ESTUDIO PARA EL PROYECTO HIDROLÓGICO PARA PROTEGER A LA POBLACIÓN DE INUNDACIONES Y APROVECHAR MEJOR EL AGUA (PROHTAB)

Convenio de Colaboración No. SGIH-GPIH-SGPOPR-UNAM-II-RF-14-01

Informe Final

CAPÍTULO 4 Análisis del funcionamiento del sistema de medición hidrométrica y climatológica

Dr. Fernando Jorge González Villarreal *
Director del proyecto

M. en I. Juan Javier Carrillo Sosa **
Coordinador del proyecto

M. en I. Gabriela Gutiérrez Aviña ****

M. en I. Jorge Luis Reyes Hernández ****

Ing. Jorge Eduardo Velázquez Suárez ***
Ing. Erick Vladimir Paredes Juárez ***

Participantes

Elaborado para: COMISIÓN NACIONAL DEL AGUA⁺

NOVIEMBRE, 2014

- * Investigador, Instituto de Ingeniería, UNAM
- ** Técnico académico, Instituto de Ingeniería, UNAM
- *** Becario, Instituto de Ingeniería, UNAM
- **** Consultor externo

ÍNDICE

	LISIS DEL FUNCIONAMIENTO DEL SISTEMA DE MEDICIÓN HIDF	
	TOLÓGICA	
4.1	Introducción	
4.1.1	Zona de estudio	
4.1.2	Redes de medición	8
4.2	Recopilación de información	16
4.2.1	Banco Nacional de Datos de Aguas Superficiales (BANDAS)	16
4.2.2	Clima Computarizado (CLICOM)	26
4.2.3	Extractor rápido de información climatológica (ERIC III)	27
4.3	Inventario de la red de medición	30
4.3.1	Estaciones climatológicas	30
4.3.2	Estaciones hidrométricas	51
4.4	Análisis de la red de medición de la cuenca del río Grijalva	60
4.4.1	Elaboración de mapas de isoyetas	60
4.4.2	Análisis de la red hidrométrica	69
4.5	Análisis de consistencia de los datos	81
4.5.1	Análisis Visual Gráfico	81
4.5.2	Análisis de la Curva Doble Masa	82
4.5.3	Análisis estadístico	86
4.5.4	Análisis de Homogeneidad -Estaciones climatológicas Tabasco	93
4.5.5	Análisis de Homogeneidad -Estaciones climatológicas Chiapas	287
4.6	Plan objetivo para mejorar la consistencia de datos	883
4.7	Propuesta de instrumentación de la cuenca del río Usumacinta	887
4.7.1	Criterios de instrumentación	889
4.8	Conclusiones y recomendaciones	893

4.9	Bibliografía	. 895
ÍNDICE	DE FIGURAS	
Elever 4.4	1. Zana da est 15 110	
Figura 4.1	1 Zona de estudio "Cuenca de los ríos Grijalva y Usumacinta"	4
Figura 4.2	2 Cuenca Grijalva-Usumacinta (FUENTE: CFE, 1976)	5
Figura 4.3	3 Delimitación de la cuenca del río Grijalva	6
Figura 4.4	1 Sistema del drenaje fluvial de la cuenca del rio Grijalva	8
Figura 4.	5 Plano esquemático de la composición de una estación de observa	ıción
ciimatolog	gica en el hemisferio norte. (Fuente: OMM).	12
	6 Sitio Web https://www.imta.gob.mx/bandas	17
Figura		Web
nttp://wwv	v.CONAGUA.gob.mx/CONAGUA07/Contenido/Documentos/Portada%20BAN	1DA
S.htm		18
	3 Ubicación de las estaciones en el estado de Tabasco (FUENTE: http://clic	
	e.mx)	
	9 Ubicación de las estaciones en el estado de Chiapas (FUENTE: http://clic	
	e.mx)	
Figura 4.1	0 Software Eric III (FUENTE: IMTA, 2014)	28
	1 Listado de estaciones para el estado de Tabasco consultadas en el softw	
	FUENTE: ERIC III-IMTA, 2014)	
	2 Ubicación del sistema de estaciones climatológicas - Chiapas	
	3 Ubicación del sistema de estaciones climatológicas - Tabasco	
	4 Ubicación de las estaciones hidrométricas de la cuenca Grijalva-Usumad	
	5 Isoyetas generadas a partir de lluvias máximas del año 1999 (precipita	
	n mm)	
	6 Isoyetas generadas a partir de lluvias máximas del año 2007 (precipita	
	n mm)	
	7 Isoyetas generadas a partir de lluvias máximas del año 2008 (precipita	
-	n mm)	
	8 Isoyetas generadas a partir de lluvias máximas del año 2009 (precipita	
	n mm)9 Isoyetas generadas a partir de lluvias máximas del año 2010 (precipita	
	n mm)	
	0 Isoyetas generadas a partir de lluvias máximas del año 2011 (precipita	
	n mm)	
	1 Isoyetas generadas a partir de lluvias máximas del año 2012 (precipita	
	n mm)	
	2 Estación hidrométrica Tapijulapa – registro 1999-2014	
	3 Estación hidrométrica Teapa – registro 1999-2014	
	=	

Figura 4.24 Estación hidrométrica Puyacatengo – registro 1999-2014	71
Figura 4.25 Estación hidrométrica San Joaquín – registro 1999-2014	72
Figura 4.26 Estación hidrométrica Pueblo Nuevo – registro 1999-2014	12 73
Figura 4.27 Estación hidrométrica Gaviotas – registro 1999-2014	7 <i>3</i>
Figura 4.28 Estación hidrométrica Muelle – registro 1999-2014	75
Figura 4.29 Estación hidrométrica Porvenir – registro 1999-2014	76
Figura 4.30 Estación hidrométrica Samaria – registro 1999-2014	77
Figura 4.31 Estación hidrométrica González – registro 1999-2014	78
Figura 4.32 Estación hidrométrica Boca del Cerro – registro 1999-2014	
Figura 4.33 Estación hidrométrica San Pedro – registro 1999-2014	
Figura 4.34 Estación hidrométrica Salto del Agua – registro 1999-2014	80
Figura 4.35 Estación hidrométrica Macuspana – registro 1999-2014	
Figura 4.36 Ejemplo para el análisis visual gráfico	
Figura 4.37 Ejemplo para el análisis doble masa –estaciones CONFIABLES	
Figura 4.38 Ejemplo para el análisis doble masa –estación 1 CON QUIEBRE	
Figura 4.39 Pantalla de inicio software AFA v.1.1 (FUENTE: IMTA, 2010)	
Figura 4.40 Archivo de texto (*.txt) conteniendo los datos de precipitación	
Figura 4.41 Pantalla del software AFA v.1.1 para ingresar el archivo de *.txt	. 91
Figura 4.42 Pantalla de resultados obtenidos por estación con el software AFA v.1.1	
Figura 4.43 Hietograma estación 27002	
Figura 4.44 Estación más cercana a la estación "Benito Juárez"	
Figura 4.45 Gráfico de doble masa de la estación "Benito Juárez"	. 95
Figura 4.46 Hietograma de la estación 27003	. 97
Figura 4.47 Estación más cercana a la estación "Blasillo"	98
Figura 4.48 Gráfico de doble masa de la estación "Blasillo"	. 98
Figura 4.49 Hietograma de la estación 27004	
Figura 4.50 Estación más cercana a la estación "Boca del cerro"	
Figura 4.51 Gráfico de doble masa de la estación "Boca del cerro"	
Figura 4.52 Hietograma de la estación 27006.	
Figura 4.53 Estación más cercana a la estación "Buena Vista"	
Figura 4.54 Gráfico de doble masa de la estación "Buena Vista"	
Figura 4.55 Hietograma de la estación 27007	
Figura 4.56 Estación más cercana a la estación " Campo E. W. 75" 1	
Figura 4.57 Gráfico de doble masa de la estación "C.E. W. 75"	
Figura 4.58 Hietograma de la estación 27008	
Figura 4.59 Estación más cercana a la estación "Cárdenas"	
Figura 4.60 Gráfico de doble masa de la estación "Cárdenas" 1	
Figura 4.61 Hietograma de la estación 27009	l 15
Figura 4.62 Estación más cercana a la estación "Comalcalco"	
Figura 4.63 Gráfico de doble masa de la estación "Comalcalco"	
Figura 4.64 Hietograma de la estación 27011 1	
Figura 4.65 Estación más cercana a la estación "Dos patrias"	
Figura 4.66 Gráfico de doble masa de la estación "Dos patrias" 1	20

A section of the profit of the

Figura 4.67 Hietograma de la estación 27012	400
Figura 4.68 Estación más cercana a la estación "Emiliano Zapata"	. 123
Figura 4.69 Gráfico de doble masa de la estación "Emiliano Zapata"	123
Figura 4.70 Hietograma de la estación 27015	124
Figura 4.71 Estación más cercana a la estación "Francisco Rueda"	120
Figura 4.72 Gráfico de doble masa de la estación "Francisco Rueda"	127
Figura 4.73 Hietograma de la estación 27019	127
Figura 4.74 Estación más cercana a la estación "Jalapa"	130
Figura 4.75 Gráfico de doble masa de la estación "Jalapa"	
Figura 4.76 Hietograma de la estación 27020	
Figura 4.77 Estación más cercana a la estación "Jalpa de Mendez"	
Figura 4.78 Gráfico de doble masa de la estación "Jalpa de Méndez"	
Figura 4.79 Hietograma de la estación 27021	
Figura 4.80 Estación más cercana a la estación "Mactun"	
Figura 4.81 Gráfico de doble masa de la estación "Mactun"	
Figura 4.82 Hietograma de la estación 27024	
Figura 4.83 Estación más cercana a la estación "La Huasteca"	
Figura 4.84 Gráfico de doble masa de la estación "La Huasteca"	142
Figura 4.85 Hietograma de la estación 27028	144
Figura 4.86 Estación más cercana a la estación "Jonuta"	145
Figura 4.87 Gráfico de doble masa de la estación "Jonuta"	
Figura 4.88 Hietograma de la estación 27030	
Figura 4.89 Estación más cercana a la estación "Macuspana"	148
Figura 4.90 Gráfico de doble masa de la estación "Macuspana"	
Figura 4.91 Hietograma de la estación 27034	
Figura 4.92 Estación más cercana a la estación "Paraíso"	
Figura 4.93 Gráfico de doble masa de la estación "Paraíso"	-
Figura 4.94 Hietograma de la estación 27036	
Figura 4.95 Estación más cercana a la estación "Paso de Cunduacán"	
Figura 4.96 Gráfico de doble masa de la estación "Paso de Cunduacán"	
Figura 4.97 Hietograma de la estación 27037	
Figura 4.98 Estación más cercana a la estación "Pueblo Nuevo"	
Figura 4.99 Gráfico de doble masa de la estación "Pueblo Nuevo"	
Figura 4.100 Hietograma de la estación 27039	
Figura 4.101 Estación más cercana a la estación "Samaria".	
Figura 4.102 Gráfico de doble masa de la estación "Samaria"	
Figura 4.103 Hietograma de la estación 27040.	
Figura 4.104 Estación más cercana a la estación "San Pedro"	
Figura 4.105 Gráfico de doble masa de la estación "San pedro"	
Figura 4.106 Hietograma de la estación 27042	1/0
Figura 4.107 Estación más cercana a la estación "Tapijulapa"	
Figura 4.108 Gráfico de doble masa de la estación "Tapijulapa"	172 174

