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a b s t r a c t

Electrical power generation is changing dramatically across the world because of the need to reduce
greenhouse gas emissions and to introduce mixed energy sources. The power network faces great chal-
lenges in transmission and distribution to meet demand with unpredictable daily and seasonal varia-
tions. Electrical Energy Storage (EES) is recognized as underpinning technologies to have great
potential in meeting these challenges, whereby energy is stored in a certain state, according to the tech-
nology used, and is converted to electrical energy when needed. However, the wide variety of options and
complex characteristic matrices make it difficult to appraise a specific EES technology for a particular
application. This paper intends to mitigate this problem by providing a comprehensive and clear picture
of the state-of-the-art technologies available, and where they would be suited for integration into a
power generation and distribution system. The paper starts with an overview of the operation principles,
technical and economic performance features and the current research and development of important
EES technologies, sorted into six main categories based on the types of energy stored. Following this, a
comprehensive comparison and an application potential analysis of the reviewed technologies are
presented.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Global electricity generation has grown rapidly over the last
decade. As of 2012, the annual gross production of electricity
reached approximately 22,200 TW h, of which fossil fuels (includ-
ing coal/peat, natural gas and oil) contribute around 70% of global
electricity generation [1–3]. To maintain the power network stabil-
ity, the load balance has mainly been managed through fossil fuel
power plants. To achieve the target of reducing CO2 emissions,
future electricity generation will progress with diminishing
reliance on fossil fuels, growing use of renewable energy sources
and with a greater respect for the environment [3]. However, most
renewable energy sources are intermittent in their nature, which
presents a great challenge in energy generation and load balance
maintenance to ensure power network stability and reliability.
Great efforts have been made in searching for viable solutions,
including Electrical Energy Storage (EES), load shifting through
demand management, interconnection with external grids, etc.
Amongst all the possible solutions, EES has been recognized as
one of the most promising approaches [4,5].

EES technology refers to the process of converting energy from
one form (mainly electrical energy) to a storable form and reserv-
ing it in various mediums; then the stored energy can be converted
back into electrical energy when needed [4,5]. EES can have multi-
ple attractive value propositions (functions) to power network
operation and load balancing, such as: (i) helping in meeting peak
electrical load demands, (ii) providing time varying energy
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management, (iii) alleviating the intermittence of renewable
source power generation, (iv) improving power quality/reliability,
(v) meeting remote and vehicle load needs, (vi) supporting the
realization of smart grids, (vii) helping with the management of
distributed/standby power generation, (viii) reducing electrical
energy import during peak demand periods.

In many scenarios, demand for EES and selection of appropriate
EES technologies have been considered to be important and chal-
lenging in countries with a relatively small network size and iner-
tia. For example, the UK electric power network currently has a
capacity of Pumped Hydroelectric Storage (PHS) at 27.6 GW h [6].
Although PHS facilities have been built worldwide as a mature
and commercially available technology, it is considered that the
potential for further major PHS schemes is restricted in the UK
[6]. Therefore, it is of great importance that suitable EES technolo-
gies in addition to PHS are explored. Derived from the study of
recent publications, Fig. 1 illustrates various EES technologies with
potentials to address the challenges faced by the UK energy sys-
tems [4,6,7–9]. Many countries potentially need to address similar
challenges which can be solved or improved by suitable EES
technologies.

Due to the great potential and the multiple functions of EES, in
the literature many authors have reviewed and summarized the
EES research and development, demonstrations and industrial
applications from different perspectives, particularly in recent
years. The paper presented by Ibrahim et al. highlighted the need
to store energy for improving power networks and maintaining
load levels [10]. A group of characteristics of different EES technol-
ogies is given, which can help improve performance and cost esti-
mates for storage systems. However relatively few references are
cited in [10]. Chen et al. provided a well-organized and compre-
hensive critical review on progress in EES systems, which covered
various types of EES technologies and their applications/deploy-
ment status [4]. The discussion on the selection of appropriate
EES candidates for specific applications was relatively brief. Hall
et al. also presented a review article concentrating on several EES
technologies, i.e., batteries, supercapacitors, superconducting mag-
netic energy storage and flywheels [11]. Liu et al. provided an
insightful review of the advanced materials for several EES tech-
nologies [12]. The strategies for developing high-performance
Fig. 1. Electrical energy storage technologies with c
hydrogen storage materials and electrochemical lithium-ion bat-
tery materials were discussed in detail [12]. The paper also high-
lighted the prospects in the future development of advanced
materials for EES. With the rapid penetration of intermittent
renewables, the review articles [13–16] have made effort to assess
and summarize the EES options for increased renewable electricity
applications. Díaz-González et al. [13] and Zhao et al. [15] focus on
the review of EES technologies for wind power applications. A
detailed discussion of existing EES applications in wind power is
a highlight provided by the article [13], whilst the planning issues,
the operation and control strategies of the ESS applications for
wind power integration support are summarized by the paper
[15]. Furthermore, from a novel viewpoint, Connolly et al. assessed
available computer tools for analyzing the integration of renew-
able energy into various energy systems [17]. Researchers have
also reviewed specific aspects of EES systems, such as in [18–22].
For instance, Dunn et al. contributed a high quality review on bat-
tery energy storage for the grid applications, mainly focusing on
commercially available sodium–sulfur batteries, relatively low cost
redox-flow batteries and developing lithium-ion batteries, all with
the aim to be used in grid storage [22]. The reviews of the develop-
ments and challenges in materials for electrochemical relevant
energy storage are presented in [23–25]. For example, Whitting-
ham addressed the current challenges in the subject of electro-
chemical energy storage materials, which can be summarized as:
reducing the cost and extending the lifetime of devices whilst
improving their performance and making them more environmen-
tally friendly [23]. In addition, some journals have published spe-
cial issues dedicated to EES research and development, such as
the special issue in 2013 from the Wiley journal Advanced Func-
tional Materials: ‘‘Grand Challenges in Energy Storage’’.

A brief statistical study has been carried out to ascertain the
trends in EES related research using the search engine ‘Web of Sci-
ence’ and choosing ‘Topic’ as the search field. Fig. 2 shows the
results detailing the number of research papers published in six
EES related fields over the past ten years (2004–2013). The titles
of the subfigures in Fig. 2 are the input keywords used in the search
engine. The results indicate that research in EES in the past ten
years has tended to increase, with rapid increases in 2012 and
2013. In particular, research into compressed air energy storage
hallenges to the UK energy systems [4,6,7–9].



Fig. 2. A brief statistical study to the trend in EES related research.
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grew significantly in 2012 whilst, in contrast, research into super-
conducting magnetic energy storage has remained relatively sta-
ble. It can also be seen that there has been a large increase in the
research into renewable and energy management with EES topics.
The statistic figure in EES research literatures shows that the entire
EES research and technology development have changed and
advanced rapidly in the years since some previous reviews, such
as [4,10,11], were published. Thus it is timely to have a new critical
overview of the current development in EES.

Although the potential benefits of EES installation to power sys-
tem operation have been widely recognized, some significant chal-
lenges in the deployment of EES systems exist, mainly in: (1) how
to choose the suitable EES technology to match the power system
application requirements; (2) how to accurately evaluate the
actual values of deployed EES facilities including technical and eco-
nomic benefits; (3) how to bring the cost down to a realistically
acceptable level for deployment, especially for newly developing
EES technologies.

The objective of this paper is to provide a updated picture of the
state-of-the-art EES technologies, in comparison with the previous
review articles [4,10,11]. The paper begins with an overview of the
operation principles, technical and economic performance features
and the current research and development of important EES
technologies. Following this, a comprehensive comparison of EES
technologies is conducted. The paper presents a detailed summari-
zation and predication of the existing and promising EES technol-
ogy options for different power system applications with their
corresponding technical specifications. The overview will help
address the challenges faced in deployment of EES and provide
useful information and guidance in selecting suitable technologies
for specific applications based on the nature of EES characteristics.
2. Classification of electrical energy storage technologies

There are several suggested methods for categorization of vari-
ous EES technologies, such as, in terms of their functions, response
times, and suitable storage durations [4,26,27]. One of the most
widely used methods is based on the form of energy stored in
the system [15,16] as shown in Fig. 3, which can be categorized
into mechanical (pumped hydroelectric storage, compressed air
energy storage and flywheels), electrochemical (conventional
rechargeable batteries and flow batteries), electrical (capacitors,
supercapacitors and superconducting magnetic energy storage),
thermochemical (solar fuels), chemical (hydrogen storage with fuel
cells) and thermal energy storage (sensible heat storage and latent
heat storage). A detailed description and discussion of each type of
EES technology will be given in the next section following the
above order of category.
3. Description of electrical energy storage technology

3.1. Pumped Hydroelectric Storage (PHS)

PHS is an EES technology with a long history, high technical
maturity and large energy capacity. With an installed capacity of
127–129 GW in 2012, PHS represents more than 99% of worldwide
bulk storage capacity and contributes to about 3% of global gener-
ation [26,28,29]. As shown in Fig. 4, a typical PHS plant uses two
water reservoirs, separated vertically. During off-peak electricity
demand hours, the water is pumped into the higher level reservoir;
during peak hours, the water can be released back into the lower
level reservoir. In the process, the water powers turbine units
which drive the electrical machines to generate electricity. The
amount of energy stored depends on the height difference between
the two reservoirs and the total volume of water stored. The rated
power of PHS plants depends on the water pressure and flow rate
through the turbines and rated power of the pump/turbine and
generator/motor units, and [30].

Various PHS plants exist with power ratings ranging from 1 MW
to 3003 MW, with approximately 70–85% cycle efficiency and
more than 40 years lifetime [4,29,31,32]. Some PHS facilities along
with their features are listed in Table 1. The nature of the operation
of PHS systems means that their applications mainly involve
energy management in the fields of time shifting, frequency con-
trol, non-spinning reserve and supply reserve. However, with the
restriction of site selection, PHS plants suffer long construction
time and high capital investment.

Recently, with the advance of technology, some PHS plants
using flooded mine shafts, underground caves and oceans as reser-
voirs have been planned or are in operation , such as the Okinawa
Yanbaru in Japan, a 300 MW seawater-based PHS plant in Hawaii,
the Summit project in Ohio and the Mount Hope project in New
Jersey [28,34,35]. In addition, wind or solar power generation cou-
pled with PHS is now being developed. This could help the adop-
tion of renewable energy in isolated or distributed networks
[36,37]. For instance, the Ikaria Island power station will integrate
a 3 � 900 kW wind farms with a PHS facility [28]. The development
trend of PHS facilities consists of building the hydroelectric set



Fig. 3. Classification of EES technologies by the form of stored energy.

Fig. 4. A pumped hydroelectric storage plant layout.

Table 1
Selected pumped hydroelectric storage plants [4,26,31–33].

Plant name Country Power rating Features

Rocky river PHS plant US 32 MW The world’s first large-scale commercial PHS plant
Bath County PHS plant US 3003 MW The world’s largest power rated PHS plant
Okinawa Yanbaru PHS Japan �30 MW Only commercial seawater PHS plant
Hawaiian Elec. Co. PHS facility US — Claimed 87% relatively high cycle efficiency
HPS of Ikaria Island Greece 2.655 MW One of the first wind-PHS plants (under construction)
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with higher speed and larger capacity compared to the current
technical level, installing centralized monitoring and using intelli-
gent control systems [26,28,38].

3.2. Compressed Air Energy Storage (CAES)

In addition to PHS, CAES is another type of commercialized EES
technology which can provide power output of over 100 MW with
a single unit. A schematic diagram of a CAES plant is shown in
Fig. 5. During the periods of low power demand, the surplus elec-
tricity drives a reversible motor/generator unit in turn to run a
chain of compressors for injecting air into a storage vessel, which
is either an underground cavern or over ground tanks. The energy
is stored in the form of high pressure air. When the power gener-
ation cannot meet the load demand, the stored compressed air is
released and heated by a heat source which can be from the com-
bustion of fossil fuel or the heat recovered from the compression
process. The compressed air energy is finally captured by the tur-
bines. The waste heat from the exhaust can be recycled by a recu-
perator unit (Fig. 5).

The world’s first utility-scale CAES plant, the Huntorf power
plant, was installed in Germany in 1978 [39–41]. It uses two salt
domes as the storage caverns and it runs on a daily cycle with
8 h of compressed air charging and 2 h of operation at a rated
power of 290 MW [39]. This plant provides black-start power to
nuclear units, back-up to local power systems and extra electrical
power to fill the gap between the electricity generation and
demand. Another commercial CAES plant started operation in
McIntosh, the US, in 1991 [39–41]. The 110 MW McIntosh plant
can operate for up to 26 h at full power. The compressed air is
stored in a salt cavern. A recuperator is operated to reuse the
exhaust heat energy. This reduces the fuel consumption by 22–
25% and improves the cycle efficiency from �42% to �54%, in com-
parison with the Huntorf plant [4,42]. These two CAES plants have



Fig. 5. Schematic diagram of a CAES plant/facility.
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consistently shown good performances with 91.2–99.5% starting
and running reliabilities [38,39].

