ Desembolsos de fondos de la deuda.
◇ Servicio de deuda (pago, dividido en intereses y amortizaciones).
◇ Comisiones y gastos del financiamiento.
◇ Razón de Cobertura del Servicio de la Deuda (RCSD).
◇ Cuentas de reserva para el servicio de la deuda.
◇ Fondo de reserva para mantenimiento.
◇ Estado de resultados.
◇ Balance.
◇ Flujo para el desarrollador (retorno al capital)

Definiciones y parámetros

Dentro del modelo generalmente se contempla un panel de control donde se centralizan los parámetros y variables que se utilizan a través del modelo, de modo que los análisis, sensibilidades, gráficos y control en general que se quiera realizar sobre el modelo se pueda implementar desde un único centro de control y observar inmediatamente los resultados que arroja el modelo, para cada conjunto de supuestos.

Modalidades de negocio

La modelación financiera debe estar orientada a distintas formas de modalidades de negocio, según se trate de APP puro o APP combinado, lo que da como resultado una combinación particular de pagos:

<table>
<thead>
<tr>
<th>Cuadro 1</th>
<th>Modalidades del modelo de negocio base consideradas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estructura comercial</td>
</tr>
<tr>
<td>APP puro</td>
<td>PPD y PPU</td>
</tr>
<tr>
<td>APP combinado</td>
<td>PPD y PPU</td>
</tr>
</tbody>
</table>

Tratándose de proyectos APP puros o combinados que contemplan aportaciones de recursos federales presupuestarios de los previsto en la fracción I del artículo 3 del Reglamento de la
Ley APP, el análisis sobre la viabilidad económica y financiera deberá incluir un apartado o sección específico sobre la factibilidad de tales aportaciones durante la vigencia del proyecto, en que se muestren sus efectos en las finanzas de dicha Dependencia y Entidad, con estimaciones originales como en escenarios alternos.

Este apartado o sección deberá elaborarse considerando supuestos razonables sobre las asignaciones y erogaciones presupuestarias de la dependencia y entidad interesada; la distribución de riesgos de proyecto de que se trate; así como los otros contratos de asociación público-privada de la propia Dependencia o Entidad.

◊ **APP puro**

Para el caso del APP puro, existen generalmente dos pagos que realiza la entidad contratante al desarrollador: el Pago por Disponibilidad (PPD) y el Pago por Uso (PPU).

El PPD está formado por dos componentes: la primera asociada a la inversión y la segunda componente asociada a los costos de operación y conservación. La componente asociada a la inversión está diseñada para asegurar el pago de la deuda requerida para efectuar las obras de acuerdo a las condiciones establecidas, mientras que la componente asociada a los costos de operación y mantenimiento busca asegurar la prestación del servicio asociado a la infraestructura.

\[
PPD = PPD_{inv} + PPD_{OMC}
\]

El pago por disponibilidad de la componente de inversión\((PPD_{inv}) \) corresponde al valor presente del pago por concepto de inversión que efectúa la entidad contratante al desarrollador, calculado a la tasa de descuento del sector privado y el \(PPD_{OMC} \) corresponde al valor presente del pago por concepto de operación, mantenimiento y conservación, determinándose como la anualidad que iguala el valor presente de los costos de operación, mantenimiento y conservación\((OMC) \), calculado generalmente con la tasa de descuento del sector privado.
◊ **APP combinado**

Esta modalidad de negocio presenta las mismas características que la modalidad de APP puro, con la salvedad de que se incorpora el pago de los usuarios a través de una tarifa por la utilización del servicio.

En el caso que no hay Pago Por Disponibilidad ni Pago Por Uso por parte de la entidad contratante, entonces la estructura financiera se compone de una mezcla de recursos privados (deuda más capital) y recursos públicos (subsidio o aporte inicial a fondo perdido a la construcción) que permita hacer financieramente viable el proyecto. El modelo determina dicho subsidio \(S \) resolviendo siempre la ecuación \(\text{VAN}(r^*)=0 \), donde \(r^* \) es la rentabilidad objetivo del desarrollador.

Estimación de los ingresos y egresos operativos

La proyección de ingresos y egresos debe estar construida dentro del modelo, de modo que claramente se puedan rastrear los supuestos y parámetros que se utilizan en la estimación. Por ejemplo, debendarse a conocer las tarifas, la cantidad de prestaciones de servicios, los gastos de administración, costo unitario de operación, el porcentaje sobre la inversión que se ha supuesto como costo de mantenimiento o una estimación basada en modelos precisos, el porcentaje sobre la inversión que se ha supuesto como valor residual, entre otros.

Los ingresos deben estar desglosados al menos en las siguientes partidas:

◊ Financiamiento – compromisos firmes
◊ Financiamiento – compromisos contingentes
◊ Financiamiento – valor residual (si corresponde)
◊ Financiamiento – tarifas sombra
◊ Ingresos de terceras fuentes – tarifas al usuario
◊ Ingresos de terceras fuentes – valor residual (si corresponde)

Los egresos deben estar desglosados al menos en las siguientes partidas:

◊ Costo operativo
◊ Costo mantenimiento
◊ Costo inversión
◊ Impuestos
Supuestos en apalancamiento de deuda y capital

Generalmente los proyectos de APP presentan niveles de apalancamiento entre 70:30 y 90:10. Esto significa que entre el 70% y el 90% de los fondos requeridos para el desarrollo del proyecto son provistos por el sector financiero por la vía de una deuda bancaria, bonos, u otro instrumento financiero. Cuando la totalidad de los ingresos que recibe el desarrollador proviene de una entidad o dependencia gubernamental, es decir una modalidad de APP puro, el diseño del modelo de negocio base, y el correspondiente cálculo de pagos periódicos, debe estar más cercano a financiamiento de deuda del 90%. Mientras que en la medida que mayor sea el componente de los ingresos que proviene de los usuarios, es decir en un APP combinado, el porcentaje de deuda debe estar más cercana al 70%.

Por otro lado, el nivel de deuda que el sector financiero es capaz de poner a disposición del proyecto tendrá directa relación con la percepción de riesgo que los agentes financieros tengan sobre el mismo.

Para determinar el apalancamiento adecuado para ser utilizado en el modelo económico-financiero en cuestión, probablemente la aproximación metodológica más precisa es simplemente recurrir a entidades financieras, presentar el proyecto en los términos que se desea contratar, y consultar directamente a juicio de tales entidades cuáles serían las condiciones financieras factibles de ser implementadas.

Como un antecedente importante, se debe tener en consideración que el nivel de apalancamiento dependerá del tipo de proyecto o modalidad de negocio a evaluar, y de otros factores tales como si el financiamiento es a una tasa variable o fija, si existe riesgo de demanda, qué calidad crediticia posee la entidad encargada de los pagos, entre otros.

Tasa de costo de capital del desarrollador

Para la estimación del costo de capital de un potencial desarrollador, y en consecuencia los pagos periódicos que la entidad gubernamental deberá realizar bajo una modalidad APP, se deberá solicitar a sus asesores financieros usar el modelo de valoración de activos de capital (en adelante CAPM por “Capital AssetPricingModel”). El modelo anterior es ampliamente usado en el campo de las finanzas, ingeniería financiera y en teoría de portafolios.

30 También se conoce como costo del equity
En consecuencia, para medir el costo de capital o la rentabilidad esperada de los desarrolladores en los proyectos APP se deberá usar el modelo de valoración de activos de capital CAPM. Para lo anterior, se debe asumir que en equilibrio, undesarrollador debería esperar recibir por sus capitales invertidos (equity) al menos la tasa libre de riesgo más un premio por el riesgo específico del proyecto determinado por el factor Beta.

Para su aplicación a un país específico, una adaptación implica realizar un cambio al modelo CAPM tradicional que consiste en agregarle un término que refleje un premio por riesgo-país asociado en este caso a México.

La aproximación se presenta en la siguiente ecuación:

$$E(R_p) = E(R_f) + \beta \times (R_m - E(R_f)) + PRP$$

Donde PRP es Premio por Riesgo País, $E(R_f)$ es el valor esperado de la tasa libre de riesgo, R_m es el retorno del portfolio de mercado y β es un factor que mide la covarianza entre el riesgo del proyecto y el riesgo de mercado, es decir el riesgo que no es diversificable por la potencial sociedad desarrolladora.

El valor esperado de la tasa libre de riesgo a utilizar corresponderá al promedio simple del retorno del tesoro de los Estados Unidos de Norteamérica desde la fecha equivalente a tres meses anteriores a la presentación del Comparador a la Secretaría de Hacienda y Crédito Público.

La tasa de retorno portfolio de mercado(R_m) en función del Índice Standard and Poor’s 500 (S&P 500) tomando un periodo de los últimos 40 años. Otro valor podrá ser reportado en la medida que esté debidamente fundamentado.

Respecto al premio por riesgo país(PRP) se deberá usar el promedio diario simple correspondiente a los últimos 12 meses con tres meses anteriores a la presentación del Comparador a la Unidad de Inversiones de la Secretaría de Hacienda y Crédito Público. La fuente de dicha información será el EMBI+ México, calculado por el banco de inversión JP Morgan 31.

Para cada sector, el valor del factor β a utilizar será el que se muestra en el siguiente cuadro:

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Sector</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carreteras (a)</td>
<td>0.74</td>
</tr>
<tr>
<td>2</td>
<td>Puertos (e)</td>
<td>1.26</td>
</tr>
<tr>
<td>3</td>
<td>Aguas (e)</td>
<td>0.74</td>
</tr>
<tr>
<td>4</td>
<td>Telecomunicaciones (e)</td>
<td>1.56</td>
</tr>
<tr>
<td>5</td>
<td>Energía –Generación (e)</td>
<td>0.66</td>
</tr>
<tr>
<td>6</td>
<td>Energía –Distribución (e)</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>Ferrocarriles (e)</td>
<td>0.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Sector</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Aeropuertos (a)</td>
<td>0.53</td>
</tr>
<tr>
<td>9</td>
<td>Transporte Público (e)</td>
<td>0.66</td>
</tr>
<tr>
<td>10</td>
<td>Educación Pública (a)</td>
<td>0.30</td>
</tr>
<tr>
<td>11</td>
<td>Hospitales (a)</td>
<td>0.30</td>
</tr>
<tr>
<td>12</td>
<td>Recintos penales (a)</td>
<td>0.30</td>
</tr>
<tr>
<td>13</td>
<td>Cultura y Deportes (a)</td>
<td>0.90</td>
</tr>
<tr>
<td>14</td>
<td>Carreteras sin cuota</td>
<td>0.50</td>
</tr>
<tr>
<td>15</td>
<td>Plantas de Tratamientos (a)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Nota: (e) Beta equity, (a) Beta activos

Para transformar el Beta activos(β_a) a Beta de equity(β_e) se deberá usar la siguiente expresión:

$$\beta_e = \beta_a \times \left[1 + (1-t) \times \frac{W_d}{W_e}\right]$$

Donde t es la tasa de impuesto a la renta que se aplica en México, W_e es el porcentaje de capital (equity) en el financiamiento del proyecto APP, y W_d es el porcentaje de deuda en el porcentaje del proyecto APP.

Para los sectores clasificados entre el 2 y el 6 la fuente para el Beta es Banco Mundial (2005)32 y para los sectores 7, 8 y 9 la fuente es Banco Mundial33. Para el resto de las clasificaciones la fuente es AustralianGovernment (2008)34. Para el sector 1 la fuente es la Agencia Nacional de Transportes Terrestres (AATT) de Brasil que reporta indicadores internacionales en el sector vial basados en información Bloomberg.

Para los casos de proyectos APP en sectores en que el factor Beta no se encuentre definido en la tabla anterior, entonces la entidad gubernamental que presenta el Comparador deberá

acompañar información fundada con la mejor estimación de dicho factor según les sea sugeridas por sus asesores financieros.

Asimismo, si a través de nueva evidencia estadística o documental, algunos de los valores de Beta que se encuentran en el cuadro anterior, sufren variaciones hacia arriba o hacia abajo, entonces la entidad gubernamental podrá presentar estudios fundados que respalden los nuevos valores. La SHCP podrá realizar actualizaciones a los factores Beta y estos serán materializados a través de Notas Técnicas específicas que serán consideradas como addendum al presente documento\(^{35}\).

A continuación se muestran dos ejemplos.

Ejemplo 1: Se asume que el premio por riesgo país\((PRP)\) asciende a 1\% y el Factor Beta en equity es igual a 0.64. El modelo CAPM calcula un costo de capital igual a:

\[
E(R_p) = 5.8\% + 0.64 \times (10.4\% - 5.8\%) + 1\% = 9.74\%
\]

Ejemplo 2: Se asume que el premio por riesgo país\((PRP)\) asciende a 1\%, el retorno promedio de los bonos del tesoro americano a 30 años a 5.8 y el factor Beta de activos es igual a 0.90. La estructura de capital es 60\% para deuda\((W_d)\) y 40\% para equity\((W_e)\). La tasa de impuesto a la renta\((t)\) es 25\%.

El primer paso es transformar el Beta de activos a Beta en equity a través de la siguiente expresión:

\[
\beta_e = \beta_a \times [1 + (1-t) \times \frac{W_d}{W_e}]
\]

\[
\beta_e = 0.90 \times [1 + (1 - 0.25) \times \frac{0.60}{0.40}] = 0.90 \times [1 + 0.75 \times 1.50] = 0.90 \times 2.125 = 1.9125
\]

\(^{35}\) Por ejemplo, teniendo información de estados de resultados y balances de las compañías privadas que participan en APP en México sería posible calcular un Beta contable y contrastarlo con los Betas sectoriales. Al respecto, una metodología para Betas contables aplicada a Chile se encuentra en Hinojosa (2010).
El segundo paso es calcular el costo de capital usando el Beta del equity calculado:

$$E(R_p) = 5.8\% + 1.91 \times (10.4\% - 5.8\%) + 1\% = 15.31\%$$

Tasas de interés nominales y tasas de interés reales

Como se ha señalado, el comparador público privado expresará los beneficios y costos a precios de un solo año, preferentemente el del ejercicio fiscal en curso, y por lo tanto los flujos de caja y las tasas de descuento deberán ser consistentemente trabajadas en términos reales. La ecuación de Fischer convierte tasas de interés nominales a tasas de interés reales a través de la siguiente expresión:

$$(1 + i) = (1 + r) \times (1 + \pi)$$

$$r = \frac{(1 + i)}{(1 + \pi)} - 1$$

Donde r es la tasa de interés real que deberá usarse en el cálculo de los flujos del comparador. La tasa i es una expresión de tasa nominal y π es la tasa de inflación esperada.

Ejemplo: La tasa de interés de deuda nominal asciende a 8.55%. Entonces la tasa de interés real asciende a:

$$r = \frac{(1 + i)}{(1 + \pi)} - 1 = \frac{(1 + 0.0855)}{(1 + 0.03)} - 1 = 5.39\%$$

Para el cálculo de las tasas se usarán dos decimales, para lo cual se aproximará la tercera cifra decimal y se redondeará a la mayor. En el caso anterior la cifra era 5.388% y se aproxima a 5.39%.

Aproximación a tasas a pesos mexicanos

Debido a que las tasas y parámetros anteriores se encuentran expresados en dólares, y teniendo en consideración que la moneda con que será calculado el CPP será el peso (MXM), se deberá usar el Cross Currency Basis Swap. Los Swaps de monedas involucran el
intercambio de una serie de flujos en una moneda, por otra serie de pagos en una moneda distinta. Las condiciones y la frecuencia de los pagos del Swap son acordados de antemano por las partes. Estos instrumentos pueden ser pactados de tasa fija v/s tasa fija, fija por flotante (y viceversa) o flotante por flotante. La información anterior, actualizada a la fecha de presentación del análisis de VPD deberá ser consultada a la Unidad de Crédito Público de la Secretaría de Hacienda y Crédito Público. No obstante lo anterior, la Unidad de Crédito Público de la SHCP podrá autorizar la aplicación de la metodología del Comparador en dólares.

Estimación de los costos financieros

Al momento de realizar la modelación financiera deberán buscarse y fundamentarse los diferentes supuestos de tasa a utilizar. Para la alternativa de un crédito bancario que utilice como tasa base la TIIE, pero que no utilice un Cap de TIIE, se puede encontrar fácilmente la cotización diaria de la TIIE en publicaciones financieras y medios de comunicación en general. Deberá seleccionarse la tasa TIIE más apropiada, concordante con el período de pago de intereses del crédito (por ejemplo, la TIIE de 180 días para un crédito con pagos de intereses semestrales). En caso el crédito cuente con un Cap de TIIE, deberá considerarse para efectos del modelo el nivel de dicho Cap.

Es importante tomar en consideración que la construcción del modelo financiero probablemente se realizará bastante tiempo antes de que se produzca el cierre financiero, por lo tanto las tasas que efectivamente se utilicen el modelo de cierre podrán ser materialmente diferentes en la realidad. Para efectos de estimar los Pagos APP, sin embargo, si la modelación financiera se desarrolla o se actualizan sus supuestos en una fecha próxima a la licitación, es previsible que los supuestos de tasa base utilizados por la autoridad sean los mismos que los de los potenciales licitantes.

La estimación del nivel de sobretasa del crédito es más compleja, pues involucra, por una parte, estimar el nivel de riesgo que podría alcanzar la deuda del proyecto y por otra realizar una lectura de mercado respecto de sobretasas vigentes en ese momento para el nivel de riesgo estimado.
Para el caso de una bursatilización, que normalmente se estructura con una tasa fija, la estimación de la tasa base parte por una medición del concepto de *duration* el instrumento bursátil que se está considerando para financiar el proyecto. Una vez calculado el *duration* del instrumento, se buscan cotizaciones recientes en el mercado de un instrumento emitido por el Gobierno Federal que posee similar *duration*, o se toman dos instrumentos gubernamentales, uno de *duration* inferior y otro superior, y se intenta interpolar la cotización que tendría un instrumento Federal de igual *duration*. Los instrumentos de largo plazo del Gobierno Federal normalmente utilizados como *benchmark* son los “Bonos M” para emisiones en pesos y los “Udibonos”, para emisiones en UDIs. Las cotizaciones diarias de estos instrumentos pueden obtenerse de diversos medios de comunicación impresos y en línea o de informes semanales especializados que emiten bancos y casas de bolsa.

Una vez determinada la tasa base es preciso estimar la sobretasa, que en este caso es más fácil puesto que los instrumentos bursátiles son de oferta pública y existe información pública acerca de sus cotizaciones y sobretasas, lo que normalmente no ocurre con las sobretasas bancarias.

Por lo anterior no es necesario realizar una lectura de mercado con los inversionistas, sino que se recomienda recurrir a informes financieros recientes que preparan periódicamente diversos bancos o casas de bolsa, y que analizan en profundidad las cotizaciones de instrumentos de renta fija privados y públicos durante el período de análisis (normalmente semanal o mensual), y muestran niveles de sobretasa para instrumentos privados de distintas categorías de riesgo. Puesto que se estructura una emisión bursátil para alcanzar un cierto nivel de riesgo, utilizando estas publicaciones se podrá encontrar la sobretasa promedio para instrumentos privados calificados en dicho nivel.

La estructuración de cualquier financiamiento normalmente requiere de incurrir en gastos asociados al proceso, pues este normalmente involucra la contratación de asesores expertos, técnicos, jurídicos y financieros, que en conjunto ayuden a evaluar y estructurar los riesgos del proyecto y su financiamiento. Los gastos asociados a los financiamientos bancarios normalmente son menores a los que requiere un financiamiento bursátil, pues estos últimos requieren de actividades adicionales, tales como calificaciones crediticias, registro ante la Comisión Nacional Bancaria y de Valores (CNBV) y Bolsa Mexicana de Valores (BMV).

Duration: Término en inglés que se refiere al concepto financiero conocido como la "Duración de Macaulay”, que se define como el tiempo promedio en que el tenedor del bono obtiene los beneficios del mismo. También la duración puede ser interpretada como la sensibilidad de los cambios relativos en el precio de un instrumento de renta fija ante cambios en la tasa de interés de mercado.

Benchmark: Término en inglés que describe un índice o punto de referencia a utilizar.
GLOSARIO DE TÉRMINOS

- **Adjudicatario**: persona natural o jurídica que se adjudica un proyecto desarrollado bajo alguna modalidad. Una vez firmado el contrato de concesión, el adjudicatario se transforma en desarrollador.

- **Análisis costo y beneficio**: Tipo de análisis que permite demostrar que los proyectos son susceptibles de generar un beneficio social neto, considerando los costos y beneficios directos e indirectos que se generan para la sociedad.

- **Análisis de conceptualización**: análisis cuyo objetivo es determinar cuál entre dos alternativas de solución es la más conveniente, con el fin de determinar su rentabilidad social y su contribución al cumplimiento de las metas de la dependencia o entidad.

- **Análisis económico-financiero**: análisis efectuado una vez identificados los esquemas de APP bajo los cuales podría desarrollarse el proyecto a fin de determinar la viabilidad financiera del proyecto de desarrollarse bajo cada una de las tres modalidades de ejecución: APP puro, APP combinado y APP contingente.

- **Análisis de elegibilidad**: consiste en determinar en función de una serie de criterios y en etapas tempranas de análisis y evaluación de la modalidad de ejecución, la potencialidad que tiene un proyecto de inversión y servicios para desarrollarse a través de un esquema APP, a través de la cuantificación de un Índice de Elegibilidad (IEAPP).

- **Análisis de sensibilidad**: análisis sobre un conjunto de variables y en el cual se adoptan diferentes escenarios sobre diversos valores de éstas. Se establece una matriz con diversos escenarios y resultados.

- **Análisis de rentabilidad**: Tipo de análisis del proyecto de inversión cuyo objeto es conocer el efecto neto de los recursos utilizados en la producción de los bienes o servicios sobre el bienestar de la sociedad en su conjunto.

Dicha evaluación debe incluir todos los factores del proyecto, es decir, sus costos y beneficios directos, así como las externalidades y los efectos indirectos e intangibles que se deriven del mismo.
◊ **Análisis de riesgos:** Matriz que presenta de forma ordenada los riesgos de un proyecto donde se exponga su descripción, cuantificación y asignación, ya sea al sector público o al privado, así como las estrategias de mitigación, independientemente de la asignación de los mismos. Dicha matriz, permitirá obtener los costos por riesgo, tanto para el proyecto público de referencia como para el proyecto de asociación público-privada.

◊ **Análisis de tipología de APP:** análisis que se realiza para justificar el esquema de APP más conveniente dependiendo si el proyecto es un proyecto productivo o no productivo.

◊ **Asignación de riesgos:** corresponde a la distribución de responsabilidad sobre la administración de los diferentes riesgos de un proyecto. Se ve reflejada en una matriz de riesgos y en el Contrato APP.

◊ **Asociación Público Privada (APP):** es una tipología general de relación público privada materializada en un contrato entre una organización pública y una compañía privada para la provisión de bienes públicos y de sus servicios relacionados en un contexto de largo plazo, financiados indistintamente a través de pagos diferidos en el tiempo por parte del Estado, de los usuarios o una combinación de ambas fuentes. Dicha asociación se traduce en retención y transferencia de riesgos, en derechos y obligaciones para las partes, en mecanismos de pago relacionados con la disponibilidad y el nivel de servicio de la infraestructura y/o servicio, incentivos y deducciones, y en general, en el establecimiento de una regulación integral de los estándares de calidad de los servicios contratados e indicadores claves de cumplimiento.

◊ **Bancabilidad de un contrato:** conjunto de condiciones jurídicas y económico-financieras endógenas y exógenas que permiten que más de un agente del mercado bancario o del mercado de capitales o ambos a la vez, estén dispuestos a otorgar financiamiento a un contrato a un costo y garantías razonables dadas las condiciones de mercado.

◊ **Benchmark:** corresponde a la mejor alternativa de comparación de un proyecto, servicio, precio, costo, etc.
Base de datos: conjunto de información almacenada en un soporte legible, organizado internamente en registros y campos que permiten a un usuario recuperar cualquier tipo de información asociada a su objetivo de búsqueda.

Brainstorming: esta técnica, llamada también “lluvia de ideas”, es una de las técnicas más utilizadas para la identificación de riesgos. Esta consiste básicamente en reunir a un grupo de expertos o personas involucradas, para solicitarles que identifiquen los posibles riesgos del proyecto. Es fundamental el surgimiento del mayor número posible de riesgos durante el proceso, lo que permitirá incluir entonces tanto aquellos riesgos convencionales como aquellos que puedan ser innovadores respecto de las características del proyecto. Por lo anterior, es esencial respetar una regla básica para la aplicación de esta técnica: no se pueden vetar, anular o desechar ideas, promoviendo la asociación libre de las mismas de los distintos participantes.

Cadena de valor: modelo que describe una serie de actividades que adicionan valor y que conectan al proveedor con la demanda. Su análisis es una herramienta gerencial para identificar fuentes de ventaja competitiva, y por ende identificar aquellas actividades que no lo son y que pueden y/o deben ser transferidas hacia entes que sean más eficientes en el desarrollo de éstas.

CAE: Costos anual equivalente.

CAP: tasa máxima de interés de la deuda.

CAPM ("Capital Asset Pricing Model"): modelo matemático y financiero utilizado para la estimación del costo de capital propio o de la rentabilidad esperada de un potencial inversionista.

Cartera: La cartera de programas y proyectos que integra la Secretaría de Hacienda y Crédito Público.

Ciclo de Proyectos de Inversión Pública: corresponde a las distintas etapas de un proyecto de inversión pública: perfil, diseño, licitación, construcción, y ejecución.

Comparador Público Privado: Metodología de evaluación cuyo objeto es comparar el costo de desarrollar un proyecto a través de un esquema de asociación público-privada