Figura 4.110 Estación más cercana a la estación "Teapa"	175
Figura 4.111 Gráfico de doble masa de la estación "Teapa"	175
Figura 4.112 Hietograma de la estación 27047	179
Figura 4.113 Estación más cercana a la estación "Tenosique".	178
Figura 4.114 Gráfico de doble masa de la estación "Tenosique".	170
Figura 4.115 Hietograma de la estación 27048	181
Figura 4.116 Estación más cercana a la estación "Tepetitán"	182
Figura 4.117 Gráfico de doble masa de la estación "Tepetitán"	182
Figura 4.118 Hietograma de la estación 27049	185
Figura 4.119 Estación más cercana a la estación "Tequila"	185
Figura 4.120 Gráfico de doble masa de la estación "Tequila"	186
Figura 4.121 Hietograma de la estación 27050	. 188
Figura 4.122 Estación más cercana a la estación "Tres Brazos"	. 189
Figura 4.123 Gráfico de doble masa de la estación "Tres Brazos"	
Figura 4.124 Hietograma de la estación 27051	192
Figura 4.125 Estación más cercana a la estación "Tulipán".	. 192
Figura 4.126 Gráfico de doble masa de la estación "Tulipán"	
Figura 4.127 Hietograma de la estación 27053	
Figura 4.128 Estación más cercana a la estación "Vicente Guerrero"	
Figura 4.129 Gráfico de doble masa de la estación "Vicente Guerrero"	196
Figura 4.130 Hietograma de la estación 27054	
Figura 4.131 Estación más cercana a la estación "Villahermosa".	199
Figura 4.132 Gráfico de doble masa de la estación "Villahermosa (DGE)"	200
Figura 4.133 Hietograma de la estación 27059	202
Figura 4.134 Estación más cercana a la estación "El Triunfo"	
Figura 4.135 Gráfico de doble masa de la estación "El Triunfo"	
Figura 4.136 Hietograma de la estación 27060	
Figura 4.137 Estación más cercana a la estación "González"	
Figura 4.138 Gráfico de doble masa de la estación " González"	
Figura 4.139 Hietograma de la estación 27061	
Figura 4.140 Estación más cercana a la estación "Puyacatengo"	
Figura 4.141 Gráfico de doble masa de la estación " Puyacatengo"	
Figura 4.142 Hietograma de la estación 27070	
Figura 4.143 Estación más cercana a la estación "Oxolotán"	
Figura 4.144 Gráfico de doble masa de la estación " Oxolotán"	
Figura 4.145 Hietograma de la estación 27071	
Figura 4.146 Estación más cercana a la estación "Aquiles Serdán"	
Figura 4.147 Gráfico de doble masa de la estación " Aquiles Serdán"	
Figura 4.148 Hietograma de la estación 27073	220
Figura 4.149 Estación más cercana a la estación "Poblado C-09"	
Figura 4.150 Gráfico de doble masa de la estación " Poblado C-09"	
Figura 4.151 Hietograma de la estación 27074	223
Figura 4.152 Estación más cercana a la estación "Poblado C-11"	224

Figura 4.153 Gráfico de doble masa de la estación " Poblado C-11"	224
Figura 4.154 Hietograma de la estación 27075	. 227
Figura 4.155 Estación más cercana a la estación "Poblado C-15"	. 227
Figura 4.156 Gráfico de doble masa de la estación " Poblado C-15"	. 228
Figura 4.157 Hietograma de la estación 27076	
Figura 4.158 Estación más cercana a la estación "Poblado C-16"	. 231
Figura 4.159 Gráfico de doble masa de la estación " Poblado C-16"	231
Figura 4.160 Hietograma de la estación 27077	234
Figura 4.161 Estación más cercana a la estación "Poblado C-22"	235
Figura 4.162 Gráfico de doble masa de la estación " Poblado C-22"	235
Figura 4.163 Hietograma de la estación 27078	238
Figura 4.164 Estación más cercana a la estación "Poblado C-28"	238
Figura 4.165 Gráfico de doble masa de la estación " Poblado C-28"	239
Figura 4.166 Hietograma de la estación 27080	
Figura 4.167 Estación más cercana a la estación "Poblado C-32"	242
Figura 4.168 Gráfico de doble masa de la estación " Poblado C-32"	242
Figura 4.169 Hietograma de la estación 27084	245
Figura 4.170 Estación más cercana a la estación "Nacajuca"	245
Figura 4.171 Gráfico de doble masa de la estación " Nacajuca"	246
Figura 4.172 Hietograma de la estación 27087	248
Figura 4.173 Estación más cercana a la estación "Hulería".	249
Figura 4.174 Gráfico de doble masa de la estación " Hulería"	249
Figura 4.175 Hietograma de la estación 27088	
Figura 4.176 Estación más cercana a la estación "La T"	
Figura 4.177 Gráfico de doble masa de la estación " La T"	253
Figura 4.178 Hietograma de la estación 27090	
Figura 4.179 Estación más cercana a la estación "El Pípila"	
Figura 4.180 Gráfico de doble masa de la estación " El Pípila"	256
Figura 4.181 Hietograma de la estación 27091	259
Figura 4.182 Estación más cercana a la estación "Playa Larga"	259
Figura 4.183 Gráfico de doble masa de la estación " Playa Larga"	260
Figura 4.184 Hietograma de la estación 27092	
Figura 4.185 Estación más cercana a la estación "Playas del Rosario"	
Figura 4.186 Gráfico de doble masa de la estación " Playas del Rosario"	
Figura 4.187 Hietograma de la estación 27093	
Figura 4.188 Estación más cercana a la estación "San Elpidio"	
Figura 4.189 Gráfico de doble masa de la estación " San Elpidio"	
Figura 4.190 Gráfico de doble masa de la estación " San Elpidio"	
Figura 4.191 Estación más cercana a la estación "INIFAP"	
Figura 4.192 Gráfico de doble masa de la estación " INIFAP"	
Figura 4.193 Hietograma de la estación 27096	
Figura 4.194 Estación más cercana a la estación "Porvenir"	273
Figura 4 195 Gráfico de doble masa de la estación " Ponyenir"	274

Figura 4.196 Gráfico de la precipitación máxima de la estación Blasillo	. 281
Figura 4.197 Prueba de Grubbs and Beck de la estación Blasillo	. 283
Figura 4.198 Curva masa de la estación Blasillo	. 284
Figura 4.199 Gráfico de la precipitación máxima de la estación Emiliano Zapata	
Figura 4.200 Prueba de Grubbs and Beck de la estación.	
Figura 4.201 Hietograma de la estación 7002	
Figura 4.202 Estación más cercana a la estación "Abelardo L. Rodríguez"	. 289
Figura 4.203 Gráfico de doble masa de la estación "Abelardo L. Rodriguez"	
Figura 4.204 Hietograma de la estación 7003	
Figura 4.205 Estación más cercana a la estación "Alcalá"	
Figura 4.206 Gráfico de doble masa de la estación " Alcalá "	
Figura 4.207 Hietograma de la estación 7006	296
Figura 4.208 Estación más cercana a la estación "Altamirano (SMN)"	297
Figura 4.209 Gráfico de doble masa de la estación "Altamirano (SMN)"	297
Figura 4.210 Hietograma de la estación 7007	300
Figura 4.211 Estación más cercana a la estación "Amatenango del Valle"	301
Figura 4.212 Gráfico de doble masa de la estación "Amatenango del Valle"	301
Figura 4.213 Hietograma de la estación 7012	304
Figura 4.214 Estación más cercana a la estación "Finca Argovia"	305
Figura 4.215 Gráfico de doble masa de la estación "Finca Argovia"	306
Figura 4.216 Hietograma de la estación 7015	308
Figura 4.217 Estación más cercana a la estación "Bochil"	309
Figura 4.218 Gráfico de doble masa de la estación "Bochil"	310
Figura 4.219 Hietograma de la estación 7018	313
Figura 4.220 Estación más cercana a la estación "Cacahoatan"	314
Figura 4.221 Gráfico de doble masa de la estación "Cacahoatan "	314
Figura 4.222 Hietograma de la estación 7021	317
Figura 4.223 Estación más cercana a la estación "Catarinitas"	318
Figura 4.224 Gráfico de doble masa de la estación "Catarinitas"	318
Figura 4.225 Hietograma de la estación 7022	321
Figura 4.226 Estación más cercana a la estación "Playas de Catazaja"	322
Figura 4.227 Gráfico de doble masa de la estación "Playas de Catazaja"	322
Figura 4.228 Hietograma de la estación 7028	325
Figura 4.229 Estación más cercana a la estación "Chacamax"	326
Figura 4.230 Gráfico de doble masa de la estación "Playas de Catazaja"	326
Figura 4.231 Hietograma de la estación 7030	329
Figura 4.232 Estación más cercana a la estación "Chamula"	330
Figura 4.233 Gráfico de doble masa de la estación "Playas de Catazaja"	330
Figura 4.234 Hietograma de la estación 7031	333
Figura 4.235 Estación más cercana a la estación "Chanal"	334
Figura 4.236 Gráfico de doble masa de la estación "Chanal"	334
Figura 4.237 Hietograma de la estación 7034	337
Figura 4 238 Estación más cercana a la estación "Chianilla"	330

Figura 4.239 Gráfico de doble masa de la estación "Chiapilla"	. 338
Figura 4.240 Hietograma de la estación 7035	. 341
Figura 4.241 Estación más cercana a la estación "Chicoasén"	. 342
Figura 4.242 Gráfico de doble masa de la estación "Chicoasén"	342
Figura 4.243 Hietograma de la estación 7036	345
Figura 4.244 Estación más cercana a la estación "Chilil"	346
Figura 4.245 Gráfico de doble masa de la estación "Chilil"	346
Figura 4.246 Hietograma de la estación 7037	
Figura 4.247 Estación más cercana a la estación "Finca Cuxtepeques"	350
Figura 4.248 Gráfico de doble masa de la estación "Finca Cuxtepeques"	350
Figura 4.249 Hietograma de la estación 7038	
Figura 4.250 Estación más cercana a la estación "Despoblado"	354
Figura 4.251 Gráfico de doble masa de la estación "Despoblado"	354
Figura 4.252 Hietograma de la estación 7039	357
Figura 4.253 Estación más cercana a la estación "El Boquerón"	358
Figura 4.254 Gráfico de doble masa de la estación "El Boquerón"	358
Figura 4.255 Hietograma de la estación 7040	
Figura 4.256 Estación más cercana a la estación "El Burrero"	362
Figura 4.257 Gráfico de doble masa de la estación "El Burrero"	362
Figura 4.258 Hietograma de la estación 7045	365
Figura 4.259 Estación más cercana a la estación "El Dorado"	
Figura 4.260 Gráfico de doble masa de la estación "El Dorado"	366
Figura 4.261 Hietograma de la estación 7050	
Figura 4.262 Estación más cercana a la estación "El Progreso"	370
Figura 4.263 Gráfico de doble masa de la estación "El Progreso"	370
Figura 4.264 Hietograma de la estación 7053	
Figura 4.265 Estación más cercana a la estación "Escuintla"	
Figura 4.266 Gráfico de doble masa de la estación "Escuintla"	374
Figura 4.267 Hietograma de la estación 7054	
Figura 4.268 Estación más cercana a la estación "Finca A. Prusia"	
Figura 4.269 Gráfico de doble masa de la estación "Finca A. Prusia"	
Figura 4.270 Hietograma de la estación 7055	
Figura 4.271 Estación más cercana a la estación "Finca Chayabe"	
Figura 4.272 Gráfico de doble masa de la estación "Finca Chayabe"	
Figura 4.273 Hietograma de la estación 7057	
Figura 4.274 Estación más cercana a la estación "Finca Chicharras"	
Figura 4.275 Gráfico de doble masa de la estación "Finca Chicharras"	
Figura 4.276 Hietograma de la estación 7061	
Figura 4.277 Estación más cercana a la estación "Finca Genova"	
Figura 4.278 Gráfico de doble masa de la estación "Finca Genova"	
Figura 4.279 Hietograma de la estación 7062	393
Figura 4.280 Estación más cercana a la estación "Finca Hamburgo"	
Figura 4.281 Gráfico de doble masa de la estación "Finca Hamburgo"	394

Figura 4.282 Hietograma de la estación 7065	397
Figura 4.283 Estación más cercana a la estación "Finca Ocotitlán"	398
Figura 4.284 Gráfico de doble masa de la estación "Finca Ocotitlán"	
Figura 4.285 Hietograma de la estación 7067	
Figura 4.286 Estación más cercana a la estación "Frontera Amatenango"	
Figura 4.287 Gráfico de doble masa de la estación "Frontera Amatenango"	
Figura 4.288 Hietograma de la estación 7068	405
Figura 4.289 Estación más cercana a la estación "Frontera Hidalgo"	406
Figura 4.290 Gráfico de doble masa de la estación "Frontera Hidalgo"	406
Figura 4.291 Hietograma de la estación 7069	
Figura 4.292 Estación más cercana a la estación "Grijalva"	410
Figura 4.293 Gráfico de doble masa de la estación "Grijalva"	410
Figura 4.294 Hietograma de la estación 7070	413
Figura 4.295 Estación más cercana a la estación "Guadalupe Grijalva"	414
Figura 4.296 Gráfico de doble masa de la estación "Guadalupe Grijalva"	
Figura 4.297 Hietograma de la estación 7071	417
Figura 4.298 Estación más cercana a la estación "Guaquitepec"	418
Figura 4.299 Gráfico de doble masa de la estación "Guaquitepec"	418
Figura 4.300 Hietograma de la estación 7077	421
Figura 4.301 Estación más cercana a la estación "Huixtla"	422
Figura 4.302 Gráfico de doble masa de la estación "Huixtla"	
Figura 4.303 Hietograma de la estación 7077	
Figura 4.304 Estación más cercana a la estación " Ignacio López Rayón"	
Figura 4.305 Gráfico de doble masa de la estación " Ignacio López Rayón "	
Figura 4.306 Hietograma de la estación 7085	
Figura 4.307 Estación más cercana a la estación " Palenque (Km. 336)"	
Figura 4.308 Gráfico de doble masa de la estación " Palenque (Km. 336"	
Figura 4.309 Hietograma de la estación 7086	
Figura 4.310 Estación más cercana a la estación "La Angostura"	
Figura 4.311 Gráfico de doble masa de la estación "La Angostura"	
Figura 4.312 Hietograma de la estación 7087	
Figura 4.313 Estación más cercana a la estación "La Cabaña"	
Figura 4.314 Gráfico de doble masa de la estación "La Cabaña"	
Figura 4.315 Hietograma de la estación 7094	
Figura 4.316 Estación más cercana a la estación "La Mesilla"	
Figura 4.317 Gráfico de doble masa de la estación " La Mesilla"	
Figura 4.318 Hietograma de la estación 7097	
Figura 4.319 Estación más cercana a la estación "La Providencia"	
Figura 4.320 Gráfico de doble masa de la estación "La Providencia"	
Figura 4.321 Hietograma de la estación 7100	
Figura 4.322 Estación más cercana a la estación "La Unión"	
Figura 4.323 Gráfico de doble masa de la estación " La Unión "	
Figura 4.324 Hietograma de la estación 7102	453

en transport de la companya de la c La companya de la co

Figura 4.325 Estación más cercana a la estación "Las Flores II"	454
Figura 4.326 Gráfico de doble masa de la estación " La Flores II "	
Figura 4.327 Hietograma de la estación 7104	457
Figura 4.328 Estación más cercana a la estación "Las Margaritas"	
Figura 4.329 Gráfico de doble masa de la estación "Las Margaritas"	458
Figura 4.330 Hietograma de la estación 7105	46′
Figura 4.331 Estación más cercana a la estación "Las Nubes"	462
Figura 4.332 Gráfico de doble masa de la estación "Las Nubes"	
Figura 4.333 Hietograma de la estación 7113	465
Figura 4.334 Estación más cercana a la estación "Mapastepec"	
Figura 4.335 Gráfico de doble masa de la estación " Mapastepec"	466
Figura 4.336 Hietograma de la estación 7114	
Figura 4.337 Estación más cercana a la estación "Yaquintela"	
Figura 4.338 Gráfico de doble masa de la estación "Yaquintela"	
Figura 4.339 Hietograma de la estación 7116	
Figura 4.340 Estación más cercana a la estación "Medio Monte"	
Figura 4.341 Gráfico de doble masa de la estación "Medio Monte"	
Figura 4.342 Hietograma de la estación 7117	
Figura 4.343 Estación más cercana a la estación " Metapa De Domínguez"	
Figura 4.344 Gráfico de doble masa de la estación " Metapa De Domínguez "	
Figura 4.345 Hietograma de la estación 7119	
Figura 4.346 Estación más cercana a la estación " Mtozintla"	
Figura 4.347 Gráfico de doble masa de la estación " Motozintla "	
Figura 4.348 Hietograma de la estación 7123	
Figura 4.349 Estación más cercana a la estación " Ocozocoautla"	
Figura 4.350 Gráfico de doble masa de la estación " Ocozocoautla"	
Figura 4.351 Hietograma de la estación 7125	
Figura 4.352 Estación más cercana a la estación "Oxchuc"	
Figura 4.353 Gráfico de doble masa de la estación " Oxchuc"	
Figura 4.354 Hietograma de la estación 7128	
Figura 4.355 Estación más cercana a la estación "Pichucalco (SMN)"	
Figura 4.356 Gráfico de doble masa de la estación "Pichucalco (SMN)"	
Figura 4.357 Hietograma de la estación 7129	
Figura 4.358 Estación más cercana a la estación "Pjijiapan"	
Figura 4.359 Gráfico de doble masa de la estación "Pijijiapan"	
Figura 4.360 Hietograma de la estación 7132	501
Figura 4.361 Estación más cercana a la estación "Portaceli"	
Figura 4.362 Gráfico de doble masa de la estación "Portaceli"	
Figura 4.363 Hietograma de la estación 7134	
Figura 4.364 Estación más cercana a la estación "Puente Colgante"	
Figura 4.365 Gráfico de doble masa de la estación "Puente Colgante"	
Figura 4.366 Hietograma de la estación 7135	
Figura 4 367 Estación más cercana a la estación "Puento Concordia"	E10

Figura 4.368 Gráfico de doble masa de la estación "Puente Concordia"	510
Figura 4.369 Hietograma de la estación 7141	
Figura 4.370 Estación más cercana a la estación "Salto de Agua"	514
Figura 4.371 Gráfico de doble masa de la estación "Salto de Agua"	
Figura 4.372 Hietograma de la estación 7145	
Figura 4.373 Estación más cercana a la estación "San Francisco"	518
Figura 4.374 Gráfico de doble masa de la estación "San Francisco"	518
Figura 4.375 Hietograma de la estación 7146	521
Figura 4.376 Estación más cercana a la estación "San Jerónimo"	522
Figura 4.377 Gráfico de doble masa de la estación "San Jerónimo"	522
Figura 4.378 Hietograma de la estación 7147	
Figura 4.379 Estación más cercana a la estación "San Joaquín"	526
Figura 4.380 Gráfico de doble masa de la estación "San Joaquín"	526
Figura 4.381 Hietograma de la estación 7153	
Figura 4.382 Estación más cercana a la estación "Santa Cruz"	530
Figura 4.383 Gráfico de doble masa de la estación "Santa Cruz"	530
Figura 4.384 Hietograma de la estación 7156	
Figura 4.385 Estación más cercana a la estación "Santa María"	534
Figura 4.386 Gráfico de doble masa de la estación "Santa María"	534
Figura 4.387 Hietograma de la estación 7157	537
Figura 4.388 Estación más cercana a la estación "Santo Domingo"	538
Figura 4.389 Gráfico de doble masa de la estación "Santo Domingo"	538
Figura 4.390 Hietograma de la estación 7160	541
Figura 4.391 Estación más cercana a la estación "Simojovel"	542
Figura 4.392 Gráfico de doble masa de la estación "Simojovel"	542
Figura 4.393 Hietograma de la estación 7162	545
Figura 4.394 Estación más cercana a la estación "Soyalo"	546
Figura 4.395 Gráfico de doble masa de la estación "Soyalo"	546
Figura 4.396 Hietograma de la estación 7164	
Figura 4.397 Estación más cercana a la estación "Tapachula (OBS)"	550
Figura 4.398 Gráfico de doble masa de la estación "Tapachula (OBS)"	550
Figura 4.399 Hietograma de la estación 7165	553
Figura 4.400 Estación más cercana a la estación "Tuxtla Gutiérrez (OBS)"	
Figura 4.401 Gráfico de doble masa de la estación "Tuxtla Gutiérrez (OBS)"	
Figura 4.402 Hietograma de la estación 7166	557
Figura 4.403 Estación más cercana a la estación "Talismán"	
Figura 4.404 Gráfico de doble masa de la estación "Talismán"	
Figura 4.405 Hietograma de la estación 7167	
Figura 4.406 Estación más cercana a la estación "Tapilula"	
Figura 4.407 Gráfico de doble masa de la estación "Tapilula"	
Figura 4.408 Hietograma de la estación 7168	565
Figura 4.409 Estación más cercana a la estación "Tonala (DGE)"	566
figura 4 410 Gráfico de doble masa de la estación "Tonala (DGE)"	566

Figura 4.411 Hietograma de la estación 7172	569
Figura 4.412 Estación más cercana a la estación "Unión Juárez"	570
Figura 4.413 Gráfico de doble masa de la estación "Unión Juárez"	
Figura 4.414 Hietograma de la estación 7173	
Figura 4.415 Hietograma de la estación 7175	574
Figura 4.416 Estación más cercana a la estación "Villaflores (SMN)"	575
Figura 4.417 Gráfico de doble masa de la estación "Villaflores (SMN)"	575
Figura 4.418 Hietograma de la estación 7176	578
Figura 4.419 Estación más cercana a la estación "Tuxtla Gutiérrez (CFE)"	
Figura 4.420 Gráfico de doble masa de la estación "Tuxtla Gutiérrez (CFE)"	
Figura 4.421 Hietograma de la estación 7180	
Figura 4.422 Estación más cercana a la estación "Jaltenango"	583
Figura 4.423 Gráfico de doble masa de la estación "Jaltenango"	583
Figura 4.424 Hietograma de la estación 7182	
Figura 4.425 Estación más cercana a la estación "Arriaga (DGE)"	587
Figura 4.426 Gráfico de doble masa de la estación "Arriaga (DGE)"	587
Figura 4.427 Hietograma de la estación 7186	590
Figura 4.428 Estación más cercana a la estación "Finca El Escalón"	591
Figura 4.429 Gráfico de doble masa de la estación "Finca El Escalón"	591
Figura 4.430 Hietograma de la estación 7190	
Figura 4.431 Estación más cercana a la estación "La Trinitaria"	
Figura 4.432 Gráfico de doble masa de la estación "La Trinitaria"	
Figura 4.433 Hietograma de la estación 7191	
Figura 4.434 Estación más cercana a la estación "Malpaso"	
Figura 4.435 Gráfico de doble masa de la estación "Malpaso"	
Figura 4.436 Hietograma de la estación 7198	
Figura 4.437 Hietograma de la estación 7200	
Figura 4.438 Estación más cercana a la estación "Tapachula"	
Figura 4.439 Gráfico de doble masa de la estación "Tapachula"	
Figura 4.440 Hietograma de la estación 7202	
Figura 4.441 Estación más cercana a la estación "Tuxtla Gutiérrez"	
Figura 4.442 Gráfico de doble masa de la estación "Tuxtla Gutierrez"	
Figura 4.443 Hietograma de la estación 7205	
Figura 4.444 Estación más cercana a la estación "Porvenir"	
Figura 4.445 Gráfico de doble masa de la estación "Comitán"	
Figura 4.446 Hietograma de la estación 7207	
Figura 4.447 Estación más cercana a la estación "Porvenir"	
Figura 4.448 Gráfico de doble masa de la estación "Larrainzar"	
Figura 4.449 Hietograma de la estación 7208	
Figura 4.450 Estación más cercana a la estación "El Novillero"	
Figura 4.451 Gráfico de doble masa de la estación "El Novillero"	
Figura 4.452 Hietograma de la estación 7217	622
Figura 4.453 Estación más cercana a la estación "Solochiaspan"	623

Figura 4.454 Gráfico de doble masa de la estación "Solosuchiapa"	. 623
Figura 4.455 Hietograma de la estación 7224	
Figura 4.456 Estación más cercana a la estación "Chicomuselo"	626
Figura 4.457 Gráfico de doble masa de la estación "Chicomuselo"	627
Figura 4.458 Hietograma de la estación 7226	
Figura 4.459 Estación más cercana a la estación "Reforma"	630
Figura 4.460 Gráfico de doble masa de la estación "Reforma"	
Figura 4.461 Hietograma de la estación 7228	
Figura 4.462 Estación más cercana a la estación "Tres Picos"	634
Figura 4.463 Gráfico de doble masa de la estación "Tres Picos"	
Figura 4.464 Hietograma de la estación 7229	637
Figura 4.465 Estación más cercana a la estación " Santo Domingo "	
Figura 4.466 Gráfico de doble masa de la estación "Santo Domingo"	
Figura 4.467 Hietograma de la estación 7230	
Figura 4.468 Estación más cercana a la estación "San Miguel"	
Figura 4.469 Gráfico de doble masa de la estación "San Miguel"	
Figura 4.470 Hietograma de la estación 7238	
Figura 4.471 Estación más cercana a la estación " El Sabinal"	
Figura 4.472 Gráfico de doble masa de la estación "El Sabinal"	646
Figura 4.473 Hietograma de la estación 7239	649
Figura 4.474 Estación más cercana a la estación " Villa de Acala"	650
Figura 4.475 Gráfico de doble masa de la estación "Villa de Acala"	650
Figura 4.476 Hietograma de la estación 7320	653
Figura 4.477 Estación más cercana a la estación " San Fernando"	653
Figura 4.478 Gráfico de doble masa de la estación "San Fernando"	654
Figura 4.479 Hietograma de la estación 7320	656
Figura 4.480 Estación más cercana a la estación " Salvación"	657
Figura 4.481 Gráfico de doble masa de la estación "Salvación"	658
Figura 4.482 Hietograma de la estación 7326	660
Figura 4.483 Estación más cercana a la estación " Mazatán"	661
Figura 4.484 Gráfico de doble masa de la estación "Mazatán"	661
Figura 4.485 Hietograma de la estación 7327	664
Figura 4.486 Estación más cercana a la estación " Úrsulo Galván"	665
Figura 4.487 Gráfico de doble masa de la estación "Úrsulo Galván"	665
Figura 4.488 Hietograma de la estación 7329	668
Figura 4.489 Estación más cercana a la estación " Cascajal"	668
Figura 4.490 Gráfico de doble masa de la estación "Cascajal"	669
Figura 4.491 Hietograma de la estación 7330	
Figura 4.492 Estación más cercana a la estación " Soyatitan"	672
Figura 4.493 Gráfico de doble masa de la estación "Soyatitan"	
Figura 4.494 Hietograma de la estación 7331	
Figura 4.495 Estación más cercana a la estación " Villa Las Rosas"	
Figura 4.496 Gráfico de doble masa de la estación "Villa Las Rosas"	676

Figura 4.497 Hietograma de la estación 7332	679
Figura 4.498 Estación más cercana a la estación " Cristóbal Obregón"	
Figura 4.499 Gráfico de doble masa de la estación "Cristóbal Obregón"	
Figura 4.500 Hietograma de la estación 7333	683
Figura 4.501 Estación más cercana a la estación " Buenos Aires"	684
Figura 4.502 Gráfico de doble masa de la estación "Buenos Aires"	684
Figura 4.503 Hietograma de la estación 7336	
Figura 4.504 Estación más cercana a la estación " Querétaro"	
Figura 4.505 Gráfico de doble masa de la estación "Querétaro"	
Figura 4.506 Hietograma de la estación 7336	
Figura 4.507 Estación más cercana a la estación " Plan de Iguala"	691
Figura 4.508 Gráfico de doble masa de la estación "Plan de Iguala"	691
Figura 4.509 Hietograma de la estación 7337	694
Figura 4.510 Estación más cercana a la estación " Lacantun"	
Figura 4.511 Gráfico de doble masa de la estación "Lacantun"	695
Figura 4.512 Hietograma de la estación 7339	
Figura 4.513 Estación más cercana a la estación " El Porvenir"	
Figura 4.514 Gráfico de doble masa de la estación "El Porvenir"	699
Figura 4.515 Hietograma de la estación 7342	
Figura 4.516 Estación más cercana a la estación " Benito Juárez"	
Figura 4.517 Gráfico de doble masa de la estación "Benito Juárez"	703
Figura 4.518 Hietograma de la estación 7343	
Figura 4.519 Estación más cercana a la estación " Cuauhtémoc"	707
Figura 4.520 Gráfico de doble masa de la estación "Cuauhtémoc"	707
Figura 4.521 Hietograma de la estación 7344	710
Figura 4.522 Estación más cercana a la estación " Ejido Ibarra"	711
Figura 4.523 Gráfico de doble masa de la estación "Ejido Ibarra"	711
Figura 4.524 Hietograma de la estación 7348	
Figura 4.525 Estación más cercana a la estación "Independencia"	
Figura 4.526 Gráfico de doble masa de la estación "Independencia"	
Figura 4.527 Hietograma de la estación 7349	718
Figura 4.528 Estación más cercana a la estación " Monterrey"	719
Figura 4.529 Gráfico de doble masa de la estación "Monterrey"	
Figura 4.530 Hietograma de la estación 7355	
Figura 4.531 Estación más cercana a la estación " Unión Zaragoza"	
Figura 4.532 Gráfico de doble masa de la estación "Unión Zaragoza"	
Figura 4.533 Hietograma de la estación 7358	
Figura 4.534 Estación más cercana a la estación " Flores Magón"	
Figura 4.535 Gráfico de doble masa de la estación "Flores Magón"	
Figura 4.536 Hietograma de la estación 7360	
Figura 4.537 Estación más cercana a la estación " Luis Espinoza"	
Figura 4.538 Gráfico de doble masa de la estación "Luis Espinoza"	731
Figura 4.539 Hietograma de la estación 7362	734

Figura 4.540 Estación más cercana a la estación " Rosendo"	. 735
Figura 4.541 Gráfico de doble masa de la estación "Rosendo"	. 735
Figura 4.542 Hietograma de la estación 7365	. 738
Figura 4.543 Estación más cercana a la estación " Ocotepec"	. 739
Figura 4.544 Gráfico de doble masa de la estación "Ocotepec"	739
Figura 4.545 Hietograma de la estación 7366	742
Figura 4.546 Estación más cercana a la estación " Grijalva"	743
Figura 4.547 Gráfico de doble masa de la estación " Grijalva"	743
Figura 4.548 Hietograma de la estación 7369	746
Figura 4.549 Estación más cercana a la estación " Sayula"	747
Figura 4.550 Gráfico de doble masa de la estación "Sayula"	747
Figura 4.551 Hietograma de la estación 7369	750
Figura 4.552 Estación más cercana a la estación "Tzinbac"	751
Figura 4.553 Gráfico de doble masa de la estación "Tzinbac"	751
Figura 4.554 Hietograma de la estación 7370	754
Figura 4.555 Estación más cercana a la estación " Adolfo R. Cortinez"	755
Figura 4.556 Gráfico de doble masa de la estación " Adolfo R. Cortinez"	755
Figura 4.557 Hietograma de la estación 7372	758
Figura 4.558 Estación más cercana a la estación "Berriozabal"	759
Figura 4.559 Gráfico de doble masa de la estación "Berriozabal"	759
Figura 4.560 Hietograma de la estación 7373	762
Figura 4.561 Estación más cercana a la estación "Tzontehuitz"	763
Figura 4.562 Gráfico de doble masa de la estación "Tzontehuitz (Cataluta)"	763
Figura 4.563 Hietograma de la estación 7374	766
Figura 4.564 Estación más cercana a la estación "Porvenir"	767
Figura 4.565 Gráfico de doble masa de la estación "Catarina"	767
Figura 4.566 Hietograma de la estación 7376	770
Figura 4.567 Estación más cercana a la estación " Francisco I. Madero"	771
Figura 4.568 Gráfico de doble masa de la estación "Francisco I. Madero"	771
Figura 4.569 Hietograma de la estación 7380	774
Figura 4.570 Estación más cercana a la estación "Las Brisas"	775
Figura 4.571 Gráfico de doble masa de la estación "Las Brisas"	775
Figura 4.572 Hietograma de la estación 7383	778
Figura 4.573 Estación más cercana a la estación " Nueva Palestina"	779
Figura 4.574 Gráfico de doble masa de la estación "Nueva Palestina"	779
Figura 4.575 Hietograma de la estación 7385	
Figura 4.576 Estación más cercana a la estación " Pueblo Viejo"	783
Figura 4.577 Gráfico de doble masa de la estación "Pueblo Viejo"	783
Figura 4.578 Hietograma de la estación 7386	
Figura 4.579 Estación más cercana a la estación " San Isidro"	787
Figura 4.580 Gráfico de doble masa de la estación "San Isidro"	787
Figura 4.581 Hietograma de la estación 7388	
	701

And the Company of th

Figura 4.583 Gráfico de doble masa de la estación "Santa Lucia"	. 791
Figura 4.584 Hietograma de la estación 7389	794
Figura 4.585 Estación más cercana a la estación " Sitala"	. 795
Figura 4.586 Gráfico de doble masa de la estación "Sitala"	
Figura 4.587 Hietograma de la estación 7390	
Figura 4.588 Estación más cercana a la estación " Cacaluta"	
Figura 4.589 Gráfico de doble masa de la estación "Cacaluta"	
Figura 4.590 Hietograma de la estación 7391	
Figura 4.591 Estación más cercana a la estación " Yasha "	803
Figura 4.592 Gráfico de doble masa de la estación " Yasha"	
Figura 4.593 Hietograma de la estación 7392	
Figura 4.594 Estación más cercana a la estación " Zoológico"	
Figura 4.595 Gráfico de doble masa de la estación " Zoológico"	
Figura 4.596 Hietograma de la estación 7393	
Figura 4.597 Estación más cercana a la estación " Finca La paz"	
Figura 4.598 Gráfico de doble masa de la estación " Finca La paz"	
Figura 4.599 Hietograma de la estación 7397	
Figura 4.600 Estación más cercana a la estación "Finca San Cristóbal"	
Figura 4.601 Gráfico de doble masa de la estación " Finca San Cristóbal"	
Figura 4.602 Hietograma de la estación 7397	
Figura 4.603 Estación más cercana a la estación "Presa Portillo"	
Figura 4.604 Gráfico de doble masa de la estación " Presa Portillo"	
Figura 4.605 Gráfico de la precipitación máxima de la estación Bochil	
Figura 4.606 Gráfico de la precipitación máxima de la estación Catarinitas	
Figura 4.607 Gráfico de la precipitación máxima de la estación Finca Hamburgo	
Figura 4.608 Gráfico de la precipitación máxima de la estación Frontera Hidalgo	
Figura 4.609 Gráfico de la precipitación máxima de la estación Palenque (DGE)	
Figura 4.610 Gráfico de la precipitación máxima de la estación Las Nubes	
Figura 4.611 Gráfico de la precipitación máxima en 24 horas de la estación Mapaste	
rigura 4.017 Orano de la precipitación maxima en 24 noras de la estación mapaste	-
Figura 4.612 Gráfico de la precipitación máxima de la estación Yaquintela	
Figura 4.613 Gráfico de la precipitación máxima de la estación Metapa de Domínguez	
Figura 4.614 Prueba de Grubbs and Beck de la estación Metapa de Domínguez	
Figura 4.615 Curva masa de la estación Metapa de Domínguez y estaciones cercanas	
Figura 4.616 Gráfico de la precipitación máxima de la estación Oxchuc	
Figura 4.617 Gráfico de la precipitación máxima de la estación Pijijiapan	
Figura 4.618 Gráfico de la precipitación máxima de la estación Puente Concordia	
Figura 4.619 Gráfico de la precipitación máxima de la estación San Francisco	
Figura 4.620 Gráfico de la precipitación máxima de la estación San Francisco	
Figura 4.621 Gráfico de la precipitación máxima de la estación Tuxtla Gutiérrez (CFE)	
Figura 4.622 Gráfico de la precipitación máxima de la estación Santo Domingo	
Figura 4.623 Gráfico de la precipitación máxima de la estación Jaltenango	
Figura 4.624 Gráfico de la precipitación máxima de la estación daltenarigo	
Tigata 4.024 Oranoo de la precipitación maxima de la estación ividipaso	000

Figura 4.625 Prueba de Grubbs and Beck de la estación Malpaso	855
Figura 4.626 Curva masa de la estación Malpaso y estaciones cercanas	856
Figura 4.627 Curva masa de la estación Malpaso y estaciones cercanas	857
Figura 4.628 Gráfico de la precipitación máxima de la estación Novillero	858
Figura 4.629 Gráfico de la precipitación máxima de la estación Salvación	859
Figura 4.630 Prueba de Grubbs and Beck den la estación Salvación	860
Figura 4.631 Curva masa de la estación Salvación y estaciones cercanas	861
Figura 4.632 Gráfico de la precipitación máxima de la estación Villas Las Rosas	862
Figura 4.633 Gráfico de la precipitación máxima de la estación Buenos Aires	863
Figura 4.634 Gráfico de la precipitación máxima de la estación Lacantun (CFE)	
Figura 4.635 Prueba de Grubbs and Beck de la estación Lacantun (CFE)	865
Figura 4.636 Prueba de Pettitt de la estación Lacantun (CFE)	866
Figura 4.637 Gráfico de la precipitación máxima de la estación Cuauhtémoc	
Figura 4.638 Gráfico de la precipitación máxima de la estación Ejido Ibarra	
Figura 4.639 Gráfico de la precipitación máxima de la estación Independencia	
Figura 4.640 Gráfico de la precipitación máxima de la estación Tzontehuitz	871
Figura 4.641 Gráfico de la precipitación máxima de la estación Francisco I. Madero	
Figura 4.642 Prueba de Grubbs and Beck de la estación Francisco I. Madero	
Figura 4.643 Curva masa dela estación Francisco I. Madero y estaciones cercanas	875
Figura 4.644 Gráfico de la precipitación máxima de la estación Las Brisas	
Figura 4.645 Gráfico de la precipitación máxima de la estación Nueva Palestina	
Figura 4.646 Prueba de Grubbs and Beck de la estación Nueva Palestina	878
Figura 4.647 Prueba de Pettitt de la estación Nueva Palestina	879
Figura 4.648 Gráfico de la precipitación máxima de la estación San Isidro	880
Figura 4.649 Gráfico de la precipitación máxima de la estación Santa Lucía	881
Figura 4.650 Gráfico de la precipitación máxima de la estación Yasha	882
Figura 4.651 Zona de estudio – río Usumacinta	887
Figura 4.652 Red de medición de la cuenca del río Usumacinta y Zona de los ríos 8	
Figura 4.653 Propuesta de instrumentación para la cuenca del río Usumacinta 8	891

ACCIONES PARA REDUCIR LA VULNERABILIDAD DE LA POBLACIÓN

4 ANÁLISIS DEL FUNCIONAMIENTO DEL SISTEMA DE MEDICIÓN HIDROMÉTRICA Y CLIMATOLÓGICA

4.1 Introducción

En el año 2013 se firmó el Convenio de coordinación que celebran la Secretaría de Medio Ambiente y Recursos Naturales, a través de la Comisión Nacional del Agua, y el Estado de Tabasco, con el objeto de llevar a cabo el Proyecto hidrológico para proteger a la población de inundaciones y aprovechar mejor el agua (PROHTAB), donde se menciona en materia de alertamiento temprano y redes de monitoreo, que la CONAGUA se compromete a cumplir con el "Protocolo de alerta para condiciones meteorológicas y/o hidrológicas severas" emitido por la Coordinación General de Atención a Emergencias y Consejos de Cuenca, la Coordinación General del Servicio Meteorológico Nacional y la Subdirección General Técnica de la CONAGUA. En dicho documento la CONAGUA se compromete a modernizar y/o instalar 52 estaciones climatológicas e hidrométricas.

Es por ello, que el Instituto de Ingeniería elaboró para esta primera etapa el "Análisis del funcionamiento del sistema de medición hidrométrica y climatológica" con el objeto de realizar el diagnostico e inventario del sistema de medición hidrométrica y climatológica del estado de Tabasco y de la confiabilidad de los datos en los registros históricos de la cuenca del río Grijalva, por medio de un análisis de consistencia de los datos.

Así mismo, se elaboró la propuesta de instrumentación de la cuenca del río Usumacinta con base en criterios de gestión de riesgo por inundación.

Como introducción al tema, se puede decir que las mediciones de la precipitación pueden estar afectadas por diferentes errores. Estos errores pueden ser sistemáticos o accidentales, además de los producidos por la acción del viento o la perturbación aerodinámica del pluviómetro.

Los errores accidentales se pueden originar por errores en el instrumental, perturbaciones aleatorias por la vida silvestre (animales) y se manifiestan por "ruido" en las mediciones. Estos errores tienden a disminuir al considerar un período extenso de observaciones.

Los errores sistemáticos se pueden presentar por varias razones. Por ejemplo la instalación de un pluviómetro cerca de algún obstáculo que pueda llevar a mediciones de precipitación por defecto. Otra fuente de error es la observación permanente del nivel de la precipitación por defecto/exceso que puede conducir a precipitaciones subestimadas/ sobreestimadas por el observador. De igual manera puede ser fuente de error el criterio empleado para elegir datos para los promedios cuando faltan observaciones.

Una técnica clásica para evaluar la exactitud de una estación climatológica es comparar las tendencias de esta estación con las tendencias en estaciones vecinas. Si se producen cambios abruptos en una estación con respecto a otras estaciones, entonces se sugiere que existiría algún tipo de error que puede afectar las mediciones. La técnica clásica de comparación es el análisis de las curvas doble masa o doble acumulada (Rostlac-UNESCO, 1992; Dunne y Leopold, 1978).

En el caso de las estaciones hidrométricas, los errores sistemáticos se presentan básicamente por cambios en la infraestructura hidráulica, que modifican los flujos en los cauces o la sección de control donde se ubica la estación, así también errores en la referencia de los niveles (escalas), para ello se recomienda realizar un análisis de datos mensual y anual en dos temporadas, en época de lluvias y estiaje.

4.1.1 Zona de estudio

En los años sesenta la Secretaría de Agricultura y Recursos Hidráulicos (SARH) dividió a México en 37 regiones hidrológicas, con el objetivo de estudios hidrológicos y de calidad del agua. La Comisión Nacional del Agua (CONAGUA), ha dividido a México, hidrológicamente, en 13 regiones Hidrológico-Administrativas, dichas regiones administrativas se subdividen en 37 regiones hidrológicas.

Una región hidrológica es la agrupación de varias cuencas hidrológicas con niveles de escurrimiento superficial muy similares. En la Tabla 4.1 se muestran la región No. 30 correspondiente a la zona Grijalva-Usumacinta.

Tabla 4.1.- Características de las regiones hidrológicas (FUENTE: Estadísticas del agua en México, 2013-CONAGUA)

Nombre de región hidrológica	Extensión territorial continental (km²)	Precipitación normal anual 1971-2000 (mm)	Escurrimiento natural medio superficial interno (hm³/año)	Escurrimiento natural medio superficial total (hm³/año)	Número de cuencas hidrológicas
30. Grijalva- Usumacinta	102 465	1 709	73 316	117 396	83

La región hidrológica número 30 (RH30), Grijalva-Usumacinta se localiza en el sureste de la República Mexicana. Comprende la mayor parte de los estados de Chiapas con el 85.53% de su superficie estatal y Tabasco con 75.22%, y pequeñas porciones de Campeche con 33.04%, Oaxaca con 1.02% y Veracruz con 0.10% de su superficie estatal. Por tanto la Región Hidrológica No. 30 posee una extensión continental de 102,465 km². La región Hidrológica No. 30 es la más húmeda del país y aloja a los ríos más caudalosos; el río Usumacinta y el río Grijalva, ambos desembocan en el Golfo de México.

Para esta primera etapa la zona de estudio se concentró en la cuenca del río Grijalva donde se llevó a cabo un diagnóstico, inventario y análisis de consistencia de los datos generados por la red de estaciones climatológicas, y una revisión mensual y anual de los datos históricos de las estaciones hidrométricas, mientras que para la cuenca del río Usumacinta y la zona de los ríos se elaboró la propuesta de instrumentación como se muestra en la Figura 4.1 ambas zonas forman parte de la Región Hidrológica No. 30 Grijalva-Usumacinta.

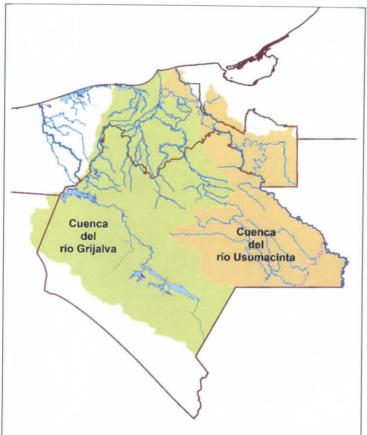


Figura 4.1.- Zona de estudio "Cuenca de los ríos Grijalva y Usumacinta"

4.1.1.1 Descripción general de la cuenca del río Grijalva

La cuenca del Río Grijalva comprende cuatro porciones geográficas bien definidas que se conocen con los nombres de Alto Grijalva, Medio Grijalva, Bajo Grijalva (Sierra) y Bajo Grijalva (Planicie) (ver Figura 4.2).

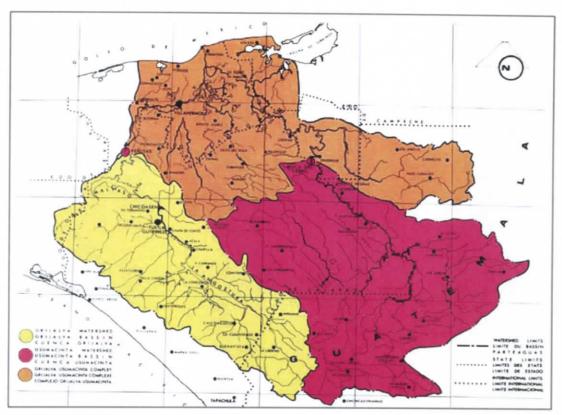


Figura 4.2.- Cuenca Grijalva-Usumacinta (FUENTE: CFE, 1976)

El **Alto y Medio Grijalva** se ubican en la Depresión Central de Chiapas, cuenta con una extensa zona semiplana bordeada por la Sierra Madre, los Altos y las Montañas del Norte de Chiapas. En esta porción se presentan las mayores elevaciones de Chiapas como las serranías localizadas entre San Cristóbal de las Casas y Comitán, que alcanzan alturas superiores a los 2,700 msnm, también se encuentra el cañón del sumidero. La máxima elevación se ubica hacia el sureste cerca de la frontera con la República de Guatemala, se trata del Volcán Tacaná con aproximadamente 4,000 msnm (ver Figura 4.3).

En el **Bajo Grijalva (Sierra)**, se ubica la Sierra del Norte de Chiapas, se compone de una serie de serranías separadas por alargados valles que bordean a los Altos y las Montañas del Oriente. La disposición de las montañas permite interceptar la humedad que cargan los vientos del Golfo de México, lo que propicia un clima húmedo con lluvias todo el año.

El **Bajo Grijalva (Planicie)**, se presentan planicies ubicadas en la Llanura Costera del Golfo, esta llanura es ocupada en su mayoría por el estado de Tabasco, está formada por

grandes cantidades de aluvión acarreado por los ríos más caudalosos del país: Usumacinta, Grijalva, Papaloapan y Coatzacoalcos; los cuales atraviesan dicha porción para finalmente desembocar en la parte sur del Golfo de México (ver Figura 4.3)

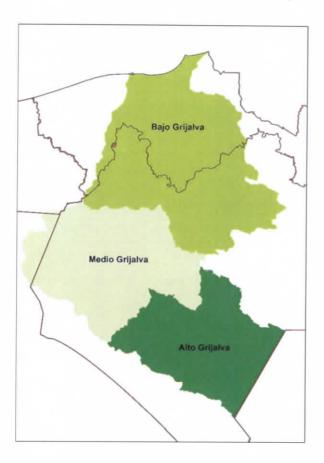


Figura 4.3.- Delimitación de la cuenca del río Grijalva

En la parte alta y media de la cuenca se ubica una de las zonas de mayor precipitación en México, con poco más de 4,000 mm anuales. En esta zona se registran las más altas precipitaciones cuando se combina un sistema tropical con la entrada de frentes o corrientes de aire frío y ocasiona severas inundaciones aguas abajo. Además en esta zona, existen cuatro presas con la finalidad de evitar inundaciones y producir energía eléctrica cuyos nombres son: La Angostura, Chicoasén, Malpaso y Peñitas. Dicho sistema de presas generan cerca del 44% del total de energía hidroeléctrica disponible en el país.

En la **planicie del Bajo Grijalva** la precipitación oscila entre los 1,700 mm y 2,300 mm, la influencia de sistemas atmosféricos es similar que en la parte alta del Bajo Grijalva, pero la precipitación disminuye porque no existen todas las combinaciones antes mencionadas. (Global Water Partnership 2006).

4.1.1.2 Sistema del drenaje fluvial de la cuenca del río Grijalva

El río Grijalva nace cerca del volcán Tacaná en la república de Guatemala, entra a México recorriendo la depresión central de Chiapas hasta llegar a la presa La Angostura, aguas abajo de dicha presa el río Grijalva recorre la Ciudad de Tuxtla Gutiérrez, capital del estado de Chiapas, aguas abajo de la capital se ubica la presa Chicoasén, siguiendo su paso el río Grijalva cuenta con las aportaciones por margen izquierda del río La Venta y por la margen derecha de los ríos Chicoasén y Yamonho, cerca donde se ubica la presa Malpaso.

Posteriormente aguas abajo de la presa Peñitas recibe las aportaciones de los ríos Platanar y Comuapa, que dan origen al río Mezcalapa, después bifurca en los ríos Samaria por su margen izquierda y el río Carrizal por su margen derecha, este último cruza la Ciudad de Villahermosa, capital del estado de Tabasco, donde recibe las aportaciones del río Pichucalco y La Sierra que nacen en las montañas del Bajo Grijalva. Después de Villahermosa continúa el río Grijalva hasta confluir con el río Usumacinta para después desembocar al Golfo de México (Ver Figura 4.4).

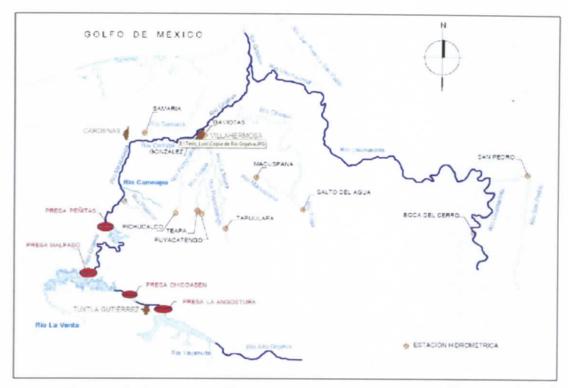


Figura 4.4.- Sistema del drenaje fluvial de la cuenca del río Grijalva

La invasión de masas de aire frío del norte y húmedos tropicales del Atlántico y el Pacífico provocan la mayoría de las precipitaciones anuales en la región. En el verano las lluvias son muy intensas. Entre el otoño y el invierno soplan los nortes, con lluvias prolongadas y torrenciales. Los ríos y lagunas alcanzan sus máximos niveles entre septiembre y noviembre, lo que vuelve a la planicie un espejo de agua. Es en la época de las inundaciones cuando suelen ocurrir desastres en la agricultura y las poblaciones asentadas en la llanura costera del norte (INE, 2005).

4.1.2 Redes de medición

Una red de medición es un sistema compuesto de varias estaciones del mismo tipo, ya sean climatológicas, hidrométricas o estaciones meteorológicas automáticas que son administradas como un grupo. La distribución de las estaciones de medición depende de los elementos meteorológicos e hidrométricos que serán observados en el área de estudio, y sobre todo que proporcionen características climatológicas representativas de dicha área.

Cada estación puede medir diferentes parámetros climatológicos, de acuerdo a la red de medición a la que pertenece, lo que permite caracterizarlas con base en este criterio. (Ver Tabla 4.2)

Tabla 4.2 Elementos climáticos medidos comúnmente de acuerdo al tipo de estación. (Continúa en la pág. 13)

		T T		т		
Elemento	Climatológica ordinaria	Climatológica principal	Marina	Hidrometeorológica	Agrometeorológica	Urbana
Temperatura del aire	х	X	Х		Х	X
Temperatura de suelo					х	
Temperatura del agua			X	Х		
Precipitación	х	Х	х	Х	Х	X
Clima		Х	Х		Х	Х
Nubosidad		х	X		х	Х
Presión		Х	Х		Х	X
Visibilidad		х	Х		Х	X
Humedad		Х	Х		Х	X
Viento		Х	х		Х	×
Radiación solar		х			Х	X
Luminosidad solar		Х			Х	X
Salinidad			х			<u> </u>
Corrientes			х			
Nivel de Mar			х			
Olas			х			
Impulso del aire-mar			х			_
Flujos aire-mar			x			
Hielo			х	х		
Oxígeno disuelto			х			
Nutrientes			Х			
Batimetría			Х			
Biomasa			Х			
Gasto o gasto				Х		
Niveles de ríos				Х		

Elemento	Climatológica ordinaria	Climatológica principal	Marina	Hidrometeorológica	Agrometeorológica	Urbana
Flujo de sedimento				Х		
Recarga			-	Х		
Evaporación				Х	X	х
Humedad del suelo				×	х	X
Escurrimiento				х	х	
Agua subterránea				X	Х	
Desarrollo vegetal						X
Químicos atmosféricos						Х
Partículas en suspensión						Х

Continuación de la tabla 4.2 pág. 12

FUENTE: Guía para prácticas climatológicas, OMM

La Organización Meteorológica Mundial (OMM) es el organismo especializado de la ONU a nivel mundial que se encarga de fomentar la normalización de las observaciones meteorológicas así como la investigación de la meteorología a través de sistemas de medición que efectúen observaciones meteorológicas, mediante la publicación de Guías y Manuales.

Para lograr dicho propósito, trabaja en conjunto con los Servicios Meteorológicos e Hidrológicos Nacionales, que son los organismos de cada país que se encargan de vigilar el medio ambiente permanentemente mediante observaciones sinópticas y remotas, proponiendo metodologías de observación de parámetros climatológicos, así como la instrumentación mínima que deben tener las estaciones de medición.

En México, el organismo encargado de dicha vigilancia es la Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), apoyado por la Comisión Nacional del Agua (CONAGUA) en materia hídrica, de acuerdo al artículo 9 de la Ley de Aguas Nacionales de México, y por el Servicio Meteorológico Nacional (SMN) en la parte de observación y medición climatológica.

W

4.1.2.1 Estación climatológica.

De acuerdo con la Guía de Prácticas Climatológicas publicada por la OMM, una estación climatológica ordinaria mide los parámetros climatológicos básicos en un área de suelo como son las temperaturas mínimas y máximas diarias, así como la cantidad de precipitación.

El tipo de estación climatológica varía en función de los elementos climáticos que mide, es decir, de las propiedades o condiciones de la atmósfera cuyo conjunto define el estado físico del clima en donde se encuentran Una estación climatológica principal, por ejemplo, además de medir los parámetros antes mencionados, aporta información más amplia sobre el clima, el viento, características de las nubes, humedad, temperatura, presión atmosférica, precipitación, luminosidad del sol, entre otros.

A continuación se muestran algunos de los instrumentos y características que debe medir una estación climatológica principal. (Ver Tabla 4.3)

Tabla 4.3 Parámetros e instrumentos básicos que debe tener una estación climatológica (Fuente: Guía para prácticas climatológicas, OMM).

Parámetro	Instrumento		
Dirección del viento y humedad	Veleta o anemógrafo		
Visibilidad	Estimación		
Temperatura	Termómetro		
Humedad relativa	Higrómetro o psicrómetro		
Presión atmosférica	Barómetro		
Precipitación	Pluviómetro y/o pluviógrafo		
Intensidad lumínica	Pirheliómetro, piranómetro, pirradiómetro.		
Temperatura del suelo	Termómetro		
Evaporación	Evaporímetro		

4.1.2.2 Selección del sitio de ubicación.

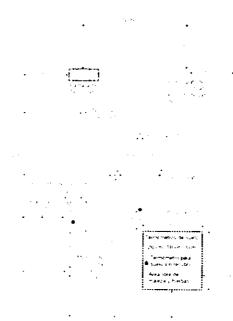


Figura 4.5 Plano esquemático de la composición de una estación de observación climatológica en el hemisferio norte. (Fuente: OMM).

Algunas de las consideraciones que se toman en cuenta para ubicar una estación son:

- Que los instrumentos expuestos a la intemperie deben instalarse en un nivel de terreno plano, preferentemente en un área no menor a un cuadrado de 25 por 25 metros, si se va a instalar una gran cantidad de instrumentos; en casos donde existan relativamente pocos equipos, puede considerarse un área menor (por ejemplo de 10 por 7 metros). El área deberá cubrirse con pasto con una superficie representativa de la localidad y rodeada por cercos abiertos o rejas para mantener fuera a personas no autorizadas. Se dejará una parte sin cubrir de alrededor de 2 por 2 metros para realizar observaciones del estado y temperatura del suelo a profundidades de 20 centímetros o menor.
- No deben existir zonas con pendientes fuertes en los alrededores de la estación, así como tampoco debe situarse en una depresión. Si no se cumplen estas condiciones, las observaciones pueden mostrar irregularidades con respecto a la localidad.

- El lugar debe estar libre de árboles, edificios, muros u otros obstáculos. La distancia mínima entre alguno de estos obstáculos y los pluviómetros debe ser de dos veces la altura del objeto sobre el borde de la escala del pluviómetro, y preferentemente, cuatro veces dicha altura.
- Puede darse el caso de que el área cercada no sea el mejor lugar para estimar la velocidad y dirección del viento; se puede entonces cambiar la ubicación de esta instrumentación a una zona más expuesta al viento.
- Sitios a cielo abierto que son muy satisfactorios para la mayoría de los instrumentos no son adecuados para los pluviómetros; en tales sitios, la captación de la precipitación se reduce en condiciones distintas de luz y velocidades de viento, por lo que se requiere un cierto grado de refugio.

4.1.2.3 Coordenadas y posicionamiento de la estación.

La posición de una estación, referida al Sistema de Referencia Geodésico (WGS84), debe ser conocida y registrada con mucha precisión y reportadas de la siguiente manera:

- La latitud en grados, minutos y segundos en enteros.
- La longitud en grados, minutos y segundos en enteros.
- La altura o elevación de la estación sobre el nivel medio del mar, en metros (con precisión de dos decimales)

Estas coordenadas se refieren al plano sobre el cual se realizan las observaciones y pueden no ser iguales a las coordenadas de la población donde se encuentra la estación.

La elevación de la estación se define como la altura del terreno sobre el nivel del mar a la cual se posiciona el pluviómetro, o, si no existe un pluviómetro, el nivel de terreno debajo de la pantalla del termómetro. En caso de que no exista ni pluviómetro ni pantalla de termómetro, se toma la elevación como el nivel promedio del terreno donde se encuentra la estación

4.1.2.4 Estación Meteorológica Automática (EMA)

Una estación meteorológica automática se define como una estación meteorológica cuyas observaciones son realizadas y transmitidas automáticamente.

W

En una EMA, las mediciones instrumentales son interpretadas o recibidas por una unidad central de adquisición de datos. La información recopilada por los dispositivos de medición puede ser procesada de manera local en la EMA o en algún otro lugar, como puede ser el procesador central de la red de estaciones.

El núcleo de una EMA es su Unidad de Central de Procesamiento (CPU), es decir el microprocesador encargado de la adquisición, procesamiento, almacenamiento y transmisión de los datos obtenidos, el cual, se encuentra resguardado dentro de la propia EMA bajo un recubrimiento a prueba de agua. Otros equipos adicionales en las EMAS son los dispositivos de transmisión de información, las fuentes de alimentación de energía (normalmente de 12 volts) y los relojes en tiempo real.

Estas estaciones son utilizadas para incrementar el número y el grado de confiabilidad de las observaciones, logrando esta meta mediante:

- El incremento de la densidad de una red existente aportando información de nuevos sitios y de aquellos sitios que son de difícil acceso e inhóspitos.
- La aportación, para el caso de estaciones operadas por personal, de información fuera de las horas laborales.
- Incrementar la confiabilidad de las mediciones usando tecnología moderna y sofisticadas técnicas de medición.
- El reporte y la medición continúa de parámetros climatológicos.
- La disminución de costos operacionales al disminuir el número de observadores.

La OMM clasifica a las EMA en estaciones con reporte en tiempo real y estaciones que registran la información para análisis en tiempo virtual.

EMAS con reporte en tiempo real: Son estaciones que proveen información meteorológica observada a los usuarios en tiempo real, usualmente a horas programadas, pero también en condiciones de emergencia o en caso de solicitudes externas. Este tipo de estaciones funcionan mediante la aportación de datos sinópticos y el monitoreo de estados críticos de advertencia como tormentas, y niveles de ríos o corrientes a través de un emisor y de una unidad remota de captación de datos.

EMAS con registro de información: Son aquellas estaciones meteorológicas automáticas provistas de una unidad de almacenamiento de datos externa que registra toda la información obtenida durante las observaciones, pero que no las envía a través de un emisor, sino que dicha información es recopilada y trasladada a la unidad de procesamiento por un operador.

4.1.2.5 Estación Hidrométrica

Es una estación donde se obtiene información del agua de los ríos o lagos tales como: niveles, gasto, transporte y depósito de sedimentos, temperatura del agua y otras propiedades físicas especiales de esta, como la superficie de la capa de hielo en ríos, o lagos, así como ciertas características químicas.

La ubicación de una estación hidrométrica depende de la accesibilidad del sitio, y la disponibilidad de operadores cuando las escalas no registren la información obtenida. Las escalas localizadas en cuerpos de agua grandes deben ser ubicadas de tal manera que se encuentren resguardadas de fuertes corrientes de viento que puedan provocar error en las mediciones. Las estaciones deberán situarse:

- En los tramos inferiores de los principales ríos del país, inmediatamente por encima de sus desembocaduras (por lo general, a salvo de la influencia de las mareas), o en los puntos en que los ríos atraviesan una frontera.
- En los puntos en que el río abandona una montaña, así como aguas arriba de los puntos de extracción de agua de riego.
- En puntos donde el gasto varía considerablemente, aguas debajo de los puntos de confluencia de los afluentes principales, en los puntos de desagüe de los lagos y en puntos en que probablemente se construirán grandes estructuras.

Por otra parte el diseño de las estaciones hidrométricas consiste esencialmente de una serie de escalas o regletas de referencia y en caso de que se requiera un registro continuo, se instala un dispositivo de monitoreo continuo de niveles.

4.2 Recopilación de información

Para llevar a cabo el análisis del sistema de medición en el estado de Tabasco (cuenca de los ríos Grijalva y Usumacinta) fue necesario recopilar la información hidrométrica y climatológica de las estaciones que actualmente operan. Para ello se consultó información de diferentes bases de datos; a continuación se resume dicha información.

4.2.1 Banco Nacional de Datos de Aguas Superficiales (BANDAS)

La Comisión Nacional del Agua (CONAGUA), a través del Instituto Mexicano de Tecnología del Agua (IMTA) cuenta con el Banco Nacional de Datos de Aguas Superficiales (BANDAS), el cual integra a la red hidrométrica nacional. En esta red se registra el nivel de agua (escalas) y la cantidad de agua que pasa a una determinada hora (aforos) en los principales ríos de la república mexicana.

Cuenta con los datos de 2,070 estaciones hidrométricas, las cuales son el resultado de una depuración al catálogo BANDAS hecho en 2008 por la CONAGUA y el IMTA. Aproximadamente 480 estaciones fueron actualizadas hasta el año 2006 y tiene registradas aproximadamente 180 presas.

La información que se puede encontrar de cada estación hidrométrica es:

- Valores diarios: Gasto medio diario (m³/s) día 1 a día 29-31.
- Valores mensuales: Se incluyen la hora y el día del gasto máximo y el gasto mínimo (m³/s). Además de la lectura de volumen máximo y medio de escurrimientos (miles de m³), sedimentos (miles de m³) y la lectura del día y hora de las escalas para el gasto mínimo, medio y máximo.
- Valores anuales: Menciona el mes, día y hora en que ocurre el gasto máximo y gasto mínimo (m³/s). La lectura de escala para el gasto máximo y mínimo (m), además del volumen anual de escurrimientos (miles de m³), gasto medio anual (m³/s) y volumen anual de sedimentos (miles de m³).
- Hidrograma: Incluye la fecha en que ocurre el gasto, Hora en que ocurre el gasto y Gasto instantáneo (m³/s).
- Limnigrama: Muestra la fecha de lectura, hora de lectura y lectura de escala (m).

 Sedimentos: Se incluye la fecha de lectura, hora de lectura y porcentaje de sedimento.

Cabe mencionar que esta información puede consultarse vía web, en el sitio: https://www.imta.gob.mx/bandas o en el sitio: https://www.CONAGUA.gob.mx/CONAGUA07/Contenido/Documentos/Portada%20BANDAS.htm en ambos sitios se puede tener acceso a la información.

Subdirección General Técnica (SGT)

Gerencia de Aguas Superficiales e Ingeniería de Ríos (GASIR)

Banco Nacional de Datos de Aguas Superficiales (BANDAS)

El manejo digital de la información hidrométrica es de suma importancia para la gestión del recurso hidrico del pais, por tal motivo, la Comisión Nacional del Agua (CONAGUA), a través del Instituto Mexicano de Tecnologia del Agua (IMTA) ha venido actualizando el Banco Nacional de Datos de Aguas Superficiales (BANDAS) que integra la red hidrométrica nacional. En esta red se registra el nivel de agua (escalas) y la cantidad de agua que pasa a una determinada hora (aforos) en los principales rios de la República Mexicana.

Cuenta con los datos de 2,070 estaciones hidrométricas, las cuales son el resultado de una depuración al catálogo BANDAS hecho en 2008 por la Conagua y el IMTA. Aproximadamente 480 estaciones fueron actualizadas hasta el año 2006 y tiene registradas aproximadamente 180 presas.

La información que se puede encontrar de cada estación hidrométrica es:

- Valores diarios: Gasto medio diario (m³/s) dia 1 a dia 29-31.
- Valores mensuales: Se incluyen la hora y el día del gasto máximo y el gasto mínimo (m³/s). Además de la lectura de volumen máximo y medio de escurrimientos (miles de m³), sedimentos (miles de m²) y la lectura del día y hora de las escalas para el gasto mínimo, medio y máximo.
- Valores anuales: Menciona el mes, dia y hora en que ocurre el gasto máximo y gasto minimo (m³/s). La lectura de escala para el gasto máximo y minimo (m), además del volumen anual de escurrimientos (miles de m³), gasto medio anual (m³/s) y volumen anual de sedimentos (miles de m³)
- Hidrograma: Incluye la fecha en que ocurre el gasto, Hora en que ocurre el gasto y Gasto instantáneo (m³/s)
- Limnigrama: Muestra la fecha de lectura, hora de lectura y lectura de escala (m).
- Sedimentos: Se incluye la fecha de lectura, hora de lectura y porcentaje de sedimento

Leer más

nventario de Estaciones Hidrométricas: Hidrometria (hasta 2006)

Inventario de Presas: Vasos (hasta 2006)

Estructura de: archivos BANDAS para formato Visual Fox Pro

Navegación: Archivos BANDAS

Fichas Estaciones Hidrométricas

Figura 4.6.- Sitio Web https://www.imta.gob.mx/bandas

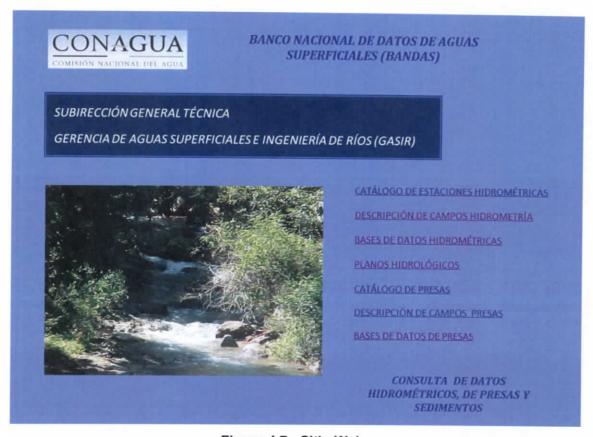


Figura 4.7.- Sitio Web

http://www.CONAGUA.gob.mx/CONAGUA07/Contenido/Documentos/Portada%20BA NDAS.htm

El BANDAS cuenta con 148 estaciones registradas para la Región Hidrológica No. 30 Grijalva-Usumacinta, con años de registro que varían entre 1944 al año 2011. En la Tabla 4.4 se muestra el listado de estaciones que se pueden consultar vía web, en el Anexo A.4.1 se puede consultar el archivo en formato *.xls con la base de datos proporcionado por el BANDAS.

Tabla 4.4.- Listado de estaciones contenidas en el BANDAS para la RH No. 30 (FUENTE: CONAGUA-IMTA, consulta 2014)

(Continúa en la pág. 23 y termina en la pág. 28)

CLAVE	NOMBRE DE LA ESTACION	CORRIENTE	CUENCA	ESTADO	AÑOS DE REGISTRO
30002	GAVIOTAS	RIO GRIJALVA	RIO GRIJALVA	TABASCO	4
30003	LA PIGUA	RIO DE LA PIGUA	RIO GRIJALVA	TABASCO	4
30004	EL DORADO	RIO MEZCALAPA	RIO GRIJALVA	TABASCO	6
30005	SAMARIA	RIO SAMARIA	RIO GRIJALVA	TABASCO	60
30012	EL MARIN	RIO MEZCALAPA	RIO GRIJALVA	TABASCO	7
30014	PUENTE COLGANTE	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	18
30015	LAS PEÑITAS	RIO MEZCALAPA	RIO GRIJALVA	CHIAPAS	54
30016	PUEBLO NUEVO	RIO DE LA SIERRA	RIO GRIJALVA	TABASCO	64
30019	BOCA DEL CERRO	RIO USUMACINTA	RIO USUMACINTA	TABASCO	64
30020	EL BOQUERON II	RIO SUCHIAPA	RIO SANTO DOMINGO	CHIAPAS	60
30021	VERTEDOR CHACONA	MANANTIAL CHACONA	RIO SABINAL	CHIAPAS	4
30022	CANAL CHACONA	MANANTIAL CHACONA	RIO SABINAL	CHIAPAS	2
30024	SAN AGUSTIN	MANANTIAL SAN AGUSTIN	RIO SABINAL	CHIAPAS	4
30030	ARCO DE PIEDRA	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	24
30031	PUYACATENGO	RIO PUYACATENGO	RIO GRIJALVA	TABASCO	52
30032	TEAPA	RIO TEAPA	RIO GRIJALVA	TABASCO	59
30033	SAN FRANCISCO	RIO CUSTEPEQUES	RIO CONCORDIA	CHIAPAS	15
30036	EL BURRERO	RIO HONDO	RIO GRIJALVA	CHIAPAS	15
30037	SAN PEDRO I	RIO SAN PEDRO	RIO EL DORADO	CHIAPAS	13
30038 PUENTE PARQUE MADERO		RIO SABINAL	RIO GRIJALVA	CHIAPAS	6

CLAVE	NOMBRE DE LA ESTACION	CORRIENTE	CUENCA	ESTADO	AÑOS DE REGISTRO
30039	LA MESILLA	RIO SAN VICENTE	RIO BLANCO	CHIAPAS	12
30040	ARGELIA	RIO SAN MIGUEL	RIO GRIJALVA	CHIAPAS	23
30041	LA ESCALERA	RIO SANTO DOMINGO	RIO GRIJALVA	CHIAPAS	51
30042	SALTO DE AGUA	RIO TULIJA	RIO GRIJALVA	CHIAPAS	54
30048	EL SALVADOR	RIO SAN GREGORIO	RIO GRIJALVA	CHIAPAS	21
30049	EL TORO	RIO DE LA VENTA	RIO GRIJALVA	CHIAPAS	14
30050	LOS BERROS	SALIDAS MANANTIALES LOS BERROS	ARROYO EL PROSPERO	CHIAPAS	4
30051	REFORMA	RIO MEZCALAPA	RIO GRIJALVA	TABASCO	31
30052	CONCEPCION	ARROYO CONCEPCION	RIO CUSTEPEQUES	CHIAPAS	27
30053	SANTA ISABEL	RIO EL DORADO	RIO GRIJALVA	CHIAPAS	19
30055	MACUSPANA	RIO MACUSPANA	RIO GRIJALVA	TABASCO	37
30056	LA CONCORDIA	RIO LA CONCORDIA	RIO GRIJALVA	CHIAPAS	19
30057	PICHUCALCO	RIO PICHUCALCO	RIO GRIJALVA	CHIAPAS	44
30058	PUENTE MORELOS	RIO AMARILLO	SUMIDERO SANTA ROSA	CHIAPAS	29
30059	PUENTE SAAVEDRA	RIO AMARILLO	RIO AMARILLO	CHIAPAS	35
30060	LA MESA	MANANTIAL LA MESA	RIO SAN VICENTE	CHIAPAS	3
30061	LA UNION	RIO SAN VICENTE	RIO GRIJALVA	CHIAPAS	3
30062	GONZALEZ	RIO CARRIZAL	RIO GRIJALVA	TABASCO	52
30063	REVOLUCIËN MEXICANA	RIO SAN PEDRO	RIO GRIJALVA	CHIAPAS	8
30064	MAL PASO I	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	4
30065	LAS MERCEDES	RIO VIEJO MEZCALAPA	RIO GRIJALVA	TABASCO	2

CLAVE	NOMBRE DE LA ESTACION	CORRIENTE	CUENCA	ESTADO	AÑOS DE REGISTRO
30066	TZIMBAC	RIO TZIMBACHO	RIO GRIJALVA	CHIAPAS	37
30067	SAN PEDRO CHIAPAS II	RIO SAN PEDRO	RIO EL DORADO	CHIAPAS	4
30068	PEJE DE ORO	RIO AMARILLO	SUMIDERO SANTA ROSA	CHIAPAS	17
30069	SAN DIEGO	ARROYO SAN DIEGO	RIO FOGOTICO	CHIAPAS	32
30070	SAYULA	RIO SAYULA	RIO MEZCALAPA	CHIAPAS	28
30071	SANTA MARIA	RIO ENCAJONADO	RIO DE LA VENTA	CHIAPAS	48
30072	LAS FLORES II	RIO ZOYATENCO	RIO DE LA VENTA	CHIAPAS	51
30076	MALPASO II	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	23
30077	PUENTE SANTUARIO	RIO MARIA AUXILIADORA	RIO AMARILLO	CHIAPAS	7
30080	PUENTE SAN NICOLAS	RIO FOGOTICO	RIO AMARILLO	CHIAPAS	7
30081	LA REFORMA	RIO LA REFORMA	RIO SANTO DOMINGO	CHIAPAS	5
30082	LOS VADOS	RIO PASO PADRES	RIO GRIJALVA	CHIAPAS	12
30083	LAS GAVIOTAS II	RIO GRIJALVA	RIO GRIJALVA	TABASCO	47
30088	SAN PEDRO TABASCO	RIO SAN PEDRO	RIO USUMACINTA	TABASCO	48
30089	PUENTE COLGANTE II	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	18
30091	SAN FRANCISCO II	RIO CUSTEPEQUES	RIO LA CONCORDIA	CHIAPAS	19
30093	TAPIJULAPA	RIO TACOTALPA	RIO GRIJALVA	TABASCO	45
30094	PLATANAR	RIO PLATANAR	RIO GRIJALVA	CHIAPAS	34
30095	EL TIGRE	RIO USUMACINTA	RIO USUMACINTA	CHIAPAS	30
30096	PAREDON	RIO CAMOAPA	RIO GRIJALVA	CHIAPAS	22
30097	AGUA VERDE	RIO LACANTUN	RIO USUMACINTA	CHIAPAS	6
30098 GRIJALVA		RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	39

CLAVE	NOMBRE DE LA ESTACION	CORRIENTE	CUENCA	ESTADO	AÑOS DE REGISTRO
30099	EL GRIJALVA	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	16
30102	AQUESPALA	RIO RINCON TIGRE	RIO SAN GREGORIO	CHIAPAS	43
30104	YOLA	RIO HUIXTAN	RIO TZACONEJA	CHIAPAS	2
30107	EL CEDRO	RIO SALINAS	RIO USUMACINTA	CHIAPAS	28
30111	OXOLOTAN	RIO OXOLOTAN	RIO GRIJALVA	TABASCO	47
30113	IXCAN	RIO IXCAN	RIO LACANTUN	CHIAPAS	28
30118	PUENTE MAJAHUA	RIO VIEJO MEZCALAPA	RIO GRIJALVA	TABASCO	2
30119	YAMONHO	RIO YAMONHO	RIO GRIJALVA	CHIAPAS	5
30120	CHAJUL	RIO CHAJUL	RIO LACANTUN	CHIAPAS	27
30121	YAMONHO II	RIO YAMONHO	RIO GRIJALVA	CHIAPAS	5
30123	AGUA VERDE II	RIO LACANTUN	RIO USUMACINTA	CHIAPAS	24
30125	SCHPOINA	CANAL DE CONDUCCION	RIO SALADO	CHIAPAS	13
30126	EL SALADO	RIO EL SALADO	RIO BLANCO	CHIAPAS	5
30127	EL ZAPOTE	RIO DURAZNILLO	RIO GRIJALVA	CHIAPAS	4
30128	LA ANGOSTURA	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	15
30129	CHICOASEN	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	18
30130	PLAN DE AYALA	RIO HONDO	RIO GRIJALVA	CHIAPAS	7
30131	LAS LAJAS	RIO LAS LAJAS	RIO HONDO	CHIAPAS	7
30132	CANAL BOMBANA	CANAL DE CONDUCCION	RIO BOMBANA	CHIAPAS	14
30133	COMALAPA	RIO CUILCO	RIO GRIJALVA	CHIAPAS	22
30134	TZIMOL CAIDAS	RIO TZIMOL	RIO SAN VICENTE	CHIAPAS	5
30135	ALMANDRO	RIO ALMANDRO	RIO OXOLOT-N	CHIAPAS	31

ESTUDIO PARA EL PROYECTO HIDROLÓGICO PARA PROTEGER A LA POBLACIÓN DE INUNDACIONES Y APROVECHAR MEJOR EL AGUA (PROHTAB)

CLAVE	NOMBRE DE LA ESTACION	CORRIENTE	CUENCA	ESTADO	AÑOS DE REGISTRO
30137	ALTAMIRANO	RIO TZANCONEJA	RIO JATATE	CHIAPAS	30
30138	YALCHIPTIC	RIO YALCHIPTIC	RIO LACANTUN	CHIAPAS	26
30139	EL ROSARIO	RIO JATATE	RIO LACANTUN	CHIAPAS	29
30140	LAS TAZAS	RIO JATATE	RIO LACANTUN	CHIAPAS	29
30141	LIVINGSTONE	RIO TZANCONEJA	RIO JATATE	CHIAPAS	30
30142	LA PIMIENTA	RIO SANTO DOMINGO	RIO USUMACINTA	CHIAPAS	28
30143	SANTA ELENA	RIO SANTO DOMINGO	RIO USUMACINTA	CHIAPAS	27
30144	PACAYAL	RIO SECO	RIO SANTO DOMINGO	CHIAPAS	18
30145	DOLORES	RIO DOLORES	RIO SANTO DOMINGO	CHIAPAS	27
30147	EL JABALI	RIO SANTO DOMINGO	RIO LACANTUN	CHIAPAS	27
30148	EL CALIENTE	RIO CALIENTE	RIO SANTO DOMINGO	CHIAPAS	13
30149	EUSEBA	RIO EUSEBA	RIO USUMACINTA	CHIAPAS	28
30150	LA CATARATA	RIO SANTO DOMINGO	RIO USUMACINTA	CHIAPAS	28
30151	SAN QUINTIN	RIO JATATE	RIO LACANTUN	CHIAPAS	31
30152	PERLAS	RIO PERLAS	RIO JATATE	CHIAPAS	31
30154	SAN PEDRO	RIO SAN PEDRO	RIO OXOLOT-N	CHIAPAS	11
30155	RIO BLANCO	RIO BLANCO	RIO GRIJALVA	CHIAPAS	20
30156	BOMBANA	RIO BOMBANA	RIO GRIJALVA	CHIAPAS	31
30157	PASO DEL CAYUCO	RIO YASHJA	RIO TULIJA	CHIAPAS	34
30158	PUENTE CONCORDIA	RIO SAN GREGORIO	RIO GRIJALVA	CHIAPAS	48
30159	EL PORVENIR	RIO DE LA PASION	RIO USUMACINTA	CHIAPAS	4
30160 SAN AGUSTIN		GUSTIN RIO CHIXOY		RIO USUMACINTA CHIAPAS	

CLAVE	NOMBRE DE LA ESTACION	CORRIENTE	CUENCA	ESTADO	AÑOS DE REGISTRO
30161	EL CARMEN	RIO JATATE	RIO USUMACINTA	CHIAPAS	17
30166	EL ZAPOTAL	RIO SANTO DOMINGO	RIO USUMACINTA	CHIAPAS	25
30167	AZUL O NEGRO	RIO AZUL O NEGRO	RIO SANTO DOMINGO	CHIAPAS	17
30168	LOS AMATES	RIO LOS AMATES	RIO LOS AMATES	CHIAPAS	2
30174	EL CARMEN	ARROYO EL CARMEN	RIO OCUILAPA	CHIAPAS	2
30177	EL COLORADO	RIO LACANTUN	RIO USUMACINTA	CHIAPAS	25
30179	ZOQUIPAC	RIO BOCHIL	RIO GRIJALVA	CHIAPAS	2
30180	MIRAMAR	RIO AZUL	RIO USUMACINTA	CHIAPAS	10
30181	CANDELARIA	RIO CANDELARIA	RIO CANDELARIA	CAMPECHE	59
30182	YAMONHO III	RIO YAMONHO	RIO GRIJALVA	CHIAPAS	37
30183	GUERRERO	RIO EL DORADO	RIO GRIJALVA	CHIAPAS	22
30184	CHICOMUSELO	RIO YAYAHUITA	RIO GRIJALVA	CHIAPAS	29
30185	EL BRILLANTE	RIO SAN PEDRO	RIO EL DORADO	CHIAPAS	28
30186	REFORMA	RIO SALINAS	RIO PASO PADRE	CHIAPAS	33
30187	CASCAJAL	RIO CASCAJAL	RIO BLANCO	CHIAPAS	36
30188	PUENTE INI	RIO AMARILLO	SUMIDERO SANTA ROSA	CHIAPAS	15
30189	PUENTE RIO PANDO	RIO PANDO	RIO SANTO DOMINGO	CHIAPAS	11
30190	LA GARZA	RIO SAN ANDRES	RIO LA REFORMA	CHIAPAS	3
30191	LA REFORMA	RIO LA REFORMA	RIO SANTO DOMINGO	CHIAPAS	4
30192	SAN FRANCISCO III	RIO CUSTEPEQUES	RIO LA CONCORDIA	CHIAPAS	3
30195	JALTENANGO	RIO JALTENANGO	RIO SALINAS	CHIAPAS	24
30196	EL LIMON	RIO EL LIMON	RIO SALINAS	CHIAPAS	20

CLAVE	NOMBRE DE LA ESTACION	CORRIENTE	CUENCA	ESTADO	AÑOS DE REGISTRO
30197	LA ESPERANZA	RIO CHAVARRIA	RIO GRIJALVA	CHIAPAS	21
30198	EL PORVENIR	RIO GRIJALVA	RIO GRIJALVA	TABASCO	11
30199	PALIZADA	RIO PALIZADA	RIO PALIZADA	CAMPECHE	20
30200	MAMANTEL	RIO MAMANTEL	RIO MAMANTEL	CAMPECHE	17
30201	COPAINALA	ARROYO COPAINALA	RIO GRIJALVA	CHIAPAS	1
30202	CHACTE	RIO CHACTE	RIO GRIJALVA	CHIAPAS	9
30203	ITZANTUN	RIO TACOTALPA	RIO GRIJALVA	CHIAPAS	5
30204	LACANTUM	RIO LACANTUN	RIO USUMACINTA	CHIAPAS	30
30205	PATARA	RIO PATARA	RIO USUMACINTA	CHIAPAS	2
30206	REFORMA	RIO JALTENANGO	RIO GRIJALVA	CHIAPAS	15
30207	SAN MIGUEL	RIO SAN MIGUEL	RIO GRIJALVA	CHIAPAS	32
30208	SAN PEDRO II	RIO SAN PEDRO	RIO GRIJALVA	CHIAPAS	32
30209	VERTEDOR COPAINALA	ARROYO DE CUENCAME	RIO GRIJALVA	CHIAPAS	1
30210	ACALA	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	25
30211	EL TABLON	RIO TABLON	RIO GRIJALVA	CHIAPAS	9
30212	SANTO DOMINGO	RIO SANTO DOMINGO	RIO GRIJALVA	CHIAPAS	33
30214	PEÑITAS	RIO GRIJALVA	RIO GRIJALVA	CHIAPAS	13
30215	EL SABINAL	RIO SABINAL		CHIAPAS	5
30216	LACANTUN	RIO LACANTUN		CHIAPAS	7

Continuación de la tabla 4.4 pág. 22

4.2.2 Clima Computarizado (CLICOM)

CLICOM es un sistema de software de manejo de datos climatológicos desarrollado por las Naciones Unidas, que significa CLImate COMputing Project. Las observaciones son diarias del CLICOM representan los datos recopilados durante las últimas 24 horas, finalizando a las 08:00 AM. Cada una de las diferentes estaciones del país contiene diferentes periodos de información, pero se pueden encontrar datos de 1920 a 2010. (FUENTE: http://clicom-mex.cicese.mx/)

Los datos recopilados son de los parámetros de temperatura máxima y mínima, unidades de calor, evaporación y precipitación.

Para la cuenca Grijalva-Usumacinta, la cual comprende los estados de Chiapas y Tabasco se cuenta con el registro de 370 estaciones climatológicas, de las cuales 83 se encuentran en Tabasco y 287 en Chiapas. (Ver Figura 4.8 y Figura 4.9)

Figura 4.8.- Ubicación de las estaciones en el estado de Tabasco (FUENTE: http://clicom-mex.cicese.mx)

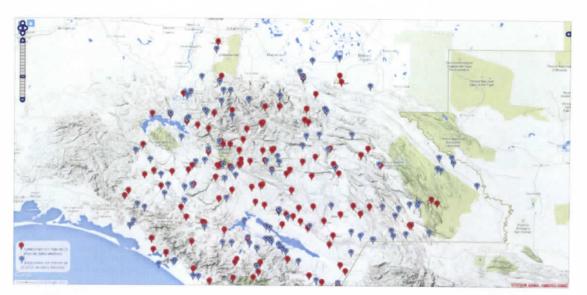


Figura 4.9.- Ubicación de las estaciones en el estado de Chiapas (FUENTE: http://clicom-mex.cicese.mx)

4.2.3 Extractor rápido de información climatológica (ERIC III)

Fue elaborado por el Instituto Mexicano de Tecnología del Agua (IMTA); este programa permite hacer consultas rápidas a la información climatológica contenida en la base de datos CLICOM. Cuenta con los datos de 5,272 estaciones climatológicas tradicionales ubicadas en le república mexicana, de las cuales 26 cuentan con datos al año 2013; 395 al año 2012; 1,553 al año 2011 y 1968 al año 2010. (Ver Figura 4.10)

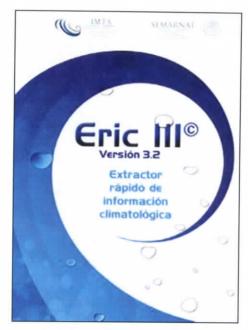


Figura 4.10.- Software Eric III (FUENTE: IMTA, 2014)

Se trata de estaciones que reportan información cada 24 horas, de las siguientes variables:

- Temperatura observada
- Temperatura mínima
- Temperatura máxima
- Precipitