INFORME FINAL Instituto de Ingeniería Coordinación de Hidráulica

RÍO	DOVELA GPS	ETIQUETA	PESO (g)	VOLUMEN (ml)	DENSIDAD p		Dae	Dis	Dee	D50	Dee	Des	Dee	Gu	6
		286	468.43	270	1.73		0.286	0.330	0.458	0.695	0.830	1.416	1 901	3.00073454	0.0000000
	C12	287	177.3	103	1.72		0.374	0.512	0.717	1.012	1,205	2.020	2 306	2.89872196	0.8812861
	1000	289	784.45	470	1.67		0.307	0.361	0.527	0.771	0.914	1 600	1.070	2.02406065	1.1406850
					1.71	PROMEDIO	0.322	0.401	0.567	0.826	0.983	1.679	2.046	3.04939611	0.9889829
		302	560.48	320	1.75		0.358	0.443	0.696	1.212	1.567	3.219	4.070	4 37307057	0.9639161
	C13	303	603.68	350	1.72		0.422	0.554	0.710	0.952	1.103	1.966	2.307	2.61431742	1 09396701
		304	764.98	460	1.66		0.337	0.392	0.560	0.783	0.918	1.578	1.973	2 72405047	1.0134418
	_			-	1.71	PROMEDIO	0.372	0.463	0.655	0.983	1.196	2.254	2.783	3.2117442	0.9647662
		308	1371.92	890	1.54		0.347	0.404	0.578	0.802	0.941	1.629	1.997	2.71439612	1.0262709
	1000	309	310.39	195	1.59		0.462	0.618	0.851	1.326	1.628	2.939	3.705	3.5265793	0.9634521
	C14	310	13.92	9	1.55		0.290	0.320	0.404	0.562	0.698	1.313	1.898	2.40762136	0.8051190
		311	163.1	98	1.66		0.295	0.328	0.420	0.600	0.740	1.270	1.731	2.50986411	0.8092043
					1.59	PROMEDIO	0.348	0.418	0.563	0.823	1.002	1.788	2.333	2.87642134	0.9096320
		321	2551.11	1620	1.57		0.316	0.360	0.489	0.719	0.856	1.468	1.878	2.70845239	0.88223416
		326	2551.59	1600	1.59		0.318	0.364	0.500	0.736	0.875	1.512	1.898	2.75484419	0.89954577
	C15	327	1274.28	800	1.59		0.314	0.356	0.477	0.703	0.841	1.457	1.894	2.68190445	0.86091844
		328	1614.85	1000	1.61		0.310	0.352	0.475	0.714	0.866	1.607	2.042	2.7936288	0.84121475
	-				1.59	PROMEDIO	0.314	0.358	0.485	0.718	0.860	1.511	1.928	2.73455122	0.87095107
	1000	329	49.52	30	1.65		0.179	0.200	0.261	0.364	0.428	0.689	0.857	2.38980985	0.88454054
	C16	342	1601.83	1000	1.60		0.318	0.368	0.517	0.779	0.943	1.781	2.187	2.9689917	0.89251439
	and the second				1.63	PROMEDIO	0.248	0.284	0.389	0.571	0.685	1.235	1.522	2.76005309	0.88749637
	PRON	AEDIO POR SE	CCION CARRI	ZAL 1	1.64		0.327	0.391	0.540	0.796	0.960	1.717	2.161	2.93484676	0.92917813
		346	103.46	68	1.52		0.191	0.222	0.300	0.404	0.468	0.826	1.052	2 4484894	1.00604604
		348	312.71	300	1.04		0.201	0.241	0.322	0.440	0.515	0.881	1.030	2 5586611	1.00110636
	CA17	349	63.06	39	1.62		0.249	0.309	0.448	0.687	0.805	1,178	1.560	3,22959459	0.99956100
220		350	13.05	8	1.63		0.172	0.188	0.230	0.320	0.394	0.741	0.996	2 29097465	0 7784485
AP		351	293.23	180	1.63		0.222	0.280	0.342	0.455	0.525	0.876	1.017	2 37151995	1.00585322
•					1.49	PROMEDIO	0.207	0.248	0.328	0.461	0.541	0.901	1.131	2.61538175	0.96152593
	CA18		S/M												
	CA19	-	S/M												
	PRON	EDIO POR SEC	CCION CARRIE	ZAL 2	1.49		0.207	0.248	0.328	0,461	0.541	0.901	1.131	2 61539176	0.00103603
		356	1592.1	995	1.60		0.384	0.480	0.676	0.934	1.097	1 980	2 325	2 85902899	1.08557441
	C20	355	123.47	70	1.76		0.492	0.641	0.902	1 392	1.668	2.852	3.662	3 39274956	0.99357162
	GRO	357	80.65	47	1.72		0.398	0.544	0.742	1.074	1.309	2 192	2 732	3 28200874	1.05719715
					1.69	PROMEDIO	0.425	0.555	0.774	1.133	1.358	2 341	2 906	3 19883797	1.03718715
		361	1597.96	985	1.62		0.389	0.491	0.708	1.049	1.324	2.825	3.615	3 4043674	0.97502406
	C21	362	576.2	349	1.65		0.382	0.471	0.686	1.023	1.266	2,333	3.153	3.31420066	0.9749908
	~	363	1258.21	790	1.59		0.333	0.381	0.524	0.768	0.919	1.688	2 101	2 76022235	0.99559036
	-	E			1.62	PROMEDIO	0.368	0.448	0.639	0.947	1.170	2,282	2.957	3.17899411	0.95042439
		367	2312.28	1450	1.59		0.344	0.409	0.603	0.821	0.959	1.677	2.059	2,78600057	1 1004994
	C22	368	249.78	150	1.67		0.318	0.371	0.529	0.805	0.983	1.876	2.269	3.08575584	0.89280635
	ULL I	370	458.74	270	1.70		0.324	0.374	0.524	0.759	0.897	1.531	1.896	2.7709027	0.94500681
					1.65	PROMEDIO	0.329	0.385	0.552	0.795	0.946	1.695	2.074	2.87782543	0.97837905
		374	172.1	110	1.56		0.276	0.297	0.350	0.443	0.498	0.796	0.958	1.80393818	0.88870101
	C23	375	326.17	200	1.63		0.237	0.288	0.348	0.454	0.519	0.889	1.053	2.19086217	0.98275704
		376	41.35	25	1.65		0.225	0.282	0.337	0.436	0.496	0.806	0.962	2 21010041	1.02023746
					1.62		0.246	0.289	0.345	0.445	0.505	0.830	0.991	2.05186225	0.95858049
		380	181.92	130	1.40		0.176	0.195	0.248	0.333	0.381	0.526	0.570	2 15935826	0.91559065
	C25	381	375.82	245	1.53		0.201	0.241	0.311	0.393	0.442	0.586	0.764	2.20271466	1.08901682
	U.L.	382	209	140	1.49		0.169	0.183	0.220	0.288	0.340	0.509	0.563	2.01165128	0.8398882
					1.48		0.182	0.206	0.259	0.338	0.388	0.540	0.632	2.12950525	0.95434166
_	PROM	EDIO POR SEC	CION CARRIZ	ALL	1.61		0.110	0 377	0.514	0.732	0.972	4 7 74		-	

Tabla 12.3.3. Análisis granulométrico río Carrizal

RÍO	DOVELA	ETIQUETA	PESO (g)	VOLUMEN	DENSIDAD	P	Die	Das	Dao	050	Dea	Des	0		
_	Gra	384	396.44	(ml) 240	(g/mi)	5	0.377	0.481	0.00	030	000	Link	Dee	Cu	Cc
		385	397.99	245	1.6	2	0.346	0.425	0.00	0.95	1 112	2 2.100	2.710	2.97705949	1.1054234
	5120	386	24.57	15	1.6	4	0.226	0.244	0.293	0.37	7 0.42	0.583	2.11	2.82929941	1.15801437
					1.6	4 PROMEDIO	0.316	0.383	0.53	0.72	4 0.84	1 467	1.19	1.892/3418	0.88020146
		389	591.01	350	1.6	9	0.307	0.349	0.472	0.74	4 0.94	7 2.185	3,129	3 08543082	0.26506751
	1	391	91.74	58	1.5	8	0.235	0.287	0.343	0.44	3 0.50	0.875	1.071	2.14710458	0.99640687
	SI27	392	2.59	1.6	1.6	2	0.175	0.193	0.243	0.33	8 0.39	0.598	0.802	2.28348044	0.84777484
		395	196,84	130	1.5	1	0.302	0.343	0.461	0.70	6 0.87	1.756	2.221	2.90154021	0.8010163
	1	396	8.62	5	1.7.	2	0.196	0.240	0.325	0.44	7 0.52	3 1.051	1.428	2.67342202	1.03080965
		300	242.6		1.6	3 PROMEDIO	0.243	0.282	0.369	0.53	6 0.650	1.293	1.729	2.67654354	0.86150723
	17.0	300	16.20	145	1.0		0.203	0.245	0.367	0.66	5 0.990	3.032	4.328	4.8655588	0.67015384
		400	14.39	8	1.0.		0.244	0.265	0.321	0.42	3 0.485	0.838	1.037	1.99267448	0.87118961
	SI28	403	173.97	100	1.0	1	0.382	0.200	0.2/9	0.37	0 0.425	0.659	0.856	2.35263514	0.95688971
	1	404	773.45	470	1.65		0.223	0.343	0.498	0.82	1.05	2.297	3.312	3.58568663	0.79754586
					1.73	PROMEDIO	0.229	0.262	0.368	0.58	0.71/	2.041	3.318	2.63331583	1.11175551
		406	10.38	6.5	1.60)	0.174	0.193	0.245	0.32	5 0 370	0.500	0.520	3.09315106	0.8334773
	SI 29	407	27,47	19	1.45	5	0.171	0.186	0.226	0.29	B 0 343	0.479	0.539	2.00466767	0.93255018
					1.52	PROMEDIO	0.173	0.190	0.236	0.31	2 0.356	0.489	0.530	2.06313457	0.90161833
		409	65.45	45	1.45	5	0.177	0.196	0.250	0.32	B 0.370	0.494	0.530	2.09261025	0.95153661
	51 30	410	0.8	0.5	1.60		0.161	0,170	0.194	0.23	0.255	0.402	0.470	1.57805501	0.91279977
		411	3.71	2.2	1.69		0.177	0.192	0.232	0.30	0.349	0.484	0.525	1.97210038	0.87299986
				100000	1.58	PROMEDIO	0.172	0.186	0.225	0.28	0.325	0.460	0.508	1.89002412	0.90939789
	PRON	AEDIO POR SE	CCION SAMA	INIA 1	1.54		0.232	0.269	0.358	0.512	0.612	1.227	1.650	2.54044094	0.90194041
		412	154.16	85	1.81		0.206	0.252	0.323	0.424	0.486	0.855	1.075	2.35382281	1.04320981
	SI 31	414	336.65	215	1.57		0.222	0.280	0.334	0.428	0.485	0.796	0.987	2.18380452	1.03242259
		410	113.48	70	1.62	manage and and	0.250	0.270	0.323	0.417	0.474	0.802	1.046	1.89479613	0.88000968
		419	1946 00	1200	1.67	PROMEDIO	0.226	0.267	0.327	0.423	0.482	0.818	1.036	2.12894349	0.97932937
		420	2176.61	1390	1.62		0.338	0.392	0.554	0.811	0.972	2.023	2.818	2.88006178	0.93593866
	SI 32	421	1799.11	1100	1.54		0.312	0.357	0.489	0.763	0.951	2.022	2.762	3.0481217	0.80681329
	a service a	425	1907.25	1165	1.64		0.315	0.376	0.532	0.833	1.035	2.236	3.127	3.19890681	0.84320441
					1.62	PROMEDIO	0.322	0.375	0.535	0.809	1.070	2.319	3.270	3.39952044	0.95494472
		428	51.38	31	1.66		0.298	0.338	0.453	0.668	0.792	1,191	1 505	3.12/829/8	0.8843965
		427	675.42	345	1.96		0.213	0.264	0.340	0.467	0.548	0.920	1.056	2.57360334	0.99292351
	SI 33	429	746.0B	495	1.51		0.295	0.329	0.426	0.614	0.726	1.085	1.236	2.46584933	0.84939032
		432	51.7	32	1.62		0.285	0.314	0.394	0.544	0.648	1.017	1.138	2.27543975	0.83966968
		101			1.68	PROMEDIO	0.273	0.311	0.403	0.574	0.679	1.053	1.256	2.48945789	0.87929826
		434	317.84	200	1.59		0.300	0.330	0.414	0.571	0,700	1.166	1.536	2.33347196	0.81662243
	SI 34	435	81.72	53	1.54		0.291	0.319	0.394	0.534	0.626	0.943	1.045	2.15103928	0.85347523
		900	312.8	190	1.65		0.314	0.349	0.446	0.630	0,735	1.066	1.170	2.34324079	0.86428932
		440	13.14	9	1.64	PROMEDIO	0.302	0.333	0.418	0,578	0.687	1.058	1.250	2.27816625	0.84446822
		441	131.23	00	1 33		0.172	0.188	0.232	0.310	0.356	0.500	0.544	2.06816293	0.87319377
218	SI 35	442	162.32	115	1.41		0.178	0.199	0.915	0.387	0.898	0.505	1.1/1	2.374827	0.84133058
CANA D					1.46	PROMEDIO	0.215	0.238	0.301	0.411	0.379	0.503	0.342	2.12/25648	0.98071938
-	PROM	EDIO POR SE	CON SAMA	RIA 1	1.61		0.271	0.309	0.406	0.577	0.687	1.200	1.534	1 110 1004	0.00545124
		447	453.96	300	1.51		0.177	0.198	0.256	0.350	0.406	0.580	0.782	2.3352035	0.01140130
		448	26.61	18	1.48	-	0.164	0.173	0.198	0.240	0.263	0.380	0.481	1.60845364	0.91140135
		445	18.01	12	1.50		0.166	0.177	0.206	0.256	0.289	0.453	0.506	1.74201046	0.88436094
	SD 36	483	765.09	510	1.50		0.188	0.218	0.293	0.380	0.434	0.603	0.804	2.30116119	1.05001398
		484	804.09	570	1.41		0.202	0.243	0.321	0.431	0.500	0.877	1.055	2.47730333	1.02324444
		480	387.31	260	1.49		0.224	0.281	0.336	0.432	0.491	0.793	0.957	2.19225107	1.02741926
		A46	1775.08	1300	1.48	PROMEDIO	0.187	0.215	0.268	0.348	0.397	0.621	0.764	2.12563227	0.97072389
	I +	449	1091.45	730	1.98		0.216	0.271	0.330	0.424	0.481	0.778	0.966	2.22527272	1.04661689
		464	1237.35	820	1.51		0.204	0.215	0.289	0.370	0.419	0.565	0.688	2.24932616	1.06842628
	SD 37	485	6.48	4.5	1.44		0.174	0.191	0.238	0.405	0.458	0.662	0.873	2.24490466	1.07286756
		482	15.52	11	1.41		0.200	0.215	0.257	0.331	0.376	0.510	0.550	1 88437496	0.89303742
		481	17.55	12	1.46		0.108	0.122	0.162	0.241	0.294	0.476	0.537	2.71868377	0.81870658
					1.47	PROMEDIO	0.181	0.210	0.265	0.348	0.399	0.585	0.693	2.19851698	0.97316331
		452	594.76	400	1.49		0.178	0.198	0.256	0.337	0.382	0.515	0.556	2.14860624	0.96233067
	SD 38	450	261.86	170	1.54		0,181	0.204	0.270	0.348	0.393	0.525	0.565	2.16703572	1.02395608
	-	403	86.32	60	1.44	-	0.241	0.258	0.301	0.376	0.420	0.548	0.586	1.73964723	0.89517474
		457	00.0	40	1.49	PROMEDIO	0.200	0.220	0.276	0.354	0.398	0.530	0.569	1.98976645	0.95314929
		458	00.00	98	1.43		0.242	0.259	0.305	0.385	0.433	0.573	0.909	1.79285504	0.889797
	SD 39	459	1753.66	1120	1.92		0.296	0.232	0.303	0.378	0.423	0.553	0.605	2.15489603	1.10348648
		460	536.24	340	1.58		0.251	0.306	0.374	0.499	0.576	1.394	1.894	2.05493637	1.86584543
					1.50	PROMEDIO	0.243	0.274	0.372	0.844	0.509	0.001	1.395	2.40028587	0.9087895
		469	1930.52	1285	1.50		0.267	0.301	0.367	0.488	0.563	0.975	1 127	2.09992392	0.9275459
		470	172.21	115	1.50		0.271	0.294	0.354	0.462	0.527	0.973	1.095	1.94332245 /	1.89582772
	SD 40	471	2378.21	1700	1.40		0.235	0.288	0.353	0.471	0.543	0.965	1.134	2.31169818	97403159
		472	2244.46	1420	1.58		0.301	0.339	0.446	0.656	0.789	1.301	1.770	2.61970947	0.8370796
					1.49	PROMEDIO	0.269	0.305	0.380	0.519	0.606	1.041	1.282	2.25483575	88726831
		465	985.67	630	1.56		0.255	0.297	0.362	0.481	0.554	0.947	1.095	2.16914884	192691382
	-	463	1626.07	1080	1.51		0.227	0.284	0.342	0.447	0.511	0.866	1.032	2.24598734	00849247
	SD 41	485	35.78	23	1.56		0.193	0.225	0.304	0.410	0.476	0.796	0.958	2.47022691	1.00563316
		486	12.76	8	1.60		0.179	0.200	0.260	0.348	0.399	0.553	0.643	2.22565192	1.94391062
	-	-THEFE	+3.00	10	1.54	PROMETING	0.225	0.282	0.326	0.401	0.401	0.570	0.696	1.77913913	17568593
		462	2493 34	1600	1 90	PROMEDIO	0.216	0.258	0.319	0.417	0.468	0.746	0.885	2.16714008	.00480911
	-	477	1055.9	1080	150		0.280	0.311	0.380	0.506	0.584	0.997	1.142	2.04283133 (1.86686898
	SD 42	478	2274.62	1490	1.53		0.300	0.313	0.418	0.582	0.703	1.112	1.408	2.34497164 (1.82796326
					1.54	PROMEDIO	0.288	0.318	0.402	0.563	0.677	1.138	1.422	2 35130879	0 #30691
		479	648.28	440	1.47		0.189	0.218	0.292	0.371	0.418	0.557	0.642	2 21492781	08072213
	SD 43	476	971.63	690	1.41		0.204	0.248	0.312	0.389	0.433	0.563	0.659	2.1188(1251	1.1017235
		475	246.54	160	1.54		0.204	0.247	0.318	0.410	0.466	0.739	0.947	2 28195955 1	.06217605
	-				1.47	PROMEDIO	0.199	0.238	0.307	0.390	0.439	0.620	0.749	2.20492273	.08101002
	PROMI	NO BOR FEE	TARGET FOR A REAL				ALC: NOT	The later of	The second s	0.000	Statistics in				

Tabla 12.3.4, Análisis granulométrico río Samaria

Capitulo 12 | 49

INFORME FINAL Instituto de Ingeniería Coordinación de Hidráulica

RÍO	DOVELA	ETIQUETA	PESO (g)	VOLUMEN (ml)	DENSIDAD (Die	Das	Dse	D50	Dee	Des	Dec	Cu	Ce
	P.44	490	S/M 2.60	2.6											
		490	3.09 40.6	2.5	1.42		0.389	0.506	0.696	0.955	1.118	1.977	2.301	2.8769732	1.11572299
	P 45	492	42.75	27	1.50		0.390	0.484	0.661	0.862	0.984	1.687	2.092	2.52106579	1.13572777
					1.55	PROMEDIO	0.439	0.590	0,708	0.918	1.045	1.859	2.249	2.3839611	1.09253525
		496	64.66	48	1.35	- HOITEDIC	0.561	0.658	0.876	1 215	1.049	1.841	2.214	2.58526579	1.11220781
	P.46	504	154.1	100	1.54		0.497	0.621	0.779	1.076	1 202	2.839	3.735	2.85605637	0.85578705
	F 40	503	88.34	59	1.50	1	0.478	0.613	0.775	1.084	1 205	2.199	2.818	2.60024366	0.94312065
				111111	1.46	PROMEDIO	0.512	0.630	0.810	1.158	1.400	2.149	2.000	2.72864185	0.96241566
		505	0.14	0.1	1.40		0.157	0.174	0.223	0.316	0.376	0.573	0.898	2.403953092	0.91556798
	P 47	506	27.18	18	1.51		0.456	0.609	0.811	1.231	1.626	3.718	4.868	3 56346485	0.84023276
		507	24.64	16	1.54		0.482	0.644	0.992	1.803	2.446	17.761	46.306	5.08024701	0.83628384
					1.48	PROMEDIO	0.365	0.476	0.675	1.117	1.483	7.351	17.357	4.06463596	0.84296218
_		508	23.6	16	1.48		0.352	0.427	0.650	1.062	1.425	3.822	6.129	4.04493428	0.84310537
	P 48	510	33.5	41	1.30		0.458	0.615	0.879	1.573	2.216	5.776	8.396	4.83445314	0.76103933
		510	2.97	1.99	1.52	an and an owned	0.316	0.372	0.544	0.924	1.206	3.172	4.783	3.81590575	0.77554183
		511	151.97	115	1.43	PROMEDIO	0.376	0.472	0.691	1.186	1.616	4.257	6.436	4.30186919	0.78725505
	1	512	123.07		1.34		0.909	0.523	0.682	0.886	1.009	2.086	3.516	2.47048198	1.1272573
	P 49	513	64.85	50	1.30		0.330	0.503	0.095	0.958	1.126	3.012	4.338	2.83234429	1.07160152
					1.29	PROMEDIO	0.413	0.573	0.710	0.957	1.107	2.419	3.518	2.56258385	1.07311082
	-	514	203.86	150	1.36		0.543	0.645	0.837	1.218	1.516	2.506	3,791	2.61882863	1.08891904
	P 60	515	236.92	160	1.48		0.451	0.597	0.765	1.091	1 340	2.8/3	3.360	2.79940047	0.85102046
	1.00	516	228.57	155	1.47		0.441	0.585	0.739	1.025	1,215	2 178	3.330	2.37020324	0.96700856
					1.44	PROMEDIO	0.478	0.609	0.780	1.111	1.357	2.467	3.386	2.83766932	0.93931501
		521	96.2	60	1.60		0.381	0.480	0.672	0.906	1.053	1.877	2.231	2 76425087	1 12467306
	P 51	522	18.19	12	1.52		0.328	0.379	0.532	0.738	0.850	1.213	1.644	2.59249469	1.01349416
		523	699.34	395	1.77		0.371	0.454	0.638	0.820	0.929	1.408	1.794	2.50601448	1.18364844
		874			1.63	PROMEDIO	0.360	0.438	0.614	0.821	0.944	1.499	1.889	2.62340233	1.10932039
		527	11.01	7	1.66		0.305	0.366	0.563	1.122	1.726	4.334	5.742	5.66646856	0.60300094
	P 52	628	201.54	200	1.31		0.374	0.461	0.708	1.202	1.993	24.839	45.091	5.33607806	0.67239801
		ORG	310.74	200	1.40	Incontract	0.386	0.515	0.856	1.723	2.469	5.438	7.322	6.39014655	0.76759081
		530	9.14	6	1.52	PROMIEDIO	0.393	0.997	0.709	1.349	2.063	11.537	19.385	5.81314768	0.68633818
284		531	624.63	410	1.52		0.289	0.303	0.329	0.442	0.494	0.777	0.957	1.74293712	0.89483647
ATP	P 53	532	454.56	300	1.52		0.293	0.318	0.375	0.504	0.333	0.912	1.095	1.91227794	0.87839489
8					1.52	PROMEDIO	0.289	0.311	0.371	0.477	0.541	0.880	1.028	1.90/30/05	0.8/340/23
	PROM	EDIO POR SEO	CION PLATA	NAN	1.48		0.395	0.494	0.671	1.007	1 281	1 850	5 600	2.24/10/000	0.00123049
		537	26.95	19	1.42		0.198	0.237	0.313	0.410	0.459	0.790	1.012	2 26424102	1.04041444
	P 65	536	6.77	4	1.69		0.172	0.188	0.231	0.318	0.379	0.577	0.773	2 30971017	0.87302720
		542	31.55	20	1.58		0.183	0.208	0.280	0.422	0.519	1.475	2.568	2.83905941	0.82809616
					1.55	PROMEDIO	0.184	0.211	0.275	0.383	0.456	0.948	1.451	2.47327243	0.89884984
	-	498	586.53	360	1.63		0.310	0.353	0.481	0.696	0.813	1.179	1.731	2.62363748	0.91752623
	P 56	886	17.73	12	1.48		0.206	0.252	0.317	0.402	0.453	0.637	0.842	2.19312499	1.07729016
	-	500	515.53	310	1.66		0.324	0.386	0.576	0.879	1.082	2.369	3.465	3.33373071	0.94605352
		649	205.0	300	1.59	PROMEDIO	0.280	0.330	0.458	0.659	0.782	1.395	2.013	2.79197783	0.95698211
	1	544	1258.02	200	1.58		0.420	0.567	0.816	1.277	1.486	2.138	2.341	3.54120291	1.06843949
	P 57	545	2106.33	1430	1.37		0.380	0.630	0.692	0.964	1.138	2.441	3.672	2.94814383	1.09033899
			2100.00	1 100	1.54	PROMEDIO	0.434	0.563	0.014	1.170	1.484	2.903	4.125	2.99345117	0.89967466
1		550	2631.65	1710	1.54	PROMILORD	0.560	0.650	0.836	1.201	1.309	2.514	3.379	3.15663287	1.00839281
		551	2417.67	1610	1.50		0.505	0.633	0.812	1.157	1.550	2 955	9.900	2.74507286	0.81294271
		552	2839.53	1900	1.49		0.498	0.629	0.808	1.154	1.495	3.428	4.015	2.00121254	0.89169337
	P 56	553	2601.75	1710	1.52		0.433	0.597	0.767	1.096	1.390	3.182	4.401	3.20011133	0.07660533
		554	2732.18	1798	1.52		0.392	0.505	0.690	0.936	1.090	2.268	3 341	2.77912178	1 11495015
I L					1.52	PHOMEDIO	0.478	0.603	0.783	1.109	1.395	3.017	4.167	2.92101777	0.91915674
	-	559	683.69	510	1.34		0.461	0.628	1.006	1.930	2.699	8.386	13.289	5.85367166	0.81318845
	P 59	558	102.28	70	1.46		0.218	0.275	0.394	0.649	0.819	1.759	2.358	3.75754282	0.87014105
	-	560	780.89	596	1.31		0.363	0.469	0.709	1.087	1.571	7.065	10.897	4.32810597	0.88096792
					1.37	PROMEDIO	0.347	0.457	0.703	1.222	1.697	5.737	8.848	4.88368952	0.83866847
	-	564	169.52	140	1.21		0.306	0.348	0.470	0.781	1.052	13.991	18.790	3.43487331	0.68601374
	P 60	570	1927.39	1230	1.57		0.340	0.411	0.618	0.884	1.058	2.198	3.175	3.10905838	1.06232885
	- W	566	1000.33	1900	1.48		0.319	0.376	0.553	0.803	0.956	2.181	4.051	2.99672162	1.00301568
	- F	50.02	2330	1800	1.30	In the second second	0.379	0.492	0.700	0.992	1.181	3.612	6.276	3.118432	1.09751027
		569	207.12	140	1.49	PROMEDIO	0.330	0.407	0.586	0.865	1.062	5.495	8.073	3.15927105	0.96092493
		571	45.91	37	1.43		0.177	0.203	0.371	0.363	0.602	1.043	1.214	2.41248333 (1.91616867
	P 61	572	60.25	38	1.59		0.213	0.276	0.2/0	0.456	0.913	1.000	1.207	2.52581032	1.05475334
					1.50	PROMEDIO	0.213	0.259	0.330	0.443	0.514	0.972	1.390	2.41017398	0003725000
	D.D.C.L.	THE R OLD PROPERTY.	NAMES OF TAXABLE				1000	Contraction of the local division of the loc		0.445	0.314	0.073	1.101	c.+2017384	400323033

Tabla 12.3.5, Análisis granulométrico río Platanar

Capitulo 12 | 50

Tabla 12.3.6, Análisis granulométrico río Comoapa

Tabla 12.3.7, Análisis granulométrico río González

RÍO	DOVELA GPS	ETIQUETA	PESO (g)	VOLUMEN (ml)	DENSIDAD p		Dae	Das	Dao	D50	Deo	Des	Dee	Cu	Cc
		606	606.76	450	1.35		0.175	0.194	0.246	0.330	0.376	0.515	0.557	2 14151263	0.021247
	6.77	607	37.16	27	1.38		0.163	0.172	0.196	0.236	0.259	0.409	0.473	1 586015	0.011881
		609	160.74	120	1.34		0.203	0.245	0.308	0.378	0.418	0.534	0.568	2 06495671	1.13084858
				-	1.35	PROMEDIO	0.180	0.204	0.250	0.314	0.351	0.486	0.533	1.94551505	0.9895733
	G 78	S/M													
		613	0.23	0.2	1.15		0.151	0.162	0.189	0.236	0.263	0.443	0.513	1.74177692	0.89495563
	G 79	615	1.86	1.5	1.24		0.084	0.104	0.173	0.357	0.513	1,223	1.519	6 10115967	0.69649413
					1.20	PROMEDIO	0.118	0.133	0.181	0.297	0.388	0.833	1.016	3.30021921	0.71780254
	PROF	MEDIO POR SI	ECCION GONZ	ALEZ	1.29		0.155	0.175	0.223	0 307	0.000	0.575	0.774	T BECOMO	S.FITOOLS
		587	13.44		1.68		0.174	0.191	0.239	0.317	0.360	0.625	0.536	2.3590502	0.87212025
Ŷ		588	506	355	1.43		0.159	0.167	0.187	0.210	0.300	0,408	0.520	2.06531122	0.90849108
The	G 86	589	24.24	19	1.28		0.167	0.180	0.214	0.213	0.237	0.315	0,401	1.4838/301	0.92410354
a de		590	6.94	5	1.39		0.167	0.179	0.211	0.275	0.319	0.4/1	0.519	1.90582765	0.85603953
					1.44	PROMEDIO	0.167	0.179	0.212	0.200	0.305	0.462	0.480	1.85210003	0.86262559
		594	760.84	550	1 38		0.186	0.214	0.287	0.359	0.402	0.637	0.403	1.83323000	0.88356827
		595	530.55	360	1.47		0.175	0.194	0.207	0.335	0.402	0.527	0.504	2.16441844	1.09945348
	G 88	596	174.42	140	1.25		0.165	0.176	0.240	0.350	0.378	0.522	0.500	2.15549078	0.91219302
				2.10	1 37	PROMEDIC	0.175	0.194	0.204	0.252	0.281	0.448	0.503	1.70405773	0.89605263
		600	5.95	45	1.32	THOMEDIC	0.158	0.165	0.240	0.314	0.334	0.499	0.544	2.0169661	0.97112513
		601	1.68	155	1.08		0.158	0.100	0.217	0.210	0.234	0.310	0.474	1.47754489	0.9248938
	G 89	602	1.27	0.8	1.50		0.159	0.167	0.100	0.282	0.345	0.558	0.630	2.0523429	0.8147859
			1,67	6.0	1 33	PROMEDIO	0.162	0.107	0.185	0.214	0.231	0.276	0.355	1.44751742	0.92869951
	HINGS.	ITTUO DOB CO	COLOR CONT		1 107	THOMEORY	0.101	0.171	0.190	0.236	0.270	0.381	0.455	1.56653842	0.87680331
	00.00	ALLOID POR SE	LUIUN GUNZ	ALEZ	1.387		0.168	0.182	0.217	0.273	0.310	0.438	0.505	1.84258502	0.90859084
	00.81	010	0.27	0.5	0.90	PROMEDIO	0.161	0.173	0.205	0.261	0.303	0.471	0.525	1.88285664	0.86167047
	00 83	S/M	5/M												
	00 62	-0/M	5/M	10 X 1 X 1	-	-	_	_	_		_				
	PROMED	HO POR SECCI	ON CONF-GO	NZALEZ	0.90		0.161	0.173	0.205	0.261	0.303	0.471	0.525	1.88285664	0.86167047
ANE		640	0.62	0.6	1.03		0.163	0.174	0.202	0.251	0.281	0.447	0.502	1.72102661	0.89514354
ONE	CG 90	641	1.56	1.1	1.42		0.221	0.236	0.275	0.343	0.343	0.498	0.532	1.55173337	1.00000009
- the		642	6.13	6	1.02		0.159	0.169	0.193	0.233	0.256	0.321	0.339	1.60385427	0.90984416
9					1.16	PROMEDIO	0.181	0.193	0.223	0.276	0.293	0.422	0.458	1.61781274	0.94015644
	CG 91	646	0.23	0.3	0.77				_						
		647	0.35	0.6	0.58										
	CG 92	649	0.33	0.2	1.65	PROMEDIO	0.040	0.048	0.075	0.138	0.188	0.395	0.476	4.6869533	0.7342126
	PROMED	IO POR SECCI	ON CONF-GO	NZALEZ	1.28		0.146	0.157	0.186	0.241	0.267	0.415	0.462	1.82898925	0.89030050
		622	374.32	250	1.50		0.181	0.203	0.268	0.340	0.380	0.496	0.530	2.10339639	1.04366645
	11/2 102	623	40.68	29	1.40		0.189	0.219	0.290	0.357	0.396	0.507	0.539	2.0900293	1 12513432
	00.00	624	6.9	4.5	1.53		0.169	0.184	0.223	0.293	0.338	0.476	0.519	1.99478287	0.85484467
					1.47	PROMEDIO	0.180	0.202	0.260	0.330	0.371	0.493	0.529	2.06458463	1.01415183
		628	126.72	95	1.33		0.163	0.172	0.196	0.235	0.258	0.405	0.468	1.58333787	0.91218986
	UGAL	629	87.99	68	1.29		0.167	0.180	0.213	0.270	0.314	0.462	0.509	1.87856923	0.86044355
	00.01	630	82.39	60	1.37		0.164	0.174	0.200	0.244	0.269	0.432	0.492	1.63909342	0.90589797
					1.33	PROMEDIO	0.165	0.175	0.203	0.250	0.280	0.433	0.490	1.701719	0.89033426
		634	8.95	6.5	1.38		0.159	0.166	0.183	0.211	0.227	0.269	0.300	1.42616493	0.93146395
	11/2 /05	635	294.9	245	1.20		0.158	0.165	0.182	0.210	0.225	0.267	0.279	1.4256499	0.93153128
	00 00	636	650.42	455	1.43		0.158	0.165	0.183	0.212	0.228	0.272	0.284	1.44141397	0.92948472
S.					1.34	PROMEDIO	0.158	0.165	0.183	0.211	0.227	0.269	0.288	1.4310648	0.93081942
all	PROMEDIO	POR SECCIO	NUNION-GO	NZALEZ	1.38		0.168	0.181	0.215	0.264	0.293	0.198	0.436	1 74615070	0.944000053
Ma		651	261.52	180	1.45		0.187	0.216	0.288	0.355	0.394	0.506	0.520	2 101581 23	1 12240004
Nº I	140.00	652	945.29	700	1.35		0.199	0.238	0.362	0.657	0.885	1.817	2 167	4 44678772	0 74190441
	06.93	653	28.65	20	1.43		0.178	0.199	0.256	0.335	0.377	0.502	0.530	2 11388130	0.97670227
					1.41	PROMEDIO	0.188	0.218	0.302	0.449	0.552	0.940	1.082	2.93190923	0.87696367
1		655	150.4	110	1.37		0.167	0.178	0.209	0.262	0,302	0.452	0.500	1.80993361	0.87023064
	110.04	656	275.4	200	1.38		0.166	0.177	0.206	0.256	0.291	0.446	0.496	1.75168267	0.88271861
	00.94	657	185.67	140	1.33		0.168	0.181	0.214	0.274	0.318	0.462	0.507	1.89170402	0.86062855
					1.36	PROMEDIO	0.167	0.179	0.210	0.264	0.303	0.453	0.501	1 81808578	0.87076348
1		662	153.6	130	1.18		0.159	0.166	0.183	0.212	0.227	0.270	0.310	1.43161963	0.93075305
	110.05	663	12.06	8.5	1.42		0.160	0.167	0.185	0.213	0.229	0.272	0.363	1.4317373	0.93073773
	00.10	664	45.87	33	1.39		0.303	0.319	0.361	0.430	0.469	0.578	0.715	1.54724972	0.91640601
					1.33	PROMEDIO	0.207	0.217	0.243	0.285	0.309	0.374	0.463	1.48800861	0.92325547
	PROMEDIC	POR SECCIO	N UNION-SO	NZALEZ	1.27		0.100	0.205	0.161	0 222	0.785	0.000		10	

RÍO	DOVELA GPS	ETIQUETA	PESO (g)	VOLUMEN (ml)	DENSIDAD p		Die	Dis	Dae	D50	Dee	Des	Dee	04	6
		669	51.99	40	1.30		0.160	0.169	0.189	0.224	0.243	0.254	0.430	1 51000000	
	09.96	670	179.64	160	1.12		0.158	0.165	0.182	0.210	0.225	0.354	0.430	1.51352654	0.92047811
	Grivan	671	9.3	6.5	1.43		0.159	0.166	0.183	0.211	0.227	0.267	0.203	1.42304973	0.93153121
					1.28	PROMEDIO	0.159	0.167	0.185	0.215	0.232	0.296	0.233	1.423/1499	0.931/843/
	1.000	674	184.43	150	1.23		0.159	0.166	0.184	0.213	0.729	0.273	0.334	1.43945052	0.9276298
	GR.97	676	83.03	76	1.09		0.158	0.165	0.183	0.212	0.228	0.271	0.330	1.43993062	0.929/3/44
		677	47.49	40	1.19		0.160	0.167	0.186	0.215	0.232	0.278	0.323	1 4530304	0.92991/75
		-			1.17	PROMEDIO	0.159	0.166	0.184	0.213	0.230	0.274	0.344	1.4333201	0.92788031
		681	61.48	59	1.04		0.158	0.166	0.186	0.220	0.238	0.341	0.433	1 51 216021	0.92916764
	GR 98	682	92.59	79	1.17		0.157	0.166	0.188	0.225	0.246	0.383	0.453	1 57071365	0.92001895
	6415 000	683	33.4	30	1.11		0.157	0.165	0.184	0.215	0.232	0.281	0.381	1.47271167	0.91365156
					1.11	PROMEDIO	0.157	0.165	0.186	0.220	0.239	0.335	0.426	1 51845215	0.92330015
		687	40.22	31	1.30		0.158	0.165	0.182	0.209	0.224	0.264	0.775	1.413/05390	0.91970125
	GR 99	688	45.21	49	0.92		0.158	0.166	0.184	0.215	0.232	0.278	0.376	1.46312212	0.9353006
		689	16.31	17	0.96		0.161	0.171	0.199	0.248	0.276	0.456	0.519	1.72131229	0.9207094
					1.06	PROMEDIO	0.159	0.167	0.189	0.224	0.244	0.333	0.390	1.53336358	0.916397333
ALVA	PRO	MEDIO POR SE	CCION GRUA	LVA	1.16		0.159	0.166	0.186	0.218	0.236	0.310	0 371	1 48747211	0.01000713
L'D'		708	77.96	54	1.44		0.160	0.166	0.184	0.211	0.227	0.268	0.280	1.43/09.45/09	0.02235732
	GR 103	709	96.25	69	1.39		0.159	0.166	0.183	0.210	0.226	0.267	0.200	1.42364308	0.93216036
	011100	710	74.05	55	1.35		0.159	0.165	0.182	0.208	0.222	0.261	0.271	1 20606103	0.93195941
					1.39	PROMEDIO	0.159	0.166	0.183	0.210	0.225	0.265	0.272	1 4134120	0.93532772
		714	201.32	150	1.34		0.159	0.167	0.184	0.213	0.228	0.271	0.319	1 43214020	0.93052445
	GR 104	715	68.28	52	1.31		0.161	0.169	0.190	0.224	0.243	0.353	0.430	1.50848525	0.9300913
	. Ser S TREE	716	13.07	8	1.63	1. N. 1	0.159	0.166	0.182	0.209	0.224	0.264	0.275	1.40815201	0.92303430
					1.43	PROMEDIO	0.160	0.167	0.185	0.215	0.232	0.296	0.342	1.44981064	0 97821264
		720	29.97	24	1.25		0.163	0.173	0.199	0.244	0.269	0.441	0.504	1 65320245	0.90429122
	GR 105	721	36.65	30	1.22		0.159	0.166	0.185	0.215	0.233	0.281	0.384	1.46543587	0.92541721
		722	10.68	11	0.97		0.162	0.173	0.201	0.249	0.277	0.471	0.538	1.20905604	0.99925653
					1.15	PROMEDIO	0.161	0.171	0.195	0.236	0.260	0.398	0.476	1.61052502	0.90616170
- 1		726	106.49	80	1.33		0.159	0.165	0.181	0.207	0.221	0.260	0.270	1.39566091	0.93550053
	GR 106	727	3.27	3	1.09		0.163	0.172	0.196	0.236	0.260	0.429	0.503	1,59166207	0.91123375
		728	83.23	60	1.39		0.159	0.165	0.181	0.207	0.222	0.260	0.271	1.39675201	0.93535434
	1 1				1.27	PROMEDIO	0.160	0.168	0.186	0.217	0.234	0.316	0.348	1.46256384	0.9259089
	PROM	AEDIO POR SE	CCION GRUA	VA	1.31		0.160	0.168	0.187	0.219	0.738	0.319	0.350	1 404439944	0.07306300

Tabla 12.3.8, Análisis granulométrico río Grijalva

Tabla 12.3.9. Análisis granulométrico río Chilapilla

En el anexo A.12.2, Análisis Granulométrico, se anexan las fotografías de las muestras recolectadas y las tablas y curvas granulométricas

12.3.2.1 Geotécnico

En el aspecto geotécnico se debe considera la realización de una campaña de campo para recopilar la información base para la caracterización geomorfológica del cauce a lo largo de toda la longitud de los sistemas fluviales estudiados, ya que en este trabajo no se consideró dentro de los alcances. Desde la cortina de la presa Ángel Albino Corzo (Peñitas) hasta la desembocadura al mar. Los trabajos consisten en reconocimientos a detalle sobre los diferentes tramos del cauce, localizados en la zona de estudio. Durante los recorridos se deberán tomar fotografías y muestras para realizar análisis granulométricos y determinar características del material que constituye el cauce en toda su longitud. Se deben consideran los siguientes aspectos:

- Reconocer las fuentes de sedimento y la evolución de su granulometría en todo el perfil longitudinal de los cauces
- Reconocer e identificar las obras y elementos fisiográficos que evidencien un aporte o déficit de sedimentos, y determinar su efecto en el balance global del transporte sólido

12.3.2.2 Fluvial

Con la finalidad de establecer el diagnóstico fluvial de los sistemas, se debe llevar a cabo un levantamiento de secciones del río en toda su longitud, con una separación aproximada máxima en caso de hacer levantamientos tradicionales de 3 km entre sección. Apoyándose en esa información y en la levantada en las secciones de medición se pueden construir gráficas como la de la figura 12.3.24, que muestra el perfil longitudinal del río en la sección y la ubicación de las estaciones de medición propuestas.

Figura 12.3.24. Ejemplo Perfil longitudinal del cauce (Rivera, 2013)

Será a partir de esta información que será posible establecer los criterios de estabilidad del rio empleando la balanza de Lane. Los trabajos de topografía a lo largo del cauce no fueron considerados en el alcance del presente trabajo, por lo que no es posible establecer las zonas de equilibrio fluvial.

12.3.2.3 Mecánica de suelos

En este punto se consideró la obtención de muestras de material del fondo. Estas muestras se obtuvieron por medio de una draga (figura 12.3.25). Para su medición, se dividió la sección transversal en dovelas, los criterios de selección de estas son los mismos que se han utilizado a lo largo del trabajo. La forma de operación consiste en ubicar la sección y arrojar la draga hasta que llegue al fondo y arranque una muestra de material que conforma el fondo (Figura 12.3.26). Posteriormente esta muestra se etiqueta para su posterior análisis granulométrico (Figura 12.3.27), tal y como fue descrito en el apartado anterior. En la tabla 12.3.10 se resumen los puntos de recolección de muestras de fondo.

TIRANTE ENCADENA RÍO ESTACIÓN DOVELA ETIQUETA MIENTO (cm) P01 99.00 237 P02 245.00 261 PO3 360.00 274 MEZCALARA P04 N/A 279 6 210.00 8 MEZCALAPA 7 230.00 16 8 384.00 XXX 9 390.00 26 10 180.00 41 11 100.00 51 C12 106.00 285 C13 145.00 294 C14 133.00 307 C15 144.00 318 C16 31.00 340 CARRIZA CA 17 215.00 345 CARRIZAL CA 18 128.00 352 CA 19 44.00 353 C20 93.00 354 C21 136.00 360 C22 143.00 366 C23 120.00 373 C25 34.00 379 SI26 188.00 383 SI27 214.00 390 \$128 244.00 397 SI 29 162.00 405 SI 30 260.00 408 SAMARIA SI 31 239.00 599 SAMARIA SI 32 190.00 418 SI 33 310.00 426 SI 34 150.00 433 SI 35 145.00439 SD 38 140.00 451 SD 39 175.00 456 SD 40 119.00 468

Tabla 12.3.10. Zonas de muestreo de material del lecho

RÍO	ESTACIÓN	ENCADENA		
	ESTACIÓN	MIENTO	DOVELA	ENQUETA
		D 44	(cm)	· · · · · · · · · · · · · · · · · · ·
		P 44	11.00	489
		P 45	24.00	495
		<u>P 46</u>	26.00	493
1		<u>P 47</u>	29.00	494
		<u>P 48</u>	38.00	502
		P 49	44.00	501
		<u>P 50</u>	56.00	518
		P 51	145.00	519
\$		P 52	166.00	NP
A A	PLATANAR	P 52	166.00	528
3		P 53	148.00	535
		BANCON	ATERIAL	883
1		P 55	78.00	541
		P 56	89.00	585
		P 57	104.00	584
		P 57	104.00	970
			135.00	6/9
		<u> </u>	197.00	549
		P 59	187.00	557
		P 60	262.00	563
		P 61	144.00	570
		CO 62	300.00	575
		CO 63	410.00	881
4		CO 64	383.00	576
1	СОМОАРА	CO 69	320.00	580
୍ଷ		CO 70	405.00	584
		CO 71	377.00	585
		BANCO M	IATERIAL	600
		G 77	480.00	608
	GONZALES	G 78	560.00	612
		G 79	520.00	614
		CG 80	6.30	617
	CONF/GONZALES	CG 81	5.20	618
		CG 82	2.40	620
		UG 83	5.70	621
5	UNION/GONZALES	UG 84	6.00	627
41		UG 85	6.40	633
		<u> </u>	5 30	586
6	GONZALES	<u> </u>	5.50	502
		6.80	4 90	
		<u> </u>	6 50	
	CONE/GONZALES		4.00	639
				645
	}			648
			5.40	650
	UNION/ GUNZALES	06.94	5.80	654
	+		6.40	661
		CH 100	2.80	692
.3	CHILAPILLA	CH 101	2.80	698
46		CH 102	1.60	699
हैं		CH 107	2.60	731
	CHILAPILLA	CH 108	2.60	732
		CH 109	1.30	733
		GR-96	2.80	668
	GRIJALVA	GR-97	3.40	675
्र		GR 98	4.00	680
4		GR 99	7.10	686
le le		GR 103	2.70	707
~	GRUALVA	GR 104	3.00	713
		GR 105	3.80	719
		GR 106	6.40	725

Figura 12.3.25. Draga

Figura 12.3.26. Draga en uso

Figura 12.3.27. Recolección de muestra con draga

12.4 CUANTIFICACIÓN DEL TRANSPORTE DE MATERIAL SÓLIDO EN CAUCES

12.4.1 Sedimentogramas

Una de las maneras de presentar los resultados para su análisis consiste en la generación de gráficas de sedimentos o sedimentogramas. En estas se gráfica en el eje horizontal el caudal líquido circulante en m^3/s y en el eje vertical el caudal sólido en suspensión en un lado del eje y el caudal sólido de fondo en el opuesto, ambos en m^3/d .

A continuación se describen para cada sistema analizado (Figura 12.4.1) la cuantificación del material sólido transportado en sus cauces (sedimentos en suspensión y de fondo).

Figura 12.4.1. Estaciones de medición

12.4.1.1 Sistema Río Platanar

El río Platanar se ubica en el estado de Chiapas, Municipio de Pichucalco, en la frontera con Tabasco. Es un afluente del río Mezcalapa que se piensa es un gran aportador de sedimentos gruesos (arenas y gravas), esto se puede observar desde su nacimiento a las faldas del volcán Chichonal y hasta su desembocadura hasta el río Mezcalapa (Figura 12.4.2). En dicha figura se aprecia un cono de deyección del volcán y como gran parte del material se dirige hacia el río Platanar.

Figura 12.4.2. Río Platanar y volcán Chichonal

Por este motivo se llevó a cabo una campaña de medición sobre esta corriente para comprobar si efectivamente este transporte es significativo. La zona de medición se ubicó en las coordenadas: coordenada norte 1948951.51 m N, coordenada este 459444.65 m E (Figura 12.4.3)

Capitulo 12 | 59

Figura 12.4.3. Zona de localización estación de monitoreo y control Platanar

En esta sección se llevaron a cabo los procedimientos descritos en el apartado 12.3.1 para obtener el caudal líquido, el caudal sólido y el muestreo de material de fondo.

El procedimiento de selección de la zona de medición se hizo de acuerdo a las recomendaciones dadas por Rivera (2006). Se ubicó una zona que estuviera en una parte recta del río, de preferencia sin islas, ni cambios bruscos de dirección. Además que fuera de fácil acceso. En la figura 12.4.4, se muestra una imagen de satélite con la zona seleccionada.

Figura 12.4.4. Zona de medición Platanar

En esta sección del río en particular se carece de antecedentes de mediciones previas, por lo que como mediciones iniciales se probaron condiciones de flujo que tuvieran un rango de variación lo más amplio posible. Esta situación fue posible encontrarla debido a que este río escurre libremente, por lo qué responde rápidamente a las lluvias. Durante las mediciones se presentó un evento de precipitación de gran intensidad. En las figuras 12.4.5 y 12.4.6, se muestran algunas fechas y condiciones del río medidas. Se aprecia la rápida respuesta del río entre un día y otro (Fig. 12.4.6a y 12.4.6b)

Figura 12.4.5. Platanar 18/Oct/2014

(b)

Se estableció una sección transversal y un apoyo por medio de una cuerda (Figuras 12.4.7 y 12.4.8)

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

Figura 12.4.7. Sección transversal Platanar

Figura 12.4.8. Mediciones sobre sección Platanar

Sobre la sección transversal se marcaron los puntos de medición por medio de un GPS marca Garmin 68Sx. En la siguiente figura se muestran los puntos de monitoreo en la sección Platanar.

Figura 12.4.9. Puntos de monitoreo. Estación Platanar

En la tabla siguiente se muestra el resumen de trabajos realizados para esta zona

ESTACIÓN	HORA DE INICIO DEL AFORO	HORA FINAL DEL AFORO	ESCALA INICIAL (msnm)	ESCALA FINAL (msnm)	h _{m (mnsm)}	CAUDAL (m ³ /s)	CAUDAL SOLIDO DE FONDO ESTACIÓN (m3/d)	GASTO SOLIDO DE SUSPENSIÓN POR ESTACIÓN (m ³ /d)
Platanar	11:05	14:00	33.789	33.80	33.794	19.12	25.117	541 517
Platanar	11:47	17:00	34.559	34.659	34.609	124.2	398.975	2 812 820

Tabla 12.4.1. Resumen Río Platanar

El aforo líquido se llevó a cabo por medio de un perfilador acústico Doppler. Se generaron además del aforo líquido, la hidrodinámica en planta (figura 12.4.10) y la distribución de corrientes en la vertical (Figura 12.4.11). En la vista en plana se aprecia la homogeneidad de las velocidades, lo cual significa que se hizo una buena elección de la zona de monitoreo; mientras que, la distribución de velocidades permite determinar zonas homogéneas, a partir de las cuales se seleccionan las dovelas, siguiendo el principio de homogeneidad.

vertical

A partir de estos valores es posible construir la gráfica sedimentológica para esta sección (Figura 12.4.12).

planta

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

Figura 12.4.12. Sedimentograma Estación Platanar

En las siguientes figuras se aprecia la gran cantidad de material grueso (arenas y gravas) que es arrastrado por la corriente en esa sección. Adicionalmente se tomaron muestras de este material para su posterior análisis en laboratorio.

Figura 12.4.13. Material del lecho

Figura 12.4.14. Detalle del material

Capitulo 12 | 64

12.4.1.2 Sistema Río Comuapa

El río Comuapa se ubica en el estado de Tabasco, Municipio de Huimanguillo en la frontera con el estado de Chiapas. Es un afluente del río Mezcalapa que se piensa puede ser aportador de sedimentos gruesos (arenas y gravas). Por este motivo se llevó a cabo una campaña de medición sobre esta corriente para comprobar si efectivamente este transporte es significativo. La zona de medición se ubicó en las coordenadas: coordenada norte 1967192.75 m N, coordenada este 459273.83 m E latitud (Figura 12.4.15).

En esta zona se seleccionaron dos sitios de medición y muestreo (figura 12.4.16), el primero en un tramo recto y con las condiciones idóneas para medir (figuras 12.4.17a y b) y el segundo sobre un puente vehicular en las cercanías, donde se ubica la estación de medición de la CONAGUA, Paredón (figura 12.4.18a y b.

En ambas secciones no se encontraron registros de mediciones de sedimentos previas, por lo que como punto de partida, se trató de medir con condiciones de flujo que tuvieran un rango de variación lo más amplio posible. Esta situación no fue posible debido a que este río escurre libremente y durante el periodo de medición no se presentaron lluvias significativas.

Capitulo 12 | 65

INFORME FINAL Instituto de Ingeniería Coordinación de Hidráulica

Figura 12.4.16. Estaciones de monitoreo y control Río Comuapa

Figura 12.4.17. Estación Comuapa 16/Nov/2014

Figura 12.4.18. Estación Comuapa 17/Nov/2014

Figura 12.4.19. Estación Paredón

Figura 12.4.20. Estación Paredón

La sección transversal en el caso de la sección Comuapa se estableció por medio de una cuerda de apoyo (Figuras 12.4.21), en el caso del puente se empleó él mismo (Figura 12.4.22)

Figura 12.4.21. Sección transversal Comuapa

Figura 12.4.22. Mediciones sobre Puente en la estación Paredón

En la siguiente figura se muestran los puntos de monitoreo en la sección Comuapa (Figura 12.4.23) y en el Puente (Figura 12.4.24).

INFORME FINAL Instituto de Ingeniería Coordinación de Hidráulica

Figura 12.4.23. Puntos de medición Estación Comuapa

Figura 12.4.24. Puntos de medición Estación Paredón

En la tabla siguiente se muestra el resumen de trabajos realizados para esta zona

ESTACIÓN	HORA DE INICIO DEL AFORO	HORA FINAL DEL AFORO	ESCALA INICIAL (msnm)	ESCALA FINAL (msnm)	h _{m (mosm)}	CAUDAL (m³/s)	CAUDAL SOLIDO DE FONDO ESTACIÓN (m3/d)	GASTO SOLIDO DE SUSPENSIÓN POR ESTACIÓN (m³/d)
Comuapa	9:30	10:42	26.075	26.075	26.075	34.97	1.165	1,592.936
Comuapa	9:45	10:36	26.075	26.075	26.075	39	28.100	1,600.681
Paredón	12:03	16:00	21.031	21.031	21.031	38.59	S/M	175.182
Paredón	12:00	16:00	21.091	21.031	21.061	38.59	S/M	191 539

Tabla 12.4.2. Resumen río Comuapa

De las mediciones hechas con el perfilador acústico Doppler fue posible generar la hidrodinámica en planta (figura 12.4.25) y la distribución de corrientes en la vertical (Figura 12.4.26). En la vista en planta se aprecia la homogeneidad de las velocidades, lo cual significa que se hizo una buena elección de la zona de monitoreo; mientras que, la distribución de velocidades permite determinar zonas homogéneas, a partir de las cuales se seleccionan las dovelas, siguiendo el principio de homogeneidad.

Figura 12.4.25. Velocidad en planta

Estación Comuapa

Figura 12.4.26. Campo de velocidades en la vertical

A partir de estos valores es posible construir las gráficas sedimentológicas para estas secciones (Figura 12.4.27 y 12.4.28).

Figura 12.4.28. Sedimentograma Estación Paredón

Capitulo 12 | 69

12.4.1.3 Sístema Mezcalapa-Samaria-Carrizal (Bifurcación)

La bifurcación Mezcalapa – Samaria – Carrizal, ha sido estudiada desde el año 2002, en que se realizaron por parte de la Universidad Juárez Autónoma de Tabasco (UJAT), una serie de mediciones de aforo líquido y sólido en seis estaciones de monitoreo distribuidas en los tres ríos de la bifurcación (Figura 12.4.29).

En el año de 2003, se dio continuidad al estudio y se realizó una segunda etapa de mediciones de aforo líquido y sólido, aumentando el número de estaciones de monitoreo a 7. En el año de 2004 se realizó la tercera campaña de medición de sedimentos sustituyendo dos de las estaciones existentes por zonas más cercanas a la bifurcación con el objeto de tener un mejor monitoreo de la evolución de la misma.

Finalmente en el año 2005 se realizó la cuarta y última campaña de medición con el objeto de complementar la información y poder emitir un análisis integral del funcionamiento del sistema. A partir de esa fecha, la bifurcación ha sido intervenida de manera significativa, principalmente por la construcción de la estructura de control Macayo, que entró en operación en el año 2010. A partir de esa fecha y al día de hoy se está presentando un fenómeno significativo de depósito de material en la zona de formación del río Carrizal, que pone en riesgo su permanencia. Por lo tanto se deben realizar estudios profundos que se deriven en obras e intervenciones sustanciales al sistema que ayuden a revertir estos fenómenos.

Figura 12.4.29. Zonas de monitoreo 2002 - 2005 (Fuente: UJAT, 2005)

Desde el punto de vista morfológico de los ríos, se necesita considerar a los sedimentos que son acarreados por el cauce, su tipo, granulometría y distribución. Es muy común que obras hidráulicas fallen o no funcionen como son diseñadas por no tomar en cuenta la influencia de los sedimentos, y el hecho de que, por los ríos no solo circula agua sino que se mueven y distribuyen también partículas sólidas.

En la figura 12.4.30 se muestra la tendencia que tenía la distribución de caudales sobre la bifurcación en el año de 2004, apreciándose en color verde la trayectoria que seguían las líneas de corriente desde la margen izquierda del río Mezcalapa y como se cruzaba hacia su margen derecha y entraba de manera directa hacia el río Carrizal.

Capitulo 12 | 71

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

Figura 12.4.30. Tendencia de las líneas de corriente sobre la bifurcación (2004)

A partir del año de 1999 hasta el año de 2010, fecha en que se cerró definitivamente el estrechamiento al centro del río Carrizal para dar paso a la estructura de control; ya se evidenciaba un cambio en el comportamiento de la dirección de la corriente. Una estructura que ejerce un efecto significativo es el alargamiento de un espigón existente en la margen derecha del río Mezcalapa, que se llevó a cabo en el año de 2012. Se piensa que este cambio modificó la hidrodinámica en esa zona y alteró significativamente la morfología del sitio y las líneas de corriente (Figura 12.4.31).

Figura 12.4.31. Tendencia de las líneas de corriente sobre la bifurcación (2010)

Durante el 2014, esta tendencia se ha hecho más evidente, combinada con una serie de espigones en la margen izquierda que direcciona la corriente. En la figura 12.4.32 se muestran los cambios sufridos. En línea color azul agua (cyan), se representa la poligonal de apoyo del levantamiento topográfico realizado para los trabajos elaborados por la UJAT en el año 2003, en línea color verde, se representa la poligonal de apoyo de los levantamientos topográficos realizados para los proyectos elaborados en el año 2010, en color rojo, se representa la poligonal de apoyo de los trabajos de supervisión realizada en el año 2013 y en color azul la margen medida en el año 2014 (Igimsa, 2014); de lo anterior se observa que, en 10 años la perdida de superficie ha sido importante. Se observan las diferentes distancias que se tienen de poligonal a poligonal, teniendo que de la poligonal color cyan a la poligonal color se tiene un corrimiento marginal aproximado de 175 m; mientras que de este al levantamiento realizado en 2013, se tiene un corrimiento de entre 60 y 80 m. De la comparación visual de los tres levantamientos, se estimó una tasa de corrimiento media anual del orden de los 26 m por año; lo que hace pensar que el río se encuentra en un proceso de reajuste y migración, que de continuar puede provocar que la mayor parte de las aguas circulen por el río Samaria, con altas posibilidades de que el río Samaria avulsione aguas abajo de la estructura de control, por lo que es importante hacer un estudio geomorfológico y sedimentológico a detalle de la zona.

Capitulo 12 | 73

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

Figura 12.4.32. Modificaciones que ha sufrido la zona

Para dar una explicación física al fenómeno, durante la presente campaña se realizaron una serie de mediciones tanto hidráulicas como sedimentológicas. Los sitios de medición seleccionados se muestran en la figura 12.4.33 y consideraron los cauces en la bifurcación Mezcalapa-Samaria-Carrizal.

Figura 12.4.33. Sitios de medición bifurcación Mezcalapa-Samaria-Carrizal

Empezando de aguas arriba hacia aguas abajo la primera estación de medición fue la estación denominada Mezcalapa, la zona de medición se ubicó en las coordenadas: coordenada norte 1985037.72 m N, coordenada este 465671.37 m E latitud (Figura 12.4.34)

Figura 12.4.34. Estación de medición Mezcalapa

En esta zona se seleccionó un sitio de medición y muestreo. En el sitio en particular no se encontraron registros de mediciones de sedimentos previas. Aunque lo recomendable es medir con condiciones de flujo que tengan un rango de variación lo más amplio posible, esta situación no fue posible debido a que este río no escurre libremente ya que es controlado por el sistema de presas; sin embargo, esta condición resultó favorable para entender de forma integral como opera todo el sistema, pues fue posible medirlo en condiciones cuasi-estáticas y hacer un análisis integral de la zona. En las figuras 12.84.35 y 12.4.36, se muestran las condiciones existentes durante el periodo de medición.

Figura 12.4.35. Estación Mezcalapa

Figura 12.4.36. Estación Mezcalapa

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

En este caso, debido a las dimensiones y caudal circulante sobre la sección transversal, se usó el sistema de anclaje puntual y se marcó la posición con ayuda de un eje de apoyo y un GPS (Figuras 12.4.37 y 12.4.38)

Figura 12.4.37. Sistema de anclaje

Figura 12.4.38. Posicionamiento con guías

En la siguiente figura se muestran los puntos de monitoreo de la estación Mezcalapa, que se ubicó aguas arriba de la zona de espigones, para evitar en la medida de lo posible su influencia en el transporte de sedimentos.

Figura 12.4.39. Puntos de medición Estación Mezcalapa

En lo que respecta a los sitios de monitoreo que se seleccionaron sobre los ríos Carrizal y Samaria, las zonas de mediciones se ubicaron en las coordenadas: coordenada norte 1985178.27 m N, coordenada este 468705.07 m E latitud y coordenada norte 1985861.53 m N, coordenada este 468788.04 m E latitud respectivamente, estos se muestran en la figura 12.4.40

Figura 12.4.40. Zonas de medición sobre ríos Samaria y Carrizal

En la tabla siguiente se muestra el resumen de trabajos realizados en esta zona

ESTACIÓN	HORA DE INICIO DEL AFORO	HORA FINAL DEL AFORO	ESCALA INICIAL (msnm)	ESCALA FINAL (msnm)	h _{m (mmm)}	CAUDAL (m³/s)	CAUDAL SOLIDO DE FONDO ESTACIÓN (m3/d)	GASTO SOLIDO DE SUSPENSIÓN POR ESTACIÓN (m³/d)
Mezcalapa	9:00	16:05	16.705	16.695	16.700	489.75	1,528.532	9,276.413
Mezcalapa	9:35	16:30	16.685	16.665	16.675	431.06	2,585.427	8,853,734
Carrizal 02	10:20	16:40	16.505	16.495	16.500	93.61	456.171	2.461.277
Carrizal 01 y 02			16.535	16.535	16.535	112.46		
Carrizal 03	0.20	16.10	16.535	16.535	16.535	1.86		
Carriza 04	0.50	16:10	16.535	16.535	16.535	29.71	831.429	4,166.043
Carrizal 05			16.535	16.535	16.535	18.6		
Samaria 01	10:20	16:40	16.505	16.495	16.500	223.24	133.176	6.076.596
Samaria Bifurcación	10:20	16:40	16.505	16.485	16.495	399.45	S/M	S/M
Samaria (01,02,03,04,05)	8:40	15:30	16.505	16.485	16.495	314.4	1,220.473	8,480.681

Tabla 12.4.3. Resumen de caudales

De las mediciones hechas con el perfilador acústico Doppler fue posible generar la hidrodinámica en cada sección: Mezcalapa (figura 12.4.41 y 12.4.42); Carrizal (Figuras 12.4.43, 12.4.44, 12.4.45, 12.4.46 y 12.4.47); Samaria (Figuras 12.4.483, 12.4.49,

X

Capitulo 12 | 77

12.4.50, 12.4.51, 12.4.52 y 12.4.53). Es a partir de estas figuras que se construyen las dovelas empleando el criterio de homogeneidad cinética.

Figura 12.4.41. Velocidad en planta y transversal Estación Mezcalapa 01

Figura 12.4.42. Velocidad en planta y transversal Estación Mezcalapa 02

Figura 12.4.43. Velocidad en planta y transversal Estación Carrizal 01

Figura 12.4.45. Velocidad en planta y transversal Estación Carrizal 03

Figura 12.4.46. Velocidad en planta y transversal Estación Carrizal 04

INFORME FINAL Instituto de Ingeniería Coordinación de Hidráulica

Figura 12.4.52. Velocidad en planta y transversal Estación Samaria 05

A partir de los valores medidos, se construyó la hidrodinámica en planta para todo el sistema, con un gasto aproximado de 410 m³/s (Figura 12.4.54).

Figura 12.4.54. Hidrodinámica del sistema Mezcalapa – Samaria – Carrizal (Q≈400 m³/s)

En la figura anterior se aprecia cómo se distribuyen los caudales; además, se aportan elementos para entender los procesos morfodinámicos e hidráulicos presentes en el sistema.

A partir de las mediciones de sedimentos realizadas, será posible generar las gráficas sedimentológicas y realizar los balances apropiados en todo el sistema.

Capitulo 12 | 82

Figura 12.4.57. Sedimentograma Estación Carrizal

A partir de los valores del transporte de sedimentos en el sistema, es posible construir la siguiente gráfica de distribución de caudales sólidos.

Capitulo 12 | 83

INFORME FINAL Instituto de Ingeniería Coordinación de Hidráulica

Figura 12.4.58. Distribución de caudales sólidos en el sistema

12.4.1.4 Sistema Río González confluencia río Samaria

La confluencia del río González y el río samaria, se ubica en el estado de Tabasco, Municipio de Nacajuca. Es una derivación del río Samaria que se divide en varios brazos mismos que se unen en su recorrido al Golfo de México (Figura 12.4.59).

Figura 12.4.59. Confluencia Río Samaria y Rio González

Se llevó a cabo una campaña de medición sobre esta corriente para comprobar si el transporte de sedimentos es significativo en esa zona. La zona de medición se ubicó en las coordenadas: coordenadas norte 2027414.93 m N, coordenada este 509125.56 m E Figura 12.4.60)

Figura 12.4.60. Zona de localización estación de monitoreo y control González

En esta sección se llevaron a cabo los procedimientos descritos en el apartado 12.3.1 para obtener el caudal líquido, el caudal sólido y el muestreo de material de fondo.

El procedimiento de selección de la zona de medición se hizo de acuerdo a las recomendaciones dadas por Rivera (2006). Se ubicaron tres sitios de monitoreo en zonas que estuvieran en una partes rectas del río, sin islas, ni cambios bruscos de dirección.

Además que fuera de fácil acceso. En la figura 12.4.61, se muestra una imagen de satélite con las zonas seleccionadas.

Capitulo 12 | 85

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

Figura 12.4.61. Zona de medición confluencia Samaria-González

En esta sección del río en particular se carece de antecedentes de mediciones previas, por lo que como mediciones iniciales se probaron condiciones de flujo que tuvieran un rango de variación lo más amplio posible. Esta situación no fue del todo posible encontrarla debido a que este río escurre libremente, responde rápidamente a las lluvias y durante las mediciones no se presentaron precipitación significativas que alteraran el escurrimiento. En la figura 12.4.62^a y b, se muestran las condiciones del río medidas.

(a) (b) Figura 12.4.62. González a) Aforo 1; b) Aforo 2

En la definición de las secciones transversales, debido a la profundidad y condiciones de flujo del río, se empleó el método de posicionamiento puntual con doble anclaje y georreferenciación con GPS (Figuras 12.4.63 y 12.4.64)

Figura 12.4.63. Sección transversal González

Figura 12.4.64. Sistema de Anclaje

Sobre la sección transversal se marcaron los puntos de medición por medio de un GPS marca Garmin 68Sx. En la siguiente figura se muestran los puntos de monitoreo en las secciones de la confluencia Samaria-González.

Figura 12.4.65. Puntos de monitoreo. Confluencia Samaria - González

En la tabla siguiente se muestra el resumen de trabajos realizados para esta zona

ESTACIÓN	HORA DE INICIO DEL AFORO	HORA FINAL DEL AFORO	ESCALA INICIAL (msnm)	ESCALA FINAL (msnm)	h _{m (mmm)} .	CAUDAL (m³/s)	CAUDAL SOLIDO DE FONDO ESTACIÓN (m3/d)	GASTO SOLIDO DE SUSPENSIÓN POR ESTACIÓN
Samaria - Aguas arriba Gonzalez	9:09	12:17	1.933	1.933	1.933	402.38	42.857	4,963.404
Samaria - Aguas arriba Gonzalez	9:26	11:11	1.933	1.933	1.933	418.4	125.544	4,539.574
González	12:50	14:05	1.813	1.813	1.813	154.32	0.010	1,410.615
González	11:28	12:11	1.813	1.813	1.813	151.18	0.415	2,014.468
Samaria - Aguas abajo Gonzalez	15:04	16:30	1.793	1.793	1.793	466.86	118.968	4,618.723
Samaria - Aguas abajo Gonzalez	12:31	13:55	1.793	1.793	1.793	502.27	86.696	4,488.511

Tabla 12.4.4. Resumen Confluencia Samaria - González

El aforo líquido se llevó a cabo por medio de un perfilador acústico Doppler. Se generaron aparte del aforo líquido, la hidrodinámica en planta (figura 12.4.66) y la distribución de corrientes en la vertical (Figura 12.4.67). En dichas figuras se aprecia las líneas de corriente vistas en planta y la distribución de velocidades sobre la vertical, respectivamente. Ambos resultados se emplean para construir las dovelas empleando el criterio de homogeneidad cinética.

Figura 12.4.66. Velocidad en planta estación González

Figura 12.4.69. Campo de velocidades en la vertical. Est. Samaria – Glez aguas abajo

Figura 12.4.71. Campo de velocidades en la vertical. Est. Samaria – Glez aguas abajo

Figura 12.4.70. Velocidad en Planta. Est. Samaria – Glez aguas abajo

A partir de estos valores es posible construir las gráficas sedimentológicas para estas secciones (Figura 12.4.72, 12.4.73 y 12.4.74).

Capitulo 12 | 89

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

120

110 0

100

à

Estacion Samaria

4620 -

4600 -

4580

4540

4500

(P/ 4560 E) O 4540 Aguas abajo Gonzalez

Figura 12.4.74 Sedimentograma Estación González

12.4.1.5 Sistema Grijalva – Chilapilla

El sistema Grijalva - Chilapilla, se ubica en el estado de Tabasco, Municipio de Centro. Es una derivación del río Grijalva que desemboca hacia la zona lagunar (Figura 12.4.75).

Capitulo 12 | 90

Figura 12.4.75. Sistema Grijalva - Chilapilla

Se llevó a cabo una campaña de medición sobre esta corriente para comprobar si el transporte de sedimentos es significativo en esa zona. La zona de medición se ubicó en las coordenadas: coordenadas norte 2027414.93 m N, coordenada este 509125.56 m E (Figura 12.4.76)

Figura 12.4.76. Zona de localización estación de monitoreo y control González

En esta sección se llevaron a cabo los procedimientos descritos en el apartado 12.3.1 para obtener el caudal líquido, el caudal sólido y el muestreo de material de fondo.

El procedimiento de selección de la zona de medición se hizo de acuerdo a las recomendaciones dadas por Rivera (2006). Se ubicaron dos sitios de monitoreo en zonas que estuvieran en una partes rectas del río, sin islas, ni cambios bruscos de dirección.

Capitulo 12 | 91

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

En esta sección del río en particular se carece de antecedentes de mediciones previas, por lo que como mediciones iniciales se probaron condiciones de flujo que tuvieran un rango de variación lo más amplio posible. Esta situación no fue del todo posible encontrarla debido a que no se presentaron precipitación significativa que alteraran el escurrimiento. En la figura 12.4.77a y b, se muestran las condiciones del río medidas.

(a) (b) Figura 12.4.77. Chilapilla a) Aforo 1; b) Aforo 2

En la definición de las secciones transversales, debido a la profundidad y condiciones de flujo del río, sobre el río Grijalva, se empleó el método de posicionamiento puntual con doble anclaje y georreferenciación con GPS (Figuras 12.4.78), sobre el canal Chilapilla se midió sobre un puente (Figura 12.4.79).

Figura 12.4.79. Sección Chilapilla

Capitulo 12 | 92

Grijalva

En la tabla siguiente se muestra el resumen de trabajos realizados para esta zona

ESTACIÓN	HORA DE INICIO DEL AFORO	HORA FINAL DEL AFORO	ESCALA INICIAL (msnm)	ESCALA FINAL (msnm)	h _{m (mnsm)}	CAUDAL (m³/s)	CAUDAL SOLIDO DE FONDO ESTACIÓN (m3/d)	GASTO SOLIDO DE SUSPENSIÓN POR ESTACIÓN (m³/d)
Grijalva	11:06	13:30	1.169	1.169	1.169	356.94	63.171	5,837.957
Grijalva	10:11	12:05	1.669	1.669	1.669	272.65	58.444	5,461.277
Chilapilla	1:45	15:30	1.669	1.669	1.669	20.56	0.972	1,531.915
Chilapilla	12:27	13:52	1.669	1.669	1 669	11.26	0.120	607 021

Tabla 12.4.5. Resumen Confluencia Grijalva - Chilapilla

El aforo líquido se llevó a cabo por medio de un perfilador acústico Doppler. Se generaron aparte del aforo líquido, la hidrodinámica en planta (figura 12.4.80 y 12.4.82) y la distribución de corrientes en la vertical (Figura 12.4.81 y 12.4.83). En dichas figuras se aprecia las líneas de corriente vistas en planta y la distribución de velocidades sobre la vertical, respectivamente. Ambos resultados se emplean para construir las dovelas empleando el criterio de homogeneidad cinética.

Figura 12.4.82. Velocidad en planta Río Chilapilla

Figura 12.4.81. Campo de velocidades en la vertical, Río Grijalva

Figura 12.4.83. Campo de velocidades en la vertical, Río Chilapilla

INFORME FINAL Instituto de Ingeniería Coordinación de Hidráulica

A partir de estos valores es posible construir las gráficas sedimentológicas para estas secciones (Figura 12.4.84 y 12.4.85).

Figura 12.4.84 Sedimentograma Estación Grijalva

Figura 12.4.85 Sedimentograma Estación Chilapilla

12.4.1.6 Sistema Canal Derivador El Censo

Como parte de las obras que se construyeron para protección de la ciudad de Villahermosa, dentro del Plan Hídrico Integral de Tabasco (PHIT), se encuentran una serie de estructuras derivadoras a los largo de los ríos de la Sierra y el río Grijalva. Estas obras permiten derivar parte del gasto que escurre sobre dichos ríos hacia distintas zonas Lagunares, dejando pasar únicamente los gastos de conservación hacia Villahermosa.

Actualmente se conoce el caudal líquido que dichas estructuras desalojan; sin embargo, el caudal sedimentológico que está siendo acarreado y depositado en las zonas lagunares no ha sido cuantificado. Conocer el funcionamiento hidráulico y sedimentológico de las estructuras reales, son datos esenciales para asegurar su buen funcionamiento y particularmente evaluar la capacidad de transporte de material fino hacia las zonas lagunares. Ante esto, se planteó la necesidad de medir sobre cada una de las estructuras el caudal líquido y sólido circulante y construir sedimentogramas que aporten los elementos para el manejo y conservación de las zonas reguladoras.

En este trabajo se consideró la medición de caudal líquido y sólido sobre la estructura derivadora conocida como El Censo, ubicada sobre la margen derecha del Río de la

Capitulo 12 | 94

Sierra en las coordenadas aproximadas: coordenadas norte 1977541.32 m N, coordenadas este 514014.24 m E (Figura 12.4.86)

Figura 12.4.86. Zona de localización Estación El Censo

En esta sección se llevaron a cabo los procedimientos descritos en el apartado 12.3.1 para obtener el caudal líquido, el caudal sólido y el muestreo de material de fondo.

La zona de medición se ubicó sobre el puente vehicular que existe en la zona y que además cuenta con una estación hidrométrica remota de la CONAGUA (Figuras 12.4.87 y 12.4.88).

En la figura 12.4.89, se muestra una imagen de satélite de la zona seleccionada.

Figura 12.4.87. Estación Hidrométrica El Censo

Figura 12.4.88. Puente vehicular El Censo

INFORME FINAL Instituto de Ingenieria Coordinación de Hidráulica

Figura 12.4.89. Zona de medición canal derivador El Censo

Durante el proceso de medición del caudal líquido se encontraron diferencias significativas respecto a los valores reportados por la CONAGUA, por este motivo se decidió emplear dos equipos distintos para el aforo líquido: El equipo Doppler (StreamPro). Figura 12.4.90) y un molinete hidrométrico (SIAP M11, Figura 12.4.91).

En la tabla 12.4.5 se muestran los valores reportados por parte de la CONAGUA y los medidos con los equipos (10:10 am). Se menciona que durante el proceso de medición el canal derivador aumento cerca de 0.1m su escala.

Figura 12.4.90. Aforo con equipo Doppler

Figura 12.4.91. Aforo con molinete Hidrométrico

Capitulo 12 | 96

The second second	ESTACIÓN	ESCALA INICIAL (msnm)	ESCALA FINAL (msnm)	h _{m (mnsm)}	CAUDAL Doppler (m³/s)	CAUDAL Molinete (m³/s)	CAUDAL Hidrométrica (m ³ /s)
	Censo	6.30	6.40	6.350	134.53	95.01	34.12

Tabla 12.4.6. Aforo líquido estación El Censo

Como se aprecia en la Tabla 12.8, existe una diferencia del 100% respecto a los valores reportados por la estación automática y los medidos en el sitio. La diferencia entre los valores medidos con el molinete y el equipo Doppler se deben a que durante la medición el caudal varió significativamente y mientras que con el Doppler la medición tomó cuestión de minutos, con el molinete tardo casi dos horas.

En lo que respecta al aforo de sedimentos en esta obra, se carece de antecedentes de mediciones previas. Esta primera medición tuvo como objetivo sensibilizarse sobre los procesos presentes. En las figuras 12.4.92 y 12.4.93, se muestran las condiciones de descarga de la estructura derivadora para algunos de los procedimientos llevados a cabo.

Figura 12.4.92. Estructura derivadora El Censo

Figura 12.4.93. Mediciones estructura derivadora El Censo

En la tabla siguiente se muestra el resumen de trabajos realizados para esta zona

ESTACIÓN	HORA DE INICIO DEL AFORO	HORA FINAL DEL AFORO	ESCALA INICIAL (msnm)	ESCALA FINAL (msnm)	h _{m (masm)}	CAUDAL (m³/s)	CAUDAL SOLIDO DE FONDO ESTACIÓN (m3/d)	GASTO SOLIDO DE SUSPENSIÓN POR ESTACIÓN (m ³ /d)
Censo	6:40	10:10	6.30	6.40	6.350	134.53	S/M	21,380.630

Tabla 12.4.7. Resumen canal derivador El Censo

INFORME FINAL Instituto de Ingeniería Coordinación de Hidráulica

El aforo líquido llevado a cabo por medio del perfilador Doppler, permitió generar aparte del aforo líquido, la hidrodinámica en planta (figura 12.4.94) y la distribución de corrientes en la vertical (Figura 12.4.95). Estos valores son útiles para la construcción de las dovelas.

A partir de estos valores es posible construir la gráfica sedimentológica para esta sección (Figura 12.4.96).

Figura 12.4.96. Sedimentograma canal derivador El Censo

En la siguiente figura se aprecia la gran cantidad de material fino (arcillas) que es arrastrado por la corriente en esa sección.

Figura 12.4.97. Material depositado en el canal derivador

12.5 DISEÑO DE LA ESTRATEGIA PERMANENTE DE MEDICIÓN DE SEDIMENTOS

El conocimiento de los cambios que puede sufrir una corriente, se sustenta en un conocimiento lo mejor posible de las condiciones hidráulicas y sedimentológicas que están presentes de manera natural en el mismo. Entender cómo funciona en los diferentes ciclos hidrológicos, como está constituido, cuáles son sus características geomorfológicas y cómo evoluciona el tamaño del material a lo largo de la corriente, son los elementos esenciales y la información base para cualquier tipo de estudio.

La estrategia de medición y monitoreo del bajo Grijalva se puede dividir en cuatro sistemas:

- 1) Sistema del Río Mezcalapa
- 2) Sistema del Rio Usumacinta
- 3) Sistema de obras derivadoras (Escotaduras)
- 4) Sistema de Ríos de la Sierra

Cada uno de estos sistemas implica el tener un conocimiento amplio del funcionamiento actual (diagnóstico) y futuro de los mismos, siendo que a la fecha a pesar de estar siendo intervenidos constantemente con fines de aprovechamiento y control, no se tiene clara la respuesta de los mismos a estos cambios; aún más, los sistemas están respondiendo y los cambios generados no están previstos.

Por este motivo a continuación se discute la estrategia que debe seguirse en cada uno de los sistemas propuestos. Debido a que las características tanto hidráulicas como sedimentológicas no son iguales en ningún río, las metodologías tampoco lo son, por lo tanto la propuesta se hace de manera independiente por cada sistema, dejando aspectos generales como descripción de equipos y técnicas de muestreo en un punto aparte.

12.5.1 Sistema Río Mezcalapa

El río Mezcalapa (estado de Tabasco, México) presenta una bifurcación la cual da origen a dos ríos llamados Carrizal y Samaria. El río Carrizal pasa por la ciudad de Villahermosa, capital del Estado con más de 650 000 habitantes.

En el funcionamiento original de la bifurcación la mayor parte del caudal pasaba por el río Samaria; sin embargo, desde hace varios años se observó una tendencia a revertir este comportamiento, notándose un aumento de los gastos por el río Carrizal. Esto trajo como consecuencia que en el año de 1999, que fue una época de avenidas extraordinaria, aumentaran los escurrimientos por el río Carrizal lo cual produjo inundaciones graves en la ciudad de Villahermosa (Gracia et al, 2003, Berezowsky et al, 2003).

Al analizar el problema, se encontró que el principal causa en el cambio de la proporción de gastos, fue el depósito de sedimento en la bifurcación, el cual se agudizó durante las avenidas de 1999 (Sánchez *et al*, 2001). Como medida preventiva se propuso la construcción de un estrechamiento sobre el río Carrizal con el objetivo de reducir los escurrimientos provenientes del río Mezcalapa hacia Villahermosa. La obra provisional consistía en un estrechamiento del cauce en una sección ubicada 2000 m aguas abajo de la bifurcación sobre el río Carrizal. Esto se realizó estrangulando la sección transversal con dos estructuras (similares a espigones) que apoyadas en ambas márgenes y empleando roca y elementos prefabricados, fueron depositados a volteo hasta producir un estrechamiento en la sección transversal del cauce.

La condición del proyecto, fue limitar el gasto máximo por el Carrizal a 850 m³/s (Sánchez *et al*, 2001). Para sustituir esta obra, se construyó una estructura de control a base de una batería de compuertas y dos canales de desvío (Figura 12.5.1), con el objetivo de controlar hasta 850 m³/s, que es el gasto de diseño determinado para ese río. Con esta estructura se trataron de minimizar los efectos de las aportaciones que se tienen por los ríos que confluyen a la salida del Carrizal, la operación de la presa Peñitas y las descargas de los ríos Comuapa y Platanar. La estructura de control, conocida como Macayo, empezó su funcionamiento a partir del año 2010 y a partir de ese entonces se han estado generando una serie de cambios fluviomorfológicos en el sistema que no se habían considerado y que se piensa se deben principalmente a una modificación drástica al transporte de sedimentos.

Figura 12.5.1. Estructura de control Macayo

En el año de 2003, la Comisión Nacional del Agua (CONAGUA) y la Universidad Juárez Autónoma de Tabasco (UJAT) junto con el asesor externo Dr. Jean Jaques Peters, identificaron algunos problemas que se estaban gestando en la bifurcación. Llegando a la conclusión que el fenómeno se debía estudiar en dos escalas distintas. La primera de campo cercano, del orden de magnitud de 20 kilómetros (entre 10 kilómetros aguas abajo de la bifurcación); y la segunda de campo medio del orden de magnitud de 100 kilómetros.

A partir de la información recolectada por la UJAT al año 2005, los levantamientos de márgenes por parte de empresas particulares en los años de 2010 y 2013, las visitas realizadas por parte de empresas particulares en diciembre del 2013, y la actual campaña de monitoreo por parte del Instituto de Ingeniería de la UNAM se llegó a las siguientes observaciones:

En el campo cercano:

• La tendencia del río Mezcalapa a migrar se amplió en los últimos años, de manera particular en las inmediaciones de la bifurcación por los efectos de regulación del

caudal líquido y retención del transporte de sólidos debidos a la estructura de control Macayo

- Se aprecia una fuerte tendencia a formar meandros, particularmente en la margen derecha del río Mezcalapa, por efecto del gran transporte de arenas.
- Una tendencia relativamente rápida a agradar el cauce del río Carrizal por efecto del remanso inducido por la estructura de control (proceso no solamente hidráulico sino sedimentológico).
- Una fuerte disposición del cauce a ampliarse por erosión marginal, principalmente la margen izquierda del río Mezcalapa (fenómeno ligado a las dos tendencias de agradar y de formar meandros)
- Preferencia del río Mezcalapa a migrar a la margen izquierda, con posibilidad de abandonar el cauce del río Carrizal, por efectos de la agradación del fondo
- Formación de una amplia zona de divagación aguas abajo de la bifurcación, sobre el río Samaria.
- La distribución de los gastos líquidos en la bifurcación Samaria-Carrizal es variable (no estacionario), y ya no depende de los cambios fluviomorfológicos que se generan en ambos brazos; sino, que está ligado a las variaciones en la distribución de los líquidos regulados por la estructura de control. Estos efectos están alterando sustancialmente el transporte de gastos sólidos entre los dos brazos.
- Permanece el efecto de curva de remanso por el efecto de los puentes Samaria: provocando una mayor disminución de velocidades del flujo cuando bajan los gastos líquidos al final de una creciente (efecto natural, cuando se trata de crecientes por lluvias, o artificial, cuando se trata de variación de gasto líquido controlado por la operación de las presas), y continuando la ampliación del cauce del río por la erosión de las márgenes

En la figura 12.5.2, se aprecia el corrimiento marginal que ha sufrido la zona, por efecto de la migración del río. En la margen izquierda, en azul oscuro se muestra la margen medida en 2003, en verde en 2010 y en rojo en 2013. Se estima una tasa de corrimiento aproximada de 25 m/año.

Figura 12.5.2. Corrimiento marginal en la bifurcación (Fuente: Fluvitecno S.A.)

En el campo lejano.

La segunda escala para evaluar la tendencia es de campo lejano, en un tramo del orden de magnitud aproximado a 240 kilómetros aguas abajo de la Presa Peñitas.

- Se aprecia una degradación del cauce en la parte superior y una agradación importante a partir del poblado de San Manuel, que de acuerdo a lo estimado puede deberse al alto transporte de material grueso proveniente del río Platanar y que está influyendo altamente en la morfología de la bifurcación. Por lo tanto, se deben reconocer y describir los procesos fluviomorfológicos presentes a lo largo del cauce en las diferentes secciones fluviales que caracterizan a los ríos Mezcalapa, Samaria y Carrizal. Particularmente la caracterización del cauce en función del régimen de escurrimiento presente ocasionado por el funcionamiento de la presa Peñitas, evaluando sus características geométricas entre Peñitas y el Golfo de México (ancho, profundidad promedio, tipo de cauce, pendientes y perfil longitudinal del thalweg y radio de curvatura). Este tipo de trabajo debe llevarse a cabo por medio de una sonda multihaz de alta resolución y relacionarse con fotogrametría con lidar a vuelos de baja altura para identificar formas del fondo.
- Del punto de vista fluviomorfológico, se aprecian claramente los impactos de la obra de control Macayo, tanto en la regulación del caudal líquido como en la retención del transporte de sólidos.
- El río Mezcalapa aguas abajo de peñitas tiene una morfología formada por las grandes crecientes, que se está ajustando a las condiciones hidrológicas y

Capitulo 12 | 104

sedimentológicas impuestas. Si bien, este proceso es lento, las variaciones a veces muy rápidas de los gastos líquidos aumentan la tendencia al trenzado. Sin embargo, en la zona de la bifurcación se está dando un cambio súbito en las condiciones fluviomorfológicas

- Se aprecia la tendencia a producir un cierre total o parcial del río Carrizal, lo que aumentaría la posibilidad de una avulsión sobre el río Samaria, que se daría entre la bifurcación y los puentes Samaria
- Hasta la fecha, no hay un análisis que explique o analice estos cambios. La obra de control del río Carrizal, no contempló los efectos que podría inferir sobre el comportamiento de los cauces. El aparentemente equilibrio morfológico que pudo haberse tenido antes de la obra, ha sido claramente alterado.
- La obra con compuertas, controla el gasto líquido en el río Carrizal únicamente cuando la creciente sobrepasa un cierto valor (umbral); es decir, cuando hay más transporte de sedimento sobre el río Mezcalapa. Sin embargo, a pesar de tener campañas de medición de sedimentos, estas datan a casi 10 años, pero debido a las modificaciones fluviomorfológicas, ya no son representativas.
- Se necesitan datos actuales para conocer las relaciones entre los gastos sólido y líquido en la bifurcación. Además del volumen de sedimentos que se está atrapado en el río Carrizal por el efecto de disminución de los flujos al final de una creciente (por efecto de curva de remanso), adicional al efecto causado por los puentes Samaria, que sigue produciendo una sedimentación importante en el tramo del río Samaria entre la bifurcación y los puentes
- Por efecto de la agradación continua del río Carrizal aguas arriba de la estructura de control, se tendrá como consecuencia un aumento relativo del nivel del espejo de agua para un cierto gasto (subida de la curva de gasto líquido); lo que puede traer como consecuencia una nueva avulsión, es decir, una nueva y súbita inundación.

Ante estas evidencias, en esta propuesta se definen los estudios que deben llevarse a cabo, con la finalidad de generar un diagnóstico fluviomorfológico que aporte los elementos mínimos para entender que está sucediendo en el sistema y en su caso proponer acciones que refuercen el manejo que actualmente se está llevando a cabo en la zona, por medio de la estructura de control.