CAES system can be built to have small to large scale of capac-
ities; CAES technology can provide the moderate speed of
responses and good partial-load performance. The practical uses
of large-scale CAES plants involve grid applications for load shift-
ing, peak shaving, and frequency and voltage control. CAES can
work with intermittent renewable energy applications, especially
in wind power, to smooth the power output, which have attracted
much attentions from academic researchers and industrial sectors
as described in [40,43–45]. The major barrier to implementing
large-scale CAES plants is identifying appropriate geographical
locations which will decide the main investment cost of the plant.
Relative low round trip efficiency is another barrier for CAES com-
pared to PHS and battery technologies.

In addition, the developing Liquid Air Energy Storage (LAES) has
many components which are the same or similar as those used for
CAES, such as compressors, turbines, electric machines and heat
exchangers. Considering the type of energy stored, LAES can be
classified into thermal energy storage, which will be introduced
in Section 3.10.

Currently, the newly developing Advanced Adiabatic CAES
(AA-CAES) is attracting attention. AA-CAES technology is normally
integrated with a thermal energy storage subsystem, which has no
fuel combustion involved in the expansion mode [39,42,43,46]. The
world’s first AA-CAES demonstration plant – ADELE – is in the
development stage, at Saxony-Anhalt in Germany. The plant will
have a storage capacity of 360 MWh and an electric output of
90 MW, aiming for �70% cycle efficiency [43]. Because its com-
pression mode will be powered by wind energy, the ADELE plant
emits no CO2 in a full cycle. The US based LightSail Energy Ltd. is
also developing the AA-CAES facilities by using reversible recipro-
cating piston machines [46]. In 2007 Luminant and Shell-Wind
Energy proposed wind farm projects involving CAES in Texas,
intending to evaluate the potential of incorporating CAES facilities
in conjunction with the wind farm; after a long wait, in 2013 the
project got underway and hosting 317 MW of CAES has been set
as the current target [39,44]. In addition, a comparison between
different adiabatic CAES plant configurations was recently pub-
lished in [47].

Recently, apart from using salt caverns, researchers have
attempted to study other geological structures for use in under-
ground CAES technology. A 2 MW field test program has used a
concrete-lined tunnel in an abandoned mine in Japan [39,48]. A
test facility made by Electric Power Research Institute and others
utilized a hard rock cavern with water compensation [49]. Italy’s
Enel operated a 25 MW porous rock based CAES facility in Sesta
– the test was stopped due to a disturbed geothermal issue [39].
The Iowa Stored Energy Park project aimed to use porous sand-
stone aquifers to build an underground reservoir for constructing
a 270 MW CAES plant; unfortunately, this project stopped in
2011 as the field test result indicated that the geological structure
in Iowa cannot obtain a fast enough flow for large-scale CAES [50].

Over ground small-scale CAES has recently undergone rapid
development. It can be used as an alternative to the battery for
industrial applications, such as Uninterruptible Power Supplies
(UPS) and back-up power systems. Compressed air battery systems
developed by the UK based Flowbattery (previously named Pnu
Power) were recently successfully commercialized [51]. It uses
pre-prepared compressed air from air cylinders to drive a combina-
tion of a scroll expander and a generator to produce electricity
[51,52]. In addition, the guideline study for the efficient design
and sizing of small-scale CAES pressure vessels considering mini-
mizing its cost was reported in [53]. Also, the feasibility on the
direct mechanical coupling of a wind turbine and a scroll expander
with small-scale CAES has been studied by the University of War-
wick, and its on-site tests are on-going [52,54].

3.3. Flywheel Energy Storage (FES)

A modern FES system is composed of five primary components:
a flywheel, a group of bearings, a reversible electrical motor/gener-
ator, a power electronic unit and a vacuum chamber [18]. Fig. 6
shows the simplified structure of a modern FES facility. FES sys-
tems use electricity to accelerate or decelerate the flywheel, that
is, the stored energy is transferred to or from the flywheel through
an integrated motor/generator. For reducing wind shear and
energy loss from air resistance, the FES system can be placed in a
high vacuum environment. The amount of energy stored is depen-
dent on the rotating speed of flywheel and its inertia.

FES can be classified into two groups: (1) low speed FES: it uses
steel as the flywheel material and rotates below 6 � 103 rpm; (2)
high speed FES: it uses advanced composite materials for the fly-
wheel, such as carbon-fiber, which can run up to �105 rpm [55].
Low speed FES systems are typically used for short-term and
medium/high power applications. High speed FES systems use



Fig. 6. System description of a flywheel energy storage facility.
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non-contact magnetic bearings to mitigate the wear of bearings,
thereby improving the efficiency. The application areas of high
speed FES are continuously expanding, mainly in high power qual-
ity and ride-through power service in traction and the aerospace
industry [56]. The specific energy of low speed flywheels is
�5 W h/kg, and the high speed composite rotor can achieve a spe-
cific energy of up to �100 W h/kg [57]. The cost of high speed com-
posite systems can be much higher than that of conventional metal
flywheel systems. FES has some favorable characteristics, including
high cycle efficiency (up to �95% at rated power), relatively high
power density, no depth-of-discharge effects and easy mainte-
nance [18,55,57].

Table 2 lists some selected FES facilities. In June 2011, a 20 MW
modular plant built by Beacon Power was put into commercial
operation in New York, which was the largest advanced EES facility
operating in North America [58,59]. It employs 200 high speed fly-
wheel systems to provide fast response frequency regulation ser-
vices to the grid, providing �10% of the whole state frequency
regulation demand [58,59]. Normally, FES devices can supply suffi-
cient power in a short time period with modest capacity. Thus it is
not used as standalone backup power unless operated with other
EES or power generation systems, such as batteries or fuel-fired
generators. The main weakness of FES is that flywheel devices suf-
fer from the idling losses during the time when the flywheel is on
standby. This can lead to relatively high self-discharge, up to �20%
of stored capacity per hour [57].

Currently, the research and development area of FES includes
the material of the flywheel for increasing their rotation speed
capabilities and power densities, high speed electrical machines,
high carrying capacity of the bearings and the flywheel array tech-
nology. An advance in FES technology is the High Temperature
Superconductor (HTS) bearings which is a promising option for
improving bearing performance. The US Argonne National Labora-
tory developed a 2 kW h FES system using high-temperature
superconductors and permanent magnets as passive bearings for
a feasibility study [61]. A model-based power flow control strategy
has been studied for improving flywheel performance in high
power pulse systems [62]. The rail traction industry has tested
FES devices for trackside voltage support [63]. Optimizing
Table 2
Selected flywheel energy storage facilities [18,55,57–60].

Firms/Institutes Characteristics

Active Power Company Clean Source series 100–2000 kW
Beacon Power Company 100/150 kW a unit, 20 MW/5 MW
Boeing Phantom Works 100 kW/5 kW h, HT magnetic bear
Japan Atomic Energy Center 235 MVA, steel flywheel
Piller power systems Ltd. 3600–1500 rpm, 2.4 MW for 8 s
NASA Glenn research center 2 � 104–6 � 104 rpm, 3.6 MW h
flywheels for relatively long-term operation (up to several hours)
are being studied for use in vehicles and power plants [26].

3.4. Battery Energy Storage (BES)

The rechargeable battery is one of the most widely used EES
technologies in industry and daily life. Fig. 7 shows the simplified
operational principle of a typical BES system. A BES system consists
of a number of electrochemical cells connected in series or parallel,
which produce electricity with a desired voltage from an electro-
chemical reaction. Each cell contains two electrodes (one anode
and one cathode) with an electrolyte which can be at solid, liquid
or ropy/viscous states [64,65]. A cell can bi-directionally convert
energy between electrical and chemical energy. During discharg-
ing, the electrochemical reactions occur at the anodes and the
cathodes simultaneously. To the external circuit, electrons are pro-
vided from the anodes and are collected at the cathodes. During
charging, the reverse reactions happen and the battery is recharged
by applying an external voltage to the two electrodes (Fig. 7).

Batteries can be widely used in different applications, such as
power quality, energy management, ride-through power and
transportation systems. The construction of BES systems takes a
relatively short time period (roughly within 12 months) [4,66].
The location for installation can be quite flexible, either housed
inside a building or close to the facilities where needed. Currently,
relatively low cycling times and high maintenance costs have been
considered as the main barriers to implementing large-scale facil-
ities. The disposal or recycling of dumped batteries must be consid-
ered if toxic chemical materials are used [9]. Furthermore, many
types of battery cannot be completely discharged due to their life-
time depending on the cycle Depth-of-Discharge (DoD) [13]. A
description of several important BES technologies will be pre-
sented in the following five subsections. The chemical reactions
taking place in these battery types are listed in Table 3.

3.4.1. Lead–acid batteries
The most widely used rechargeable battery is the lead–acid

battery [4,10]. The cathode is made of PbO2, the anode is made
of Pb, and the electrolyte is sulfuric acid. Lead–acid batteries have
fast response times, small daily self-discharge rates (<0.3%), rela-
tively high cycle efficiencies (�63-90%) and low capital costs
(50–600 $/kW h) [4,14,57,69]. Some examples of EES facilities
using lead–acid batteries are listed in Table 4. Lead–acid batteries
can be used in stationary devices as back-up power supplies for
data and telecommunication systems, and energy management
applications. Also, they have been developed as power sources
for hybrid or full electric vehicles. However, there are still limited
installations around the world as utility-scale EES, mainly due to
their relatively low cycling times (up to �2000), energy density
(50–90 W h/L) and specific energy (25–50 Wh/kg) [4,70,71]. In
addition, they may perform poorly at low temperatures so a ther-
mal management system is normally required, which increases the
cost [72].

Currently, the research and development of lead–acid batteries
focuses on: (1) innovating materials for performance improvement,
Application area

Backup power supply, UPS systems
h plant Freq. regulation, power quality, voltage support
ings Power quality and peak shaving

High power supply to Nuclear fusion furnace
Ride-through power and sources of backup power
Supply on aerospace aviation & other transports



Fig. 7. Schematic diagram of a battery energy storage system operation.

Table 3
Chemical reactions and single unit voltages of main batteries available to EES
[4,13,67,68].

Battery type Chemical reactions at anodes and cathodes Unit
voltage

Lead–acid Pbþ SO2�
4 () PbSO4 þ 2e� 2.0 V

PbO2 þ SO2�
4 þ 4Hþ þ 2e� () PbSO4 þ 2H2O

Lithium-ion Cþ nLiþ þ ne� () LinC 3.7 V

LiXXO2 () Li1�nXXO2 þ nLiþ þ ne�

Sodium–sulfur 2Na() 2Naþ þ 2e� �2.08 V

vSþ 2e� () vS2�

Nickel–cadmium Cdþ 2OH� () CdðOHÞ2 þ 2e� 1.0–
1.3 V2NiOOHþ 2H2Oþ 2e� () 2NiðOHÞ2 þ 2OH�

Nickel–metal
hydride

H2Oþ e� () 1=2H2 þ OH� 1.0–
1.3 VNiðOHÞ2 þ OH� () NiOOHþ H2Oþ e�

Sodium nickel
chloride

2Na() 2Naþ þ 2e� �2.58 V
NiCl2 þ 2e� () Niþ 2Cl�

Table 4
Selected lead–acid battery energy storage facilities [4,13,67,75,76].

Name/locations Characteristics Application area

BEWAG, Berlin 8.5 MW/8.5 MW h Spinning reserve, frequency control
Chino, California 10 MW/40 MW h Spinning reserve, load leveling
PREPA, Puerto Rico 20MW/14 MW h Spinning reserve, frequency control
Metlakatla, Alaska 1 MW/1.4 MW h Enhancing stabilization of island grid
Kahuku Wind

Farm, Hawaii
15 MW/
3.75 MW h

Power management, load firming, grid
integration

Notrees EES
project, U.S.

36 MW/24 MW h Solving intermittency issues of wind
energy
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such as extending cycling times and enhancing the deep discharge
capability; (2) implementing the battery technology for applica-
tions in the wind, photovoltaic power integration and automotive
sectors. Several advanced lead–acid batteries that have fast
responses comparable to flywheels and supercapacitors are being
developed or are in the demonstration phase, such as Ecoult Ultr-
aBattery smart systems and Xtreme Power advanced lead–acid
‘‘Dry Cell’’ [73,74].
3.4.2. Lithium-ion (Li-ion) batteries
In a Li-ion battery, the cathode is made of a lithium metal oxide,

such as LiCoO2 and LiMO2, and the anode is made of graphitic car-
bon. The electrolyte is normally a non-aqueous organic liquid con-
taining dissolved lithium salts, such as LiClO4 [13]. The Li-ion
battery is considered as a good candidate for applications where
the response time, small dimension and/or weight of equipment
are important (milliseconds response time, �1500–10,000 W/L,
�75–200 W h/kg, �150–2000 W/kg) [4,9,26,57]. Li-ion batteries
also have high cycle efficiencies, up to �97% [4,26]. The main
drawbacks are that the cycle DoD can affect the Li-ion battery’s
lifetime and the battery pack usually requires an on-board com-
puter to manage its operation, which increases its overall cost.

The current research focuses for the Li-ion battery include: (1)
increasing battery power capability with the use of nanoscale
materials; (2) enhancing battery specific energy by developing
advanced electrode materials and electrolyte solutions. Several
companies have experience in using Li-ion batteries in the util-
ity-scale energy market. The U.S. based AES Energy Storage has
been commercially operating a Li-ion BES system (8 MW/2 MW h
in 2010, enlarged 16 MW in 2011) in New York for supplying fre-
quency regulation [8,77]. The AES also installed a 32 MW/
8 MW h Li-ion BES system (Laurel Mountain) for supporting a
98 MW wind generation plant in 2011 [77,78]. Currently, the larg-
est European Li-ion battery EES trial is underway in the UK. The
project will deploy a 6 MW/10 MWh Li-ion battery at a primary
substation to assess the cost effectiveness of EES as part of the
UK’s Carbon Plan [79]. The companies claimed that the storage
could save more than $9 million compared to traditional system
upgrades; the project can be used to balance the intermittency of
wind and other renewables [79]. Also, in December 2013 Toshiba
announced a project to install a 40 MW/20 MWh Li-ion battery
project in Tohoku, which will help integrate renewables into the
grid [80]. In addition, Li-ion batteries are now applied in Hybrid
and full Electric Vehicles (HEVs and EVs), which use large-format
cells and packs with capacities of 15–20 kW h for HEVs and up to
50 kW h for EVs [28].
3.4.3. Sodium–sulfur (NaS) batteries
A NaS battery uses molten sodium and molten sulfur as the two

electrodes, and employs beta alumina as the solid electrolyte. The
reactions normally require a temperature of 574–624 K to ensure
the electrodes are in liquid states, which leads to a high reactivity
[8]. The desirable features of NaS batteries include relatively high
energy densities (150–300 W h/L), almost zero daily self-discharge,
higher rated capacity than other types of batteries (up to
244.8 MW h) and high pulse power capability [13,26,81]. The bat-
tery uses inexpensive, non-toxic materials leading to high recycla-
bility (�99%) [4,13]. However, the limitations are high annual
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operating cost (80 $/kW/year) and an extra system required to
ensure its operating temperature [72].

The NaS battery is considered as one of the most promising
candidates for high power EES applications. Table 5 lists some
NaS battery facilities with their applications. The research and
development focuses are mainly on enhancing the cell perfor-
mance indices and decreasing/eliminating the high temperature
operating constrains. For instance, Sumitomo Electric Industries
and Kyoto University developed a low temperature sodium related
battery – the novel sodium-containing material can be melted at
330 K [84]. The inventor claimed that the new battery can achieve
an energy density as high as 290 W h/L [84]. In addition, a part of
the outcome to the ‘‘Wind to Battery’’ project led by Xcel Energy
was recently presented in [83], mainly on the field results and
analyses quantifying the ability and the value of NaS battery EES
toward wind generation integration support [15,83].

3.4.4. Nickel–cadmium (NiCd) batteries
A NiCd battery uses nickel hydroxide and metallic cadmium as

the two electrodes and an aqueous alkali solution as the electro-
lyte. It normally has relatively high robust reliabilities and low
maintenance requirements. The weaknesses of NiCd batteries
are: cadmium and nickel are toxic heavy metals, resulting in envi-
ronmental hazards [9,85]; the battery suffers from the memory
effect – the maximum capacity can be dramatically decreased if
the battery is repeatedly recharged after being only partially dis-
charged [86].

To date there have been very few commercial successes using
NiCd batteries for utility-scale EES applications. One example is
at Golden Valley, Alaska, in the US [77]. This NiCd facility was offi-
cially put into operation in 2003 by Golden Valley Electric Associ-
ation. It offers services in spinning reserve, power supply and
compensation to an ‘‘electrical island system’’ due to the geo-
graphic restrictions, i.e. remote areas [77,87]. The system has the
ability to deliver the rated power at �27 MW for 15 min or
40 MW for 7 min, and the efficiency is in the range of 72–78% with
the operating temperature at 233–323 K [77,87,88]. The local cold
temperature was the primary driving force behind the choice of the
NiCd battery. It was reported that the NiCd technology for utility-
scale EES applications was not pursued further after the Golden
Valley installation [8,77]. It seems unlikely that NiCd batteries will
be heavily used for future large-scale EES projects.

3.4.5. Other candidates of battery energy storage
The Nickel–metal Hydride (NiMH) battery is similar to the NiCd

battery except that a hydrogen-absorbing alloy is used as the
electrode instead of cadmium. It has moderate specific energy
(�70–100 W h/kg) and relatively high energy density (�170–
420 W h/L), significantly better than those of the NiCd battery
[89–92]. Other advantages of NiMH batteries over NiCd batteries
include a reduced ‘‘memory effect’’ and they are more environmen-
tal friendly. NiMH batteries have the longer cycle life in compari-
son with Li-ion batteries [89]. The NiMH battery has a wealth of
applications from portable products to HEVs & EVs and potential
industrial standby applications, such as UPS devices [89,90,93].
Table 5
Selected sodium-sulfur battery energy storage facilities [77,81–83].

Name/locations Rated power/capaci

Kawasaki EES test facility, Japan 0.05 MW
Long Island Bus’s BES System, New York, US 1 MW/7 MW h
Rokkasho Wind Farm ES project, Japan 34 MW/244.8 MW h
Saint Andre, La reunion, France 1 MW
Graciosa Island, Younicos, Germany 3 MW/18 MW h
Abu Dhabi Island, UAE 40 MW
However, the significant barrier for EES applications is the high
rate of self-discharge, losing �5–20% of its capacity within the first
24 h after fully charging [89–91]. It is also sensitive to deep cycling
– the performance decreases after a few hundreds full cycles
[89–92].

The technology of sodium nickel chloride battery (also known
as ZEBRA battery) is similar to that of the NaS battery. The ZEBRA
battery has moderate specific energy (�94–120 W h/kg), energy
density (�150 W h/L), specific power (150–170 W/kg), and a high
operating temperature (�523–623 K) [4,94–98]. The advantages
consist of good pulse power capability, cell maintenance free, very
little self-discharge and relatively high cycle life. This battery tech-
nology has been applied in EV demonstrations and Rolls Royce has
used it to replace lead–acid in surface ships applications [97]. GE
launched Durathon sodium–metal halide battery for UPS and util-
ity market, which can be considered as a continuing improvement
on the ZEBRA technology [98]. A GE Durathon battery manufactur-
ing facility in New York was officially opened in 2012 [98].
Recently, a new venture, FIAMM Energy Storage Solutions, also
started to produce such batteries (named SoNick batteries) for sta-
tionary storage applications [99]. With regard to its drawback, the
battery takes 12–15 h to heat up after it has been solidified (frozen)
[94]. In addition, only a few companies have been involved in the
development of this technology and have produced this type of
battery, which may limit its potential [4,94,98].
3.5. Flow Battery Energy Storage (FBES)

A flow battery stores energy in two soluble redox couples con-
tained in external liquid electrolyte tanks. These electrolytes can
be pumped from the tanks to the cell stack which consists of two
electrolyte flow compartments separated by ion selective mem-
branes. The operation is based on reduction-oxidation reactions
of the electrolyte solutions. During the charging phase, one electro-
lyte is oxidized at the anode and another electrolyte is reduced at
the cathode, and the electrical energy is converted to the electro-
lyte chemical energy. The above process is reversed during the dis-
charging phase.

Flow batteries can be classified into the categories of redox flow
batteries and hybrid flow batteries, depending on whether all elec-
troactive components can be dissolved in the electrolyte. Fig. 8
shows a schematic diagram of a vanadium redox flow battery sys-
tem. A crucial advantage of FBES is that the power of a FBES system
is independent of its storage capacity. The power of the FBES sys-
tem is determined by the size of the electrodes and the number
of cells in the stack; whereas the storage capacity is determined
by the concentration and the amount of electrolyte [26,100,101].
Also, the very small self-discharge is an inherent strength of the
FBES system due to the electrolytes being stored in separate sealed
tanks [4,13]. Drawbacks of flow batteries include low performance
resulting from non-uniform pressure drops and the reactant mass
transfer limitation, relatively high manufacturing costs and more
complicated system requirements compared to traditional batter-
ies [102,103].
ty Application area

The 1st large-scale, proof principle, operated in 1992
Refueling the fixed route vehicles
Wind power fluctuation mitigation
Wind power on an island
Wind & solar power EES for islands, commissioning 2013
Load levelling
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FBES facilities have been demonstrated at a few hundred kW
and even multi-MW levels, and there are not many commercially
available FBES systems at present [4,19,104]. The current research
activities undertaken cover: low-cost, efficient and reliable elec-
trodes; highly permselective and durable membranes; power and
energy management of large-scale FBES systems, etc. Some types
of flow battery technologies have been used or can potentially be
used for utility EES applications, including vanadium redox, zinc
bromine and polysulfide bromine, which are described in the fol-
lowing three subsections.
3.5.1. Vanadium Redox Flow Battery (VRB)
The VRB is one of the most mature flow battery systems [4,87].

The VRB stores energy by using vanadium redox couples (V2+/V3+

and V4+/V5+) in two electrolyte tanks (Fig. 8). VRBs exploit the vana-
dium in these four oxidation states which makes the flow battery
have only one active element in both anolyte and catholyte
[100]. During the charge/discharge cycles, H+ ions are exchanged
through the ion selective membrane. The chemical reaction is:
V4+

M V5+ + e� and V3+ + e�M V2+; the cell voltage is �1.4 V
[100,102].

VRBs have quick responses (faster than 0.001 s) and can operate
for 10,000–16,000+ cycles [18,105]. They have relatively high effi-
ciencies, up to �85% [100,105]. Manufacturers can design VRBs to
provide continuous power (discharge duration time 24+ hours)
[4,106]. Although VRBs now tends to expand their range of appli-
cations by enhancing the physical scale, there are some technical
challenges that need to be solved, for instance, low electrolyte sta-
bility and solubility leading to low quality of energy density
[107,108]. Also, the relatively high operating cost needs to be fur-
ther reduced [103].

VRBs can be used in a large number of applications, mainly
including enhancing power quality used for stationary applications
and UPS devices, improving load levelling and power security, sup-
porting the intermittent nature of renewable energy-based power
generation. Some VRB facilities worldwide are introduced in
Table 6. Currently, two projects on VRBs have been funded with
a combined cost of £1.2 million in the UK. One project has been
developed by Scottish Power, the University of Southampton and
others, which planned to test a 100 kW redox flow battery for util-
ity EES [6]. Another VRB energy storage system project has been
Fig. 8. Schematic diagram of a vanad
developed by C-Tech Innovation Ltd, E.ON UK plc. and other insti-
tutes, which is especially for storing surplus energy from renew-
able energy sources [108]. Both of these two projects intend to
be developed to a larger scale after the successes of initial small-
scale trials [6,109].
3.5.2. Zinc Bromine (ZnBr) flow battery
ZnBr flow batteries belong to the hybrid flow batteries category.

In a ZnBr battery, two aqueous electrolyte solutions contain the
reactive components, which are based on zinc and bromine ele-
ments, stored in two external tanks. During the charging/discharg-
ing phases, these two electrolyte solutions flow through the cell
stack consisting of carbon-plastic composite electrodes with com-
partments. Thus the reversible electrochemical reactions occur in
these electrolytic cells. The corresponding chemical reactions are:
2Br�M Br2 + 2e� and Zn2+ + 2e�M Zn [4,102].

The ZnBr flow battery has relatively high energy density (�30–
65 W h/L) and cell voltage (1.8 V) [4,26]. It also has deep discharge
capability and good reversibility [19,102]. Module sizes vary from
3 kW to 500 kW, with estimated lifetimes of 10-20 years and dis-
charge durations of up to �10 h [4,112,113]. The disadvantages
of the ZnBr battery are: material corrosion, dendrite formation
and relatively low cycle efficiencies (around 65–75%) compared
to traditional batteries, which can limit its applications
[4,114,115]. Furthermore, ZnBr batteries normally operate in a nar-
row temperature range [102,116].

Utility EES applications using ZnBr batteries are in the early
stage of demonstration/commercialization. ZBB Energy Corpora-
tion and Premium Power Corporation have developed this technol-
ogy for commercial purposes (50 kW h, recently tested up to
�2 MW) [14]. The firm RedFlow in Australia successfully commer-
cialized a fully functional ZnBr module product, named ZBM,
which delivers up to 3 kW of continuous power (5 kW peak) and
up to 8 kW h of energy; the company claimed that it can achieve
up to 80% DC-DC max net energy efficiency [113]. In 2011, U.S.
electric utilities conducted early trials of 0.5 MW/2.8 MW h trans-
portable ZnBr systems for grid support and reliability [117]. In the
same year, Sacramento Municipal Utility District (SMUD) planned
to demonstrate a 1 MW ZnBr flow battery system for multi EES
applications [100,118]. A relevant project, named ‘‘flow batteries
ium redox flow battery system.



Table 6
Selected vanadium redox flow battery energy storage facilities [67,105,107,110,111].

Name/locations Power/capacity Application area

Edison VRB EES facility, Italy 5 kW, 25 kW h Telecommunications back-up application
Wind power EES facility King Island, Australia 200 kW, 800 kW h Integrated wind power, foil fuel energy with EES
Wind Farm EES project, Ireland 2 MW, 12 MW h Wind power fluctuation mitigation, grid integration
VRB EES facility installed by SEI, Japan 1.5 MW, 3 MW h Power quality application
VRB facility by PacifiCorp, Utah, U.S. 250 kW, 2 MW h Peak power, voltage support, load shifting
VRB EES system build by SEI, Japan 500 kW, 5 MW h Peak shaving, voltage support
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for grid scale energy storage’’, has been implemented by Lawrence
Berkeley National Laboratory in Berkeley, U.S. [100].
3.5.3. Polysulfide Bromine (PSB) flow battery
A PSB system uses sodium bromide and sodium polysulphide as

salt solution electrolytes. The chemical reactions are: 3Br�M Br3
�

+ 2e� and 2S2
2�

M S4
� + 2e� [4,19]. The significant advantages of

PSB systems are: the materials of two electrolytes are abundant
and highly soluble in aqueous electrolytes, and they are also
cost-effective [19]. The voltage generated across the membrane is
�1.5 V; the PSB system has a fast response time, reacting within
20 ms [4,105]. PSBs have a wide range of potential application
areas, especially for power system frequency control and voltage
control due to their fast response characteristic. Because bromine
and sodium sulfate crystals are produced during the chemical reac-
tions, this may result in environmental issues.

Several PSB systems have been demonstrated at multi-kW
scales. For instance, a 100 kW stack using PSB technology had been
built by the UK Company Innogy, with a net efficiency of �75%
[104]. Concerning large-scale PSB facility deployment, Regenesys
Technologies had tried to build a 15 MW/120 MW h energy storage
plant at a power station in the UK; another demonstration plant to
be located at Tennessee Valley in the U.S. was designed with a
12 MW/120 MW h capacity for EES to support a wind power plant
operation [4]. However, due to engineering difficulties and finan-
cial constraints, the construction of these two large storage plants
was ceased and the demonstration plants were uncompleted
[77,104,119]. Thus the PSB technology for large-scale EES applica-
tions still needs practical experience.
Fig. 9. Schematic diagram of
3.6. Capacitor and supercapacitor

A capacitor is composed of at least two electrical conductors
(normally made of metal foils) separated by a thin layer of insula-
tor (normally made of ceramic, glass or a plastic film). When a
capacitor is charged, energy is stored in the dielectric material in
an electrostatic field [4,120,121]. Its maximum operating voltage
is dependent on the breakdown characteristics of the dielectric
material. Capacitors are appropriate for storing small quantities
of electrical energy and conducting a varying voltage; they have
a higher power density and shorter charging time compared to
conventional batteries [70]. However, they have limited capacity,
relatively low energy density and high energy dissipation due to
the high self-discharge losses [4,120–122]. According to these
characteristics, capacitors can be used for some power quality
applications, such as high voltage power correction, smoothing
the output of power supplies, bridging and energy recovery in
mass transit systems.

Supercapacitors, also named electric double-layer capacitors or
ultracapacitors, contain two conductor electrodes, an electrolyte
and a porous membrane separator (refer to Fig. 9) [13]. Due to their
structures, supercapacitors can have both the characteristics of tra-
ditional capacitors and electrochemical batteries. The energy is
stored in the form of static charge on the surfaces between the
electrolyte and the two conductor electrodes. The supercapacitors
with high-performance are based on nano materials to increase
electrode surface area for enhancing the capacitance.

The power and energy densities of supercapacitors are between
those of rechargeable batteries and traditional capacitors
a supercapacitor system.



Table 7
Selected manufacturers of supercapacitors for utility applications [20,67,126,127].

Device/Company name Country Technical information

Super capacitor, CAP-
XX

Australia Single cell 2.3–2.9 V, up to �2.4 F, 233-
358 K

Gold capacitor,
Panasonic

Japan Single cell 2.3–5.5 V, 0.1–2000 F

Ultracapacitor/
Boostcap, Maxwell

U.S. Single cell 2.2–2.7 V, 1–3000 F, UPS,
pulse, transportation

Supercapacitor, NEC Japan 3.5–12 V, 0.01–6.5 F, power quality
application

Supercapacitor,
Siemens

Germany 21 MJ/5.7 W h, 2600 F, metro
distribution net application

Supercapacitor, TVA
company

U.S. 200 kW, supporting the start of high
power dc machines
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[20,123,124]. The most important features of supercapacitors are
their long cycling times, more than 1 � 105 cycles, and high cycle
efficiency, �84–97% [4,66]. However, the daily self-discharge rate
of supercapacitors is high,�5–40%, and the capital cost is also high,
in excess of 6000 $/kW h [4,10,13,125]. Thus supercapacitors are
well suited for short-term storage applications but not for large-
scale and long-term EES. Typical applications in power quality
consist of pulse power, hold-up/bridging power to equipment,
solenoid and valve actuation in factories, UPS devices, etc. There
are a number of manufacturers producing supercapacitors world-
wide (refer to Table 7).

Research and development in supercapacitors has been very
active in recent years. Some recent good quality reviews have
focused on the recent development of materials for chemical
capacitive energy storage, such as an overview of carbon materials
for super-capacitors is given in [24] and an overview of graphene-
based electrodes can be found in [25]. To be more specific, a new
composite material formed by dispersing ultra-small silicon nano-
particles in polyaniline was developed as the electrode material for
supercapacitors [128]. The integration of a short-term supercapac-
itor EES device in a doubly fed induction generator has been
studied in order to smooth the fast wind-induced power variations
[129]. One UK EPSRC funded project aiming to develop high-
performance supercapacitors with enhanced energy density had
been implemented. The prototype had been tested for designing
an effective and sustainable power system. Some achievements
of this project were published in 2013 [130].
3.7. Superconducting Magnetic Energy Storage (SMES)

A typical SMES system is composed of three main components
which include: a superconducting coil unit, a power conditioning
subsystem, and a refrigeration and vacuum subsystem [13,109,
131]. The SMES system stores electrical energy in the magnetic
Fig. 10. Schematic diagra
field generated by the Direct Current (DC) in the superconducting
coil which has been cryogenically cooled to a temperature below
its superconducting critical temperature. In general, when current
passes through a coil, the electrical energy will be dissipated as
heat due to the resistance of the wire; however, if the coil is made
from a superconducting material, such as mercury or vanadium,
under its superconducting state (normally at a very low tempera-
ture), zero resistance occurs and the electrical energy can be stored
with almost no losses. One commonly used superconducting mate-
rial is Niobium–Titanium which has a superconducting critical
temperature of 9.2 K [4,132]. In the discharging phase, the SMES
system can release the stored electrical energy back to the
Alternating Current (AC) system, by a connected power converter
module. The magnitude of stored energy is determined by the
self-inductance of coil and the current flowing through it [133]. A
simplified structure of a SMES system is illustrated in Fig. 10.

Superconducting coils can be classified into two groups: Low
Temperature Superconducting (LTS) coils, working at �5 K, and
High Temperature Superconducting (HTS) coils, working at �70 K
[13,131]. The LTS-SMES technology is more mature and commer-
cially available while the HTS-SMES is currently in the develop-
ment stage. SMES devices in the range of 0.1–10 MW have been
used commercially; while SMES systems with 100 MW h could
be available in the next decade.

The features of SMES include relatively high power density (up
to �4000 W/L), fast response time (millisecond level), very quick
full discharge time (less than 1 min), high cycle efficiency (�95–
98%) and long lifetime (up to �30 years) [4,66,114,134]. In contrast
to rechargeable batteries, SMES devices are capable of discharging
near to the totality of the stored energy with little degradation
after thousands of full cycles. The drawbacks are that they have
high capital cost (up to 10,000 $/kW h, 7200 $/kW), high daily
self-discharge (10–15%) and a negative environmental impact
due to the strong magnetic field [4,14,114]. Moreover, the coil is
sensitive to small temperature variations which can cause the loss
of energy. From the above, SMES is suitable for short-term storage
in power and energy system applications and it is expected to have
an important role in the increased use of intermittent renewable
energy [131]. Table 8 shows selected SMES facilities with their
application fields.

Recently, considerable research and development effort has
been made: (1) to reduce the costs of superconducting coils and
related refrigeration systems; (2) to develop HTS coil materials
which are less cryogenically sensitive [14,109,131]. Since 2011,
SuperPower Inc., in partnership with ABB Inc., Brookhaven national
laboratory and the Texas center for superconductivity at the Uni-
versity of Houston has been developing an advanced SMES demon-
strator 20 kW ultra-high field SMES system with a capacity up to
2 MJ [135]. This demonstration project aims to pave the way of
grid-scale SMES technology for the U.S. electric grid operation
m of a SMES system.



Table 8
Some projects of superconducting magnetic energy storage [67,131,133,138].

Locations/organizations Technical data Features/applications

Proof principle, tested in a grid in Germany 5 KJ, 2 s to max 100 A at 25 K World first significant HTS-SMES, by ASC
Nosoo power station in Japan 10 MW Improve system stability and power quality
Upper Wisconsin by American Transmission 3 MW/0.83 kW h, each 8 MV A Power quality application reactive power support
Bruker EST in Germany 2 MJ High temperature superconductors
Korea Electric Power Corporation, Hyundai 3 MJ, 750 kV A Improving power supply quality for sensitive loads
Chubu Electric Power Co. in Japan 7.3 MJ/5 MW and 1 MJ Provide comparison to transient voltage
University of Houston, SuperPower & others 20 kW, up to 2 MJ class UHF-SMES, voltage distribution
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and for the integration of renewable sources. The University of
Bath in the UK continuously focus on SMES technology develop-
ment and a relevant on-going project funded by the UK EPSRC aims
to investigate HTS-SMES as part of hybrid EES systems for renew-
able energy micro-grids [136,137].

3.8. Solar fuels

Solar fuel is a relatively new technology to EES. Approaches to
produce solar fuels include: (1) natural photosynthesis; (2) artifi-
cial photosynthesis; (3) thermochemical approaches [4,139,140].
A number of fuels can be produced by solar energy, such as solar
hydrogen, carbon-based fuels, and solar chemical heat pipe
[4,140–143]. These fuels can be stored and subsequently provide
the basis for later electricity generation.

For the first two approaches to produce solar fuels, solar energy
is captured via photosynthesis and then stored in chemical bonds,
i.e., the sunlight is used to convert water and/or carbon dioxide
into oxygen and other materials [144]. Fig. 11 shows a comparison
of natural and artificial photosynthesis. The artificial system for
water-splitting catalysts generally relies on scarce elements, e.g.,
Ruthenium (Ru), Palladium (Pd) and Rhenium (Re) [140,145]. For
example, sunlight can be captured by Ruthenium (Ru) as a catalyst,
and electrons moves from the donor (marked as ‘‘D’’) to the accep-
tor (Fig. 11) [140,145].

The thermochemical approach uses thermal processes for solar
fuels production, which involve the generation of very high tem-
peratures in a closed environment to split water into its constitu-
ent parts [4]. Thus this method is more dependent on strong
sunlight compared to the other two [144,146]. After the solar radi-
ant energy is concentrated by heliostats, an endothermic chemical
transformation is carried out in a reaction vessel. The reaction pro-
duces hydrogen and/or carbon monoxide and/or other materials
[142,143,147].

Solar fuel technology is currently at the development stage. The
power rating of solar fuels is potentially up to 20 MW and the spe-
cific energy estimate is from 800 W h/kg to 100,000 W h/kg
[4,148]. The storage duration can range from a few hours to several
months [4]. One drawback of artificial photosynthesis is that the
Fig. 11. Comparison of natural and
water-splitting catalysts normally depend on scarce, expensive
elements [145]. Another disadvantage is that solar fuel facilities
need a large area to place devices to concentrate sunlight, espe-
cially when using the thermochemical approach to produce solar
fuels.

Research in solar fuels has recently undergone substantial
advances, making it possible for it to become cost-effective for util-
ity EES applications in the near future. There are on-going research
projects in the U.S., the Netherlands, South Korea, Singapore, Japan
and China. In the US, there are several organizations focusing on
this area, such as Energy Innovation Hub at DoE, the MIT spin-
out Sun Catalytix and the Princeton University spin-out Liquid
Light. The ‘‘Towards BioSolar Cells’’ research programme has
focused on increasing the photosynthetic efficiency and creating
solar collectors [140,149]. Concerning the issue of the reliance on
scarce and expensive elements, one important breakthrough in
the development of using earth-abundant, relatively cheap cata-
lysts (e.g. cobalt and phosphate) and silicon-based semiconductors
for the water-splitting process has been recently reported by the
Nocera’s team from MIT [150,151]. Asia’s pioneering solar fuel
research laboratory at Nanyang Technological University of Singa-
pore has also made effort on the investigation of affordable
approaches to extract large amounts of hydrogen from water using
sunlight for engineering applications [151,152].

3.9. Hydrogen storage and fuel cell

Hydrogen energy storage systems use two separate processes
for storing energy and producing electricity (refer to Fig. 12). The
use of a water electrolysis unit is a common way to produce hydro-
gen which can be stored in high pressure containers and/or trans-
mitted by pipelines for later use (Fig. 12) [8,13]. When using the
stored hydrogen for electricity generation, the fuel cell (also known
as regenerative fuel cell) is adopted, which is the key technology in
hydrogen EES.

Fuel cells can convert chemical energy in hydrogen (or hydro-
gen-rich fuel) and oxygen (from air) to electricity [8,13,153]. The
overall reaction is: 2H2 + O2 ? 2H2O + energy [154]. Electrical and
heat energy are released during the process (Fig. 12). Depending
artificial photosynthesis [140].



Fig. 12. Topology of hydrogen storage and fuel cell.
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on the choice of fuel and electrolyte, there are six major groups of
fuel cells, which are: Alkaline Fuel Cell (AFC), Phosphoric Acid Fuel
Cell (PAFC), Solid Oxide Fuel Cell (SOFC), Molten Carbonate Fuel Cell
(MCFC), Proton Exchange Membrane Fuel Cell (PEMFC) and Direct
Methanol Fuel Cell (DMFC) [154]. Their chemical reactions and
application fields are listed in Table 9.

In general, the electricity generation by using fuel cells is
quieter, produces less pollution and is more efficient than the fossil
fuel combustion approach [156]. Other features include easy scal-
ing (potential from 1 kW to hundreds of MW) and compact design
[153,157]. Fuel cell systems combined with hydrogen production
and storage can provide stationary or distributed power (primary
electrical power, heating/cooling or backup power) and transporta-
tion power (potentially replacing fossil fuels for vehicles)
[153,154]. Such hydrogen EES systems can offer capacity and
power independence in energy production, storage and usage,
due to the separate processes. It should be noted that the disposal
of exhaust fuel cells must consider degradation and recycling while
toxic metals are used as electrodes or catalysts. Many of the rele-
vant aspects and approaches have been under investigation
[158,159]. For instance, palladium in catalysts of fuel cells can be
reprocessed into other products in theory [159].

Currently, hydrogen EES with fuel cell technology is in the
development and demonstration stage. Stationary power applica-
tions are relatively mature. In 2012 nearly 80% of total investment
in the global fuel cell industry was made by the U.S. companies
[153]. Cost reduction and durability verification/improvement are
essential to deploy this technology in large-scale EES applications
[109]. Some research or demonstration projects are in place and
on-going across the world. The world’s first utility-scale test of a
stand-alone renewable energy system integrated with hydrogen
storage and fuel cells was installed in Norway, which delivered
power with required quality and high reliability [157]. One of the
Table 9
Chemical reactions of main fuel cells [154,155].

Fuel cell
Type

Chemical reactions at anodes
and cathodes

Applications

AFC 2H2 + 4OH�? 4H2O + 4e� Military, space applications
O2 + 2H2O + 4e�? 4OH�

PAFC 2H2 ? 4H+ + 4e� Distributed generation
O2 + 4H+ + 4e�? H2O

SOFC O2�(S) + H2(g) ? H2O(g) + 2e� Utility EES, distributed
generation1/2O2(g) + 2e�? O2�(s)

MCFC H2O + CO3
2�? H2O + CO2 + 2e� Electric utility EES,

distributed generation2H2 + 4OH�? 4H2O + 4e�

PEMFC H2(g) ? 2H+ + 2e� Backup power, small
distributed generation1/2O2(g) + 2H+ + 2e�? H2O

DMFC CH3OH + H2O ? CO2 + 6H+ + 6e� Transportation, portable
devices3/2O2 + 6e� + 6H+ ? 3H2O
world’s largest biogas fuel cell power plants was launched in
2012 in California (2.8 MW), which converts biogas into electricity
and usable high-quality heat [160]. In 2013, the US Naval Air War-
fare Center Weapons Division in California successfully tested a
novel 5 kW trailer-mounted regenerative fuel cell system to use
solar power to produce hydrogen with fuel cells [161]. Since
2013, McPhy and Enertrag AG in Germany have worked jointly to
develop economic wind-hydrogen solutions for EES and for trans-
portation fuel cell applications [162]. Currently, the on-going
hydrogen storage and fuel cell relevant projects include IdealHy
(the Netherlands), RE4CELL (Spain), Sapphire (Norway), SmartCat
(France), etc.

3.10. Thermal Energy Storage (TES)

TES encompasses a variety of technologies that store available
heat energy using different approaches in insulated repositories
[6,26]. A TES system normally consists of a storage medium in a
reservoir/tank, a packaged chiller or built-up refrigeration system,
piping, pump(s), and controls. Based on the range of operating
temperature, TES can be classified into two groups: low-tempera-
ture TES (consisting of aquiferous low-temperature TES and cryo-
genic energy storage) and high- temperature TES (including
latent (fusion) heat TES, sensible heat TES and concrete thermal
storage) [4,163–166]. Aquiferous low-temperature TES normally
uses water cooled/iced and reheating processes, which is more
suitable for peak shaving and industrial cooling loads [4]. Cryo-
genic energy storage employs a cryogen (such as liquid nitrogen
or liquid air) to achieve the electrical and thermal energy conver-
sion. For instance, Liquid Air Energy Storage (LAES) is attracting
attention due to the high expansion ratio from the liquid state to
the gaseous state and the high power densities of liquid air com-
pared to that of gaseous state of air. Latent heat TES employs Phase
Change Materials (PCMs) as the storage media and uses the energy
absorption or emission in liquid-solid transition of these PCMs at
constant temperature. Concrete thermal storage utilizes concrete
or castable ceramics to store heat energy, normally supported by
synthetic oil as a heat transfer fluid. The above TES technologies
have different features with various applications. For instance,
latent heat storage can provide a relatively high storage density
with a small dimension reservoir, thus the use of this technology
in buildings receives attention [21]. In addition, cryogenic energy
storage is expected to be used for future grid power management.

The TES system can store large quantities of energy without any
major hazards and its daily self-discharge loss is small (�0.05–1%);
the reservoir offers good energy density and specific energy
(80–500 W h/L, 80–250 W h/kg) and the system is economically
viable with relatively low capital cost (3–60 $/kW h) [4,10,166–
168]. However, the cycle efficiency of TES systems is normally
low (�30–60%) [4]. TES has been used in a wide spectrum of



Fig. 13. A sensible heat storage system for wind power generation.
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applications, such as load shifting and electricity generation for
heat engine cycles.

With particular focus on using TES for power system and grid
applications, there are many active research projects worldwide
and, in addition, numerous demonstration projects are built, under
construction or planned. The UK based company Highview Power
Storage designed and assembled a pilot LAES facility (300 kW/
2.5 MW h storage capacity) which has been in operation at Scottish
and Southern Energy’s 80 MW biomass plant since 2010 [168,169].
In February 2014, this firm has been awarded £8 million funding
from the UK government for a 5 MW/15 MW h demonstration
LAES project; the designed LAES system will be alongside one land-
fill gas generation plant in the UK [169]. A TES system in an office
building was built by a joint U.S. and China demonstration project
in Beijing, which can reduce peak electric energy consumption of
6100 kW h per month [170]. A new central energy plant including
an ice-based TES system is being built in South Florida. The com-
pletely built plant will have a total capacity of 11,500 tons of
chilled water with 68,000 ton-hour of TES [170]. A 15 MW com-
mercial power plant, named ‘‘Solar Tres Power Tower’’, is being
built in Spain by Torresol Energy, and it uses molten salt as the
working fluid to store heat energy [165]. A wind power generation
system combined with a sensible heat storage facility had been
proposed (Fig. 13) [165]. The electrical energy from wind power
is used to heat a bulk storage material; the heat energy is
recovered to produce water vapor which in turn drives a turbo-
alternator to generate electricity. A detailed study of load shifting
of nuclear power plants by using cryogenic energy storage technol-
ogy was recently reported in [171]. A UKERC funded project, ‘‘the
future role of TES in the UK energy system’’, has investigated the
potential for, and limitations of, the role of TES in the transition
to a sustainable low carbon energy supply system; the project
has also studied the suitability of TES in managing energy genera-
tion and distribution systems with large-scale penetration [6].

3.11. Hybrid electrical energy storage

Hybrid EES refers to the integration of at least two different EES
technologies into one system or application. Advantages of each
EES technology can be utilized to achieve specific requirements,
meet harsh working environments, optimize the whole system
performance or improve the cycle efficiency. For example, the first
large pilot power plant (ADELE) utilizes CAES and TES technologies
for enhancing the efficiency and avoiding fossil fuel consumption
[42,43]. The combination of supercapacitor and battery technolo-
gies can offer relatively large storage capacity and very fast
charge/discharge rates. One project in the theme of a hybrid sup-
ercapacitor-battery system, funded by E.ON, was completed in
UK and a corresponding demonstration system was developed
[6]. Another project funded by UK EPSRC, named ‘‘Ultra battery fea-
sibility - investigation into the combined battery- supercapacitor
for hybrid electric vehicle applications’’, was completed in 2012,
and some achievements were recently published in [172].
Researchers in Japan High Energy Accelerator Research Organiza-
tion, Tohoku University and others have designed a back-up sys-
tem for renewable energy power generation, which combines a
liquid hydrogen refrigeration-based SMES system with a hydro-
gen-fuel cell system [109,173].
4. Comparison and evaluation of electrical energy storage
technologies

It is well recognized that no single EES technology can meet the
requirements for all power system applications. Comprehensive
analysis of different EES technologies is conducted and Tables
10–12 provide the matrices to clearly show the positions of differ-
ent EES performance and characteristics. The selection of represen-
tative matrices in Tables 10–12 is derived with consideration of the
focuses in both academic research and industry application areas,
which is drawn from the comprehensive literature review in this
paper. The selection of EES indices also relies on the assessment
in the characteristics of different EES options against the require-
ments of power system applications, which will be discussed in
Section 5.

Size of storage devices is an important factor for many applica-
tions. Fig. 14 shows the comparison of power density and energy
density of different EES technologies. For a given amount of energy,
the higher the power and energy densities are, the smaller the vol-
ume of the required energy storage system will be. In Fig. 14, the
highly compact technologies suitable for volume-limited applica-
tions can be found at the top right corner and the large volume
consuming storage systems are located at the bottom left corner.
It can be seen that most batteries, flywheel and fuel cells have rel-
atively moderate energy densities and power densities. PHS and
CAES have lower densities, thus they are mainly used in stationary
EES and require large reservoirs for grid scale applications. Sup-
ercapacitors and capacitors have very high power densities but
low energy densities. The densities of flow batteries are commonly
lower than those of conventional batteries. The Li-ion battery has
both a high energy density and a high power density, which leads
to widespread uses in portable devices and promising potential in
transportation and other small-scale EES applications.

Specific energy and specific power are important indices which
represent the total energy and power per unit weight. Fig. 15 pre-
sents the comparison of the specific energy and specific power of



Table 10
Technical characteristics of electrical energy storage technologies.

Technology Energy density (W h/L) Power density
(W/L)

Specific energy (W h/
kg)

Specific power (W/kg) Power rating (MW) Rated energy capacity
(MW h)

PHS 0.5–1.5 [4], 1–2 [26] 0.5–1.5 [4], �1
[26],

0.5–1.5 [4] – 100–5000 [4], 30 [34],
< 4000 [114]

500–8000 [4], 180 Oki-
nawa PHS[34,77]

Large–scale
CAES

3–6 [4], 2–6 [26] 0.5–2 [4], �1 [26] 30–60 [4] – Up to 300 [4], 110 & 290
[39], 1000 [70]

� < 1000[10], 580 &
2860 [38,42]

Overground
small CAES

Higher than large-scale
CAES

Higher than
large-scale CAES

140 at 300 bar [174] – 0.003–3 [51] Potential
�10 [175]

�0.01[10], �0.002–
0.0083 [51]

Flywheel 20–80 [4,26,123] 1000–2000 [4],
�5000 [26]

10–30 [4], 5–100
[57], 5–80 [176]

400–1500 [4] <0.25 [4], 3.6 [60], 0.1–
20 [13,177]

0.0052 [60], 0.75 [70],
up to 5 [177]

Lead–acid 50–80 [4], 50–90 [70] 10–400 [4] 30–50 [4], 25–
50[178]

75–300 [4], 250 [70],
180 [57]

0–20 [4], 0–40 [14],
0.05–10 [179]

0.001–40 [179] More
than 0.0005[180]

Li-ion 200–500 [4], 200–400
[26], 150 [70]

1500–10,000 [26] 75–200 [4], 90 [70],
120–200 [181]

150–315 [4], 300 [70],
500–2000 [57]

0–0.1 [4], 1–100 [73],
0.005–50 [182]

0.024 [79], �0.004–10
[182]

NaS 150–250 [4], 150–300
[26]

�140–180 [26] 150–240 [4], 100
[183], 174 [184]

150–230 [4], 90–230
[9], 115 [13],

<8 [4], <34 [14] 0.4–244.8 [81], 0.4
[185]

NiCd 60–150 [4], 15–80 [26],
80 [70]

80–600 [26] 50–75 [4], 50 [70],
45–80 [71]

150–300 [4], 160 [13],
150 [70],

0–40 [4], 27 [88], 40
[186]

6.75 [57,88]

VRB 16–33 [4], 25–35 [19] � < 2 [26] 10–30 [4] 166 [187] �0.03–3 [4], 2 [188]
possible 50 [5]

<60 [13], 2 [88], 3.6
[189]

ZnBr 30–60 [4], �55–65 [26] � < 25 [26] 30–50 [4], 80 [190],
75 [191]

100 [190], 45 [191] 0.05–2 [4], 1–10 [73] 0.1–3 [13], 4 [14], 0.05
& 0.5 [192]

PSB �20–30 [123] � < 2 [26] �15–30 [123] – 1–15 [4], 1 [193], 0.004
[194]

Potential up to 120
[193], 0.06 [194]

Capacitor 2–10 [4], �0.05 [124] 100,000+ [4], 0.05–5 [4], <�0.05
[121,124]

�100,000 [4], >�3000–
107[124]

0–0.05 [4] –

Super-
capacitor

10–30 [4], �10–30
[123]

100,000+ [4], 2.5–15 [4], �0.05–15
[124]

500–5000 [4], �10,000
[124]

0–0.3 [4], �0.3+[26]
�0.001–0.1 [70]

0.0005 [70]

SMES 0.2–2.5 [4], �6 [26] 1000–4000 [4],
�2500 [26]

0.5–5 [4], 10–75
[195]

500–2000 [4] 0.1–10 [4,14], �1–10
[70]

0.0008 [70], 0.015
[138], 0.001 [196]

Solar fuel 500–10,000 [4] – 800–100,000 [4] – 0–10 [4], 6 and devel-
oping 20 [197]

–

Hydrogen Fuel
cell

500–3000 [4] 500+ [4] 800–10,000 [4],
�150–1500 [124]

500+ [4], �5–800 [124] <50 [4], <10 [26], 58.8
[199]

0.312 [198], developing
39 [200]

TES 80–120, 120–200, 200–
500 [4]

– 80–120, 80–200 [4],
150–250 [4]

10–30 [4] 0.1–300 [4], 15 [165], 10
[201]

–

Liquid air
Storage

4–6 times than CAES at
200 bar [202]

– 214 [174] – 10–200 [8], 0.3 [168] 2.5 [168]
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EES technologies. For acquiring a certain amount of energy, the
higher the specific power and the specific energy are, the lighter
the weight of the EES system will be. The EES technologies suitable
for light weight applications can be found at the top right corner of
the figure. It can be seen that SMES capacitors and supercapacitors
have high specific power but low specific energy; because of their
fast response time (Table 11), they are more suitable for power
quality applications for electric power (current) delivery. Fuel cells
and TES have high specific energy with low specific power. Fly-
wheel, flow batteries and most conventional batteries are located
at the middle levels in terms of specific power and specific energy,
which may serve for different EES application domains. Li-ion bat-
teries are outstanding due to both high specific energy and specific
power, which offers a reasonable explanation to the current broad
range of development and applications for Li-ion batteries.

Fig. 16 shows a comparison of power ratings and rated energy
capacities of EES technologies. The nominal discharge time dura-
tion at the rated power is also shown within the range from sec-
onds to months. The data of practical EES facilities/plants in
Section 2 are marked in Fig. 16 to highlight the positions of their
characteristics. This figure indicates the general application areas
of current EES systems and also provides a guiding range for poten-
tial future applications. From Table 12 and Fig. 16, EES technologies
can be categorized by the nominal discharge time at rated power:
(1) discharge time less than 1 hour: flywheel, supercapacitor and
SMES; (2) discharge time up to around 10 hours: over ground
small-scale CAES, Lead–acid, Li-ion, NiCd, ZnBr and PSB; (3) dis-
charge time longer than 10 h: PHS, underground large-scale CAES,
liquid air energy storage, VRB, solar fuel, fuel cell and TES.
Cycle efficiency, also named the round-trip efficiency, is the
ratio of the whole system electricity output to the electricity input.
Derived from the data shown in Table 11, Fig. 17 shows the
comparison of cycle efficiencies of EES technologies. Most com-
mercialized (including early commercialized) techniques have
medium-to-high cycle efficiencies (above 60% from all cited refer-
ences), such as PHS, flywheels, conventional batteries, flow batter-
ies, capacitors, supercapacitors and SMES. CAES, TES, solar fuels
and fuel cells have low cycle efficiency (below 60%) reported in
some published literatures. In general, the efficiency has been con-
tinuously improved with time through dedicated research and
development efforts. For instance, the cycle efficiency for CAES
has increased from 42% (in 1978), �54% (in 1991) to the expected
70% (AA-CAES, announced by RWE power in 2011, ADELE project)
[38,39,42,43]. Table 11 lists the discharge efficiencies of EES tech-
nologies. Discharge efficiency represents the energy transmission
ability from the energy-storing phase to the energy-releasing
phase, which contributes to the overall cycle efficiency achieved.
For example, the compressed air UPS products from Flowbattery
have relatively high discharge efficiency (75–90%), which
improved the related cycle efficiency and became a key factor for
the company to launch the product successfully [51].

Self-discharge is related to energy dissipation, in the forms of
heat transfer losses in thermal storage, air leakage losses in com-
pressed air storage, electrochemical losses in batteries, etc. The
level of self-discharge of an EES system is one of the major factors
in deciding the associated suitable storage duration. From Tables
11 and 12, PHS, CAES, NaS batteries, flow batteries, fuel cells and
solar fuels have very small daily self-discharge ratios so it is



Table 11
Additional technical characteristics of electrical energy storage technologies.

Technology Daily self-discharge (%) Lifetime (years) Cycling times (cycles) Discharge
efficiency (%)

Cycle efficiency (%) Response time

PHS Very small [4,192] 40–60 [4], 40+[69],
30+[175]

10,000–30,000 [14] �87 [114] 70–85 [4], 70–80 [175] 87
[33], 75–85 [203]

Minutes [114], not rapid
discharge [203]

Large-scale
CAES

Small [4], Almost zero
[192]

20–40 [4], 30 [70],
20+[69,203]

8000–12,000 [14] �70–79 [114] 42,54 [4,42] AA-CAES 70
[43,203]

Minutes [114]

Over-ground
small CAES

Very small [51] 23+[51] Test 30,000stop/starts
[51]

�75–90 [51] – Seconds–minutes [114]

Flywheel 100 [4], P20% per hour
[57]

�15 [4], 15+[69], 20
[114]

20,000+ [4],
21,000+[69]

90–93 [114] �90–95 [4], 90 & 95 [70] <1 cycle [114], seconds
[203]

Lead–acid 0.1–0.3 [4], <0.1 [57],
0.2 [69]

5–15 [4,57], 13 [69] 500–1000 [4], 200–
1800 [13]

85 [114] 70–80[4], 63–90 [14], 75–
80 [204]

<1/4 cycle [114] milli-
seconds

Li-ion 0.1–0.3 [4], 1 & 5 [13] 5– 15 [4], 14–16
[205]

1000–10,000 [4], up to
20,000 [9]

85 [114] �90–97 [4], 75–90 [73] Milliseconds, <1/4 cycle
[14]

NaS Almost zero [13,185] 10–15 [4], 15 [69],
12–20 [192]

2500 [4], 3000[206]
2500–4500 [14]

85 [114] �75–90 [4], 75 [206], 75–
85 [204]

–

NiCd 0.2–0.6 [4],0.3 [57],
0.03–0.6 [14]

10–20 [4], 3–20
[13], 15–20 [57]

2000–2500 [4], 3500
[179]

85 [114] �60–70 [4], 60–83 [14] Milliseconds, <1/4 cycle
[14]

VRB Small [4], very low [13] 5–10 [4], 20 [193] 12,000+ [4], 13,342
[69]

�75–82 [207] 75–85 [4,62], 65–75 [73] <1/4 cycle [14]

ZnBr Small [4,100] 5–10 [4], 10 [69], 8–
10 [205]

2000+ [4], 1500 [69] �60–70 [208] �65–75 [4], 66–80 [14], 66
[114]

<1/4cycle [114]

PSB Small [4] Almost zero
[193]

10–15 [4], 15 [209] – – �60–75 [4], 60–75 [209] 20 ms [116]

Capacitor 40 [4], �50 in about 15
minutes [122]

�5 [4], �1–10 [122] 50,000+ [4], 5000
(100% DoD) [210]

�75–90 [127] �60–70 [4], 70+[210] Milliseconds, <1/4 cycle
[14]

Super-
capacitor

20–40 [4], 5 [10], 10–
20 [211]

10–30 [4], 10–12
[66]

100,000+ [4],
50,000+[69]

95 [114] Up to
�98 [127]

�90–97 [4], 84–95 [66] Milliseconds, 1=4 cycle
[114]

SMES 10–15 [4] 20+[4], 30 [114] 100,000+4], 20,000+
[14]

95 [114] �95–97 [4], 95–98 [66], 95
[70]

Milliseconds, <1/4 cycle
[114]

Solar fuel Almost zero [4] – – – �20–30 [4], planned
eff.>54 [197]

–

Hydrogen Fuel
cell

Almost zero [4,192] 5–15 [4], 20 [119]
20+[212]

1000+ [4],
20,000+[212]

59 [114] �20–50 [4], 32 [106], 45–
66 [213]

Seconds, <1/4 cycle [114]

TES 0.05–1 [4] 10–20 [4], 5–15[4],
30 [203]

– – �30–60 [4] Not for rapid response
[203]

Liquid air
Storage

Small [169,214] 25+[214] – – 55–80+[214] Minutes [215]
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technically possible for the energy to be stored in long-term dura-
tions (up to months); most conventional batteries (except NaS bat-
teries) have daily self-discharge ratios, from 0.03% to 5%, which can
be used for medium-term storage durations (up to days); SMES,
flywheel, capacitors and supercapacitors have very high daily
self-charge ratios, from 10% to 100%, that is, they could completely
release their stored energy after a few hours or even shorter.
Hence, they can only be utilized for short-term storage durations
(up to hours). TES encompasses a variety of technologies and thus
it may be suitable for medium-term and/or long-term storage
durations.

Lifetime and cycling times are two factors which affect the
overall investment cost. Low lifetime and low cycling times will
increase the cost of maintenance and replacement. Table 11 shows
the comparison of lifetime and cycling times of different EES tech-
nologies discussed in the paper. It can be seen that these two indi-
ces more or less associate with the EES technology’s category – in
the form of the type of energy stored in the system. Mechanical
energy storage systems, including PHS, CAES and flywheels, nor-
mally have high cycling times (around 10,000 or more) which
mainly depend on their mechanical components. The cycle times
for EES with energy stored in electrical energy, such as SMES,
capacitors and supercapacitors, are normally higher than 20,000.
From Table 11, it can be seen that the cycle abilities of conven-
tional batteries are not as high as other EES systems mainly due
to chemical deterioration with the accumulated operating time.

The maturities of EES technologies are linked to the level of
commercialization, the technical risk and the related economic
benefits. Table 12 compares the levels of technical maturity of
the EES technologies reviewed in the paper. The technology
maturity level for utility EES applications can be classified into five
categories: (1) Developing (AA-CAES, PSB and solar fuel); (2) Dem-
onstration (liquid air storage, Li-ion, VRB, ZnBr, supercapacitor,
SMES, fuel cell and TES); (3) Early Commercialized (over-ground
small CAES and flywheel); (4) Commercialized (conventional CAES,
NaS, NiCd and capacitor); (5) Mature (PHS & Lead–acid). It can be
seen that several technologies are undergoing breakthroughs from
one category evolving to another (Table 12). The technologies in
the developing stage are technically possible and have great poten-
tial for future EES projects.

Table 12 lists the EES cost in terms of energy capacity and the
cost for Operating and Maintenance (O&M). Fig. 18 presents the
comparison of energy capital cost and annual O&M cost. A com-
plete economic analysis of EES technologies needs to consider
not only the capital cost but also the O&M cost and the impact of
the equipment lifetime. For instance, although the energy capital
cost of lead–acid battery is relatively low, it may not be the best
option for large-scale EES applications due to its relatively high
O&M cost and short lifetime. The cost of EES is tending to decreases
with the continuous effort in research and development, and some
key technology breakthroughs can lead to dramatic changes in
cost. From Fig. 18, among the mature and commercialized tech-
niques, PHS and CAES have lowest energy capital costs compared
to all other technologies; NaS, VRB and Lead–acid battery have rel-
atively high O&M cost. As shown in Table 12, TES is in the low
range in terms of energy capital cost; SMES and flywheel are suit-
able for high power and small-scale applications as they are cheap
in terms of the power capital cost but expensive in terms of the



Table 12
Other technical and economical characteristics of electrical energy storage technologies.

Technology Suitable storage
duration

Discharge time at
power rating

Power capital cost ($/
kW)

Energy capital cost
($/kW h)

Operating and
maintenance cost

Maturity

PHS Hours–months [4],
long-term [27]

1–24 h+[4], 6–10 h [73]
10 h [175]

2500–4300 [73],
2000–4000 [175]

5–100 [4], 10–12
[114]

0.004 $/kW h [70],
�3 $/kW/year [72]

Mature

Large-scale
CAES

Hours–months [4],
long-term [27]

1–24 h+ [4], 8–20 h
[73]

400–800 [4], 800–
1000 [175]

2–50 [4], 2–120 [8], 2
[70]

0.003 $/kW h [70],
19–25 $/kW/year [72]

CAES commercialized,
AA-CAES developing

Over-ground
small
CAES

Hours–months, long-
term [27]

30 s–40 min [51], 3 h
[216]

517 [114], 1300–
1550 [216]

1MVA from £296 k
[51], 200–250 [216]

Very low [51] Early commercialized

Flywheel Seconds–minutes [4]
short-term(<1 h)[27]

Up to 8 s [4], 15 s–
15 min [175]

250–350 [4] 1000–5000 [4],
1000–14,000 [8]

�0.004 $/kW h[70],
�20 $/kW/year [72]

Early commercialized

Lead–acid Minutes–days [4],
short-to-med. term

Seconds–hours [4], up
to 10 h [14]

300–600 [4], 200–
300 [114], 400 [206]

200–400 [4], 50–100
[57], 330 [206]

�50 $/kW/year [72] Mature

Li-ion Minutes–days [4],
short-to-med. term

Minutes–hours [4],
�1–8 h [209]

1200–4000[4], 900–
1300[57], 1590[73]

600–2500 [4], 2770–
3800 [73]

– Demonstration

NaS Long term[82] Seconds–hours [4],
�1 h [209]

1000–3000 [4], 350–
3000 [8]

300–500 [4], 350
[206], 450 [217]

�80 $/kW/year [72] Commercialized

NiCd Minutes–days [4],
Short and long term

Seconds–hours [4], �1–
8 h [209]

500–1500 [4] 800–1500 [4], 400–
2400 [57]

�20 $/kW/year [72] Commercialized

VRB Hours–months [4],
Long term [27]

Seconds–24 h+ [4], 2–
12 h [106]

600–1500 [4] 150–1000 [4], 600
[217]

�70 $/kW/year [72] Demo/early
commercialized

ZnBr Hours–months [4] long
term [27]

Seconds–10 h+ [4],
�10 h [209]

700–2500 [4], 400
[87], 200 [114]

150–1000 [4], 500
[71]

– Demonstration

PSB Hours–months [4] long
term [27]

Seconds–10 h+ [4],
�10 h [209]

700–2500 [4] 150–1000 [4], 450
[217]

– Developing

Capacitor Seconds–hours [4],
�5 h [210]

Milliseconds–1 h [4] 200–400 [4], 500–1000 [4], 13 $/kW/year [72],
<0.05 $/kW h [210]

Commercialized

Super-
capacitor

Seconds–hours [4]
short-term(<1 h)[27]

Milliseconds–1 h [4],
1 min[209], 10 s[216]

100–300 [4], 250–
450 [216]

300–2000 [4] 0.005 $/kW h [70],
�6 $/kW-year [114]

Developing/demo.

SMES Minutes–hours [4]
short-term (<1 h)[27]

Milliseconds–8 s [4], up
to 30 min [209]

200–300 [4], 300
[114], 380–489[216]

1000–10,000 [4],
500–72,000 [114]

0.001 $/kW h [70],
18.5 $/kW/year [72]

Demo/early
commercialized

Solar fuel Hours–months [4] 1–24 h+ [4] – – – Developing
Hydrogen

Fuel cell
Hours–months [4] Seconds–24 h+ [4] 500 [114], 1500–

3000 [154]
15 [114], 2–15€/kW h
[204]

0.0019–0.0153 $/kW
[154]

Developing/demo.

TES Minutes–days [4],
minutes–months [4]

1–8 h [4], 1–24 h+ [4],
4–13 h [203]

200–300[4], 250
[203], 100–400[203]

20–50 [4], 30–60 [4],
3–30 [4]

– Demo/early
commercialized

Liquid air
Storage

Long-term [214] Several hours [168,214] 900–1900 [214] 260–530 [214] – Developing/demo.

Fig. 14. Comparison of energy density and power density.
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energy capital cost. It should be noted that the capital cost of a spe-
cific EES system varies in terms of the timescale of EES construc-
tion, the location of the plant/facility and the size of the system.
The economic analyses of different EES technologies in various
application scenarios are attracting attention due to their great
application prospects, which can be found in [40,171,218–220].
5. Analysis and recommendations of EES technologies for
various applications

The application outlooks and potentials of EES in power system
operations have been widely reported in recent years
[6,13,14,26,114,123]. Table 13 summarizes the current and



Fig. 15. Comparison of specific energy and specific power.

Fig. 16. Comparison of power rating and rated energy capacity with discharge time duration at power rating. The marked data of EES facilities from the cited references in
Section 2 of the paper).
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promising EES options for various applications with corresponding
specifications. The applications of EES technologies cover a wide
range including the maintenance of power quality, power system
protections and energy management.

The EES technologies used for maintaining power quality will
need to have very fast response time (at the millisecond level). Fly-
wheels, conventional batteries, SMES, capacitors and supercapaci-
tors are well suited for this service. Some flow batteries, such as
VRB and PSB, are also technically suitable for this service. For stud-
ies of EES systems for power quality applications refer to
[63,80,129,221,222]. The papers [129,221] present the power qual-
ity enhancement of renewable energy source power (wind and
photovoltaic power generation systems) by using supercapacitors
and SMES respectively. In [231], the applications of VRB systems
to maintain power quality have been studied. One example from
the study is the Sumitomo Electric Industries (SEI) VRB facility
(rated power 170 kW) which works in combination with a wind
turbine (275 kW) for stabilization of wind turbine output fluctua-
tions; the system demonstrated good performance [222].

When EES is adopted for bridging power, they are required to
have moderate power rating (100 kW–10 MW) and response time
(up to around 1 s), in order to provide the continuity of power sup-
ply at energy gap periods (up to several hours), such as the time
interval for switching the system from one source of power gener-
ation to another. Conventional batteries and flow batteries are suit-
able for this application. Flywheels, supercapacitors and fuel cells
are also reported for such types of applications [60,126,223]. Piller
Power Systems Ltd. has practical experiences in using flywheels as
ride-through power sources [60]. The article [223] presents a
decoupled P–Q control strategy of a supercapacitor energy storage



Fig. 17. Comparison of cycle efficiencies of EES technologies.

Fig. 18. Comparison of energy capital cost and annual operating & maintenance cost.

X. Luo et al. / Applied Energy 137 (2015) 511–536 529
system for low voltage ride-through as well as damping enhance-
ment of the doubly fed induction generator system. The fault ride-
through capability of the generator has been investigated for a
severe symmetrical three-phase to ground fault on the grid bus.

EES plays an important role in energy management for optimiz-
ing energy uses and decoupling the timing of generation and con-
sumption of electric energy. Time shifting and peak shaving are
typical applications in energy management. Energy management
application can be further classified based on the application
power rating: large-scale (above 100 MW) and medium/small-
scale (�1–100 MW). PHS, large-scale CAES and TES can be used
for large-scale energy management. Flow batteries, large-scale
conventional batteries, fuel cells and solar fuels are more suitable
for small/medium-scale energy management. Practical examples
are described in [34,39,88,170]. For instance, both the Huntorf
and the McIntosh large-scale CAES plants provide the functions
of energy management.

Table 13 also summarizes an overview of EES options for more
specific applications with their specifications. A brief explanation
of most of these applications is given below:

� Integration of renewable power generation: The inherent inter-
mittent renewable generation can be backed up, stabilized or
smoothed through integration with EES facilities. The recent
research, development and demonstrations in this area are
described in [76,108,157,173].
� Emergency and telecommunications back-up power: In the case

of power failure, EES systems can be operated as an emergency
power supply to provide adequate power to important users
including telecommunication systems until the main supply is
restored, or to ensure the system enabling orderly shutdown.
For emergency back-up power, instant-to-medium response
time and relatively long duration of discharge time are required.
The suitable EES technologies for this application are given in
Table 13, and relevant reports and studies can be found in
[227–229]. For example, one of the world’s first utility (hybrid)
CAES back-up systems was recently installed at a Co-op Bank
data center to provide an emergency supply of electricity
[227]. For telecommunications back-up, the instant response
time is essential. Several technologies are suited to this
application (see Table 13) and related publications include
[114,230,231].
� Ramping and load following: EES facilities can provide support

in following load changes to electricity demand. The relevant
research and demonstration projects can be found in
[77,232,233]. One EES trial project, named Irvine Smart Grid
Demonstration, using advanced batteries (25 kW) in California
offers services in load following and voltage support [77]. A
flexible load following operation mode for operating a NaS bat-
tery EES system with its control method has been studied in
[233].
� Time shifting: Time shifting can be achieved by storing electri-

cal energy when it is less expensive and then using or selling
the stored energy during peak demand periods. EES technolo-
gies are required to provide power ratings in the range of
around 1-100 MW. PHS, CAES and conventional batteries have
experience in this service; flow batteries, solar fuels and TES
have demonstration plants or are potentially available for this
application. Some associated discussions can be found in
[234–236].



Table 13
Overview of current and potential electrical energy storage options for various applications with their specifications.

Application area Application characteristics & specifications (refer to [6,10–
16,26,114,123,209,224])

Experienced and promising EES technology
options

Related references

Power quality � < 1 MW, response time (�milliseconds, <1/4 cycle),
discharge duration (milliseconds to seconds)

Experienced: flywheels, batteries, SMES,
capacitors, supercapacitors. Promising: flow
batteries

[26,80,129,221,222]

Ride-through capability
(bridging power)

�100 kW–10 MW, response time (up to �1 s), discharge
duration (seconds to minutes and even hours)

Experienced: batteries and flow batteries;
Promising: fuel cells, flywheels and
supercapacitors

[4,60,87,126,223]

Energy management Large (>100 MW), medium/small (�1–100 MW), response time
(minutes), discharge duration (hours–days)

Experienced: Large (PHS, CAES, TES); small
(batteries, flow batteries, TES) Promising:
flywheels, fuel cells

[34,39,56,88,170]

More specific applications
Integration renewable

smoothing
intermittent

Up to �20 MW, response time (normally up to 1 s, <1 cycle),
discharge duration (minutes to hours)

Experienced: flywheels, batteries and
supercapacitors; Promising: flow batteries, SMES
and fuel cells

[56,157,173,217,226]

Integration renewable
for back-up

�100 kW–40 MW, response time (seconds to minutes),
discharge duration (up to days)

Experienced: batteries and flow batteries;
Promising: PHS, CAES, solar fuels, and fuel cells

[13,26,40,76,108]

Emergency back-up
power

Up to �1 MW, response time (milliseconds to minutes),
discharge duration (up to �24 h)

Experienced: batteries, flywheels, flow batteries;
Promising: small-scale CAES and fuel cells

[13,227,228,229]

Telecommunications
back-up

Up to a few of kW, response time (milliseconds), discharge
duration (minutes to hours)

Experienced: batteries; Promising: fuel cells,
supercapacitors and flywheels

[114,228,230,231]

Ramping and load
following

MW level (up to hundreds of MW), response time (up to �1
second), duration (minutes to a few hours)

Experienced: batteries, flow batteries and SMES;
Promising: fuel cells

[13,88,232,233]

Time shifting �1–100 MW and even more, response time (minutes),
discharge duration (�3–12 h)

Experienced: PHS, CAES and batteries; Promising:
flow batteries, solar fuels, fuel cells and TES

[26,234,235,236]

Peak shaving �100 kW–100 MW and even more, response time (minutes),
discharge duration (hour level, � < 10 h)

Experienced: PHS, CAES and batteries; Promising:
flow batteries, solar fuels, fuel cells and TES

[114,237,238]

Load levelling MW level (up to several hundreds of MW), response time
(minutes), discharge duration (�12 h and even more)

Experienced: PHS, CAES and batteries; Promising:
flow batteries, fuel cells and TES

[38,159,218,239]

Seasonal energy storage Energy management, 30–500 MW, quite long term
storagedischarge duration (up to weeks), response time
(minutes)

Promising: PHS, TES and fuel cells; Possible:
large-scale CAES and solar fuels

[26,240,241,242]

Low voltage ride-
through

Normally lower than 10 MW, response time (�milliseconds),
discharge duration (up to minutes)

Experienced: Flywheels, batteries; Promising:
flow batteries, SMES and supercapacitors

[13,129,244]

Transmission and
distribution stab.

Up to 100 MW, response time (�milliseconds, <1/4 cycle),
discharge duration (milliseconds to seconds)

Experienced: batteries and SMES; Promising:
flow batteries, flywheels and supercapacitors

[26,114,224,245,246]

Black-start Up to �40 MW, response time (�minutes), discharge duration
(seconds to hours)

Experienced: small-scale CAES, batteries, flow
batteries; Promising: fuel cells and TES

[15,39,87]

Voltage regulation and
control

Up to a few of MW, response time (milliseconds), discharge
duration (up to minutes)

Experienced: batteries and flow batteries;
Promising: SMES, flywheels and supercapacitors

[247,248,249]

Grid/network
fluctuation
suppression

Up to MW level, response time (milliseconds), duration (up to
�minutes)

Experienced: batteries, flywheels, flow batteries,
SMES, capacitors and supercapacitors,

[114,137,225,250]

Spinning reserve Up to MW level, response time (up to a few seconds), discharge
duration (30 minutes to a few hours)

Experienced: batteries; Promising: small-scale
CAES, flywheels, flow batteries, SMES and fuel
cells

[251,252,254,255]

Transportation
applications

Up to �50 kW, response time (milliseconds–seconds),
discharge duration (seconds to hours)

Experienced: batteries, fuel cells and
supercapacitors; Promising: flywheels, liquid air
storage and solar fuels

[256,257,258,259]

End-user electricity
service reliability

� up to 1 MW, response time (milliseconds, <1/4 cycle),
storage time at rated capacity (0.08–5 hours)

Experienced: batteries; Promising: flow batteries,
flywheels, SMES and supercapacitors

[6,13,114,170]

Motor starting Up to �1 MW, response time (milliseconds–seconds),
discharge duration (seconds to minutes)

Experienced: batteries and supercapacitors;
Promising: flywheels, SMES, flow batteries and
fuel cells

[51,114,198]

Uninterruptible power
supply

Up to �5 MW, response time (normally up to seconds),
discharge duration (�10 min to 2 h)

Experienced: Flywheels, supercapacitors,
batteries; Promising: SMES, small CAES, fuel cells,
flow batteries

[57,262,263,264]

Transmission upgrade
deferral

�10–100 + MW, response time (�minutes), storage time at
rated capacity (1–6 h)

Experienced: PHS and batteries; Promising: CAES,
flow batteries, TES and fuel cells

[4,101,220]

Standing reserve Around 1–100 MW, response time (<10 min), storage time at
rated capacity (�1–5 h)

Experienced: batteries; Promising: CAES, flow
batteries, PHS and fuel cells

[6,265,266]

530 X. Luo et al. / Applied Energy 137 (2015) 511–536
� Peak shaving and load levelling: Peak shaving means using
energy stored at off-peak periods to compensate electrical
power generation during periods of maximum power demand.
This function of EES can provide economic benefits by mitigat-
ing the need to use expensive peak electricity generation.
� Load levelling is a method of balancing the large fluctuations

associated with electricity demand. Conventional batteries
and flow batteries in peak shaving applications, as well as in
load following and time shifting, need a reduction in overall
cost and an increase in the cycling times to enhance their
competitiveness. Economic and technical studies and related
demonstrations of these two applications are shown in
[159,218,237–239,243]. For instance, an optimization model
of the weekly economic operation of isolated systems was
developed and then applied to two Spanish isolated power sys-
tems in the Canary Islands [237].
� Seasonal energy storage: Storing energy in the time frame of

months, for community seasonal space heating and the energy
networks with large seasonal variation in power generation
and consumption. EES technologies which have a very large
energy capacity and almost zero self-discharge are required.
At present, there are no commercialized EES technologies for
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this application and storing fossil fuels is still a practical solu-
tion. PHS, hydrogen-based fuel cells, CAES, TES and solar fuels
have potential to serve this application. Some relevant research
and development is introduced in [26,240–242].
� Low voltage ride-through: It is crucial to some electrical

devices, especially to renewable generation systems. It is a
capability associated with voltage control operating through
the periods of external grid voltage dips. High power ability
and instant response are essential for this application. In order
to smooth the fast wind-induced power variations and to rein-
force the low voltage ride-through capability, the integration of
a supercapacitor EES device in a doubly fed induction generator
design was studied in [129]. A VRB-based EES system was sim-
ulated, to improve low voltage ride through capability and to
stabilize output power of direct-drive permanent magnet wind
power system [244].
� Transmission and distribution stabilization: EES systems can be

used to support the synchronous operation of components on a
power transmission line or a distribution unit to regulate power
quality, to reduce congestion and/or to ensure the system oper-
ating under normal working conditions. Instant response and
relatively large power capacity with grid demand are essential
for such applications. Studies in this area can be found in
[26,114,245,246].
� Black-start: EES can provide capability to a system for its start-

up from a shutdown condition without taking power from the
grid. A typical example is the Huntorf CAES plant that provides
black-start power to nuclear units located near to the North Sea
[39,42].
� Voltage regulation and control: Electric power systems react

dynamically to changes in active and reactive power, thus influ-
encing the magnitude and profile of the voltage in networks
[193]. With the functions of EES facilities, the control of voltage
dynamic behaviors can be improved. Several EES technologies
can be used or potentially used for voltage control solutions
(Table 13). A preliminary analysis of a pilot project for the
exploitation of EES devices for distribution network voltage reg-
ulation was given in [247]. The modeling and measurement of a
high-speed composite flywheel system to regulate a specific DC
voltage on a metro network has been studied in [248].
� Grid/network fluctuation suppression: Some power electronic,

information and communication systems in the grid/network
are highly sensitive to power related fluctuation. EES facilities
can provide the function to protect these systems, which
requires the capabilities of high ramp power rates and high
cycling times with fast response time. Some recent research
and development is given in [114,137,225,250].
� Spinning reserve: In the case of a fast increase in generation (or

a decrease in load) to result in a contingency, EES systems can
feature the function of spinning reserve. The EES units must
respond immediately and have the ability of maintaining the
outputs for up to a few hours. This function is described and
studied in [13,251–255].
� Transportation applications: Providing power to transportation,

such as HEVs and EVs. High energy density, small dimension,
light weight and fast response are necessary for implemented
EES units. The research and development of EES applications
on transportation can be found in [256–260]. For instance, a
hybrid powertrain using fuel cell, battery, and supercapacitor
technologies for the tramway was simulated based on commer-
cially available devices, and a predicative control strategy was
implemented for performance requirements [256].
� Uninterruptible Power Supply (UPS): EES systems can feature

the function of UPS to maintain electrical load power in the
event of the power interruption or to provide protection from
a power surge. A typical UPS device offers instantaneous (or
near to instantaneous) reaction, by supplying energy mostly
stored in batteries, flywheels or supercapacitors. Some research
papers regarding to UPS by using different EES technologies can
be found in [9,57,261–264].
� Standing reserve: In order to balance the supply and demand of

electricity on a certain timescale, EES facilities/plants can pro-
vide service as temporary extra generating units to the mid-
dle-to-large scale grid. Standing reserve can be used to deal
with actual demand being greater than forecast demand and/
or plant breakdowns. The descriptions related to this applica-
tion were introduced in [6,114,265,266].

6. Concluding remarks

This paper provides an overview of the current development of
various types of EES technologies, from the recent achievements in
both the academic research community and industrial sectors. A
comprehensive analysis is carried out based on the relevant tech-
nical and economic data, which leads to a number of tables and fig-
ures showing a detailed comparison of various EES technologies
from different perspectives. Further discussion on EES power sys-
tem application potentials is given based on the current character-
istics of EES and the relevant application specifications. The
overview has shown a synthesis of the state-of-the-art in impor-
tant EES technologies, which can be used for supporting further
research and development in this area and for assessing EES tech-
nologies for deployment.

The review identified that PHS plants have been deployed
worldwide, mainly due to its technological maturity. Since PHS
has relatively low power/energy densities it is mainly used in sta-
tionary large-scale EES. The Li-ion battery has relatively high
power/energy densities and specific power/energy, which has
resulted in the current broad range of development, particularly
in small-scale EES applications. The cycle efficiencies of EES tech-
nologies have been continuously improved with time through
development efforts leading to technology breakthroughs, and
most commercialized techniques normally have medium-to-high
cycle efficiencies. The energy capacity and the self-discharge of
EES systems are the major factors in deciding the associated suit-
able storage duration. From the overview, it is clear that there is
no suitable commercialized technology for seasonal energy storage
at present. Several EES technologies, such as PHS, fuel cells and TES,
have the potential to be applied in this area. On the whole, the var-
ious applications with different network sizes will have different
decision-making factors to consider when choosing suitable EES
options for deployment. For the national regulator, the level of
technological maturity, reliability and potential environmental
impacts (such as the toxic chemical materials used in batteries
described in Section 3) may be considered as the main decision-
making factors and the cost-effectiveness may not be particularly
important; for the end-user customers or local (private) networks,
in addition to the above factors, the investment cost and the eco-
nomic gain will also be dominant factors.

From this overview, it can be seen that the current technologies
have wide ranging technological characteristics. With a suitable
combination of different technologies, EES can meet most technical
requirements for different power system and network operations.
However, apart from PHS, most EES technologies are not cost-
effective or mature enough for widespread implementation within
the current large network operation regulation and energy market
frame. On the other hand, the benefits brought to power system
operation by utilizing EES technologies need further exploration.
The capital and the maintenance cost of an EES system varies with
the timescale of construction, the location of the facility, the size of
the system, the material chosen for storing energy (such as PCMs in
TES) and many other factors. Although a number of demonstration
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projects or EES trial stations were completed, the corresponding
detailed techno-economic analysis, which can enhance the
relevant database to practical EES experience, is still not sufficient.
The widespread deployment of EES will depend on advances in
relevant technologies, but it also relies on progress in further
quantification and analysis of the benefits brought by EES.
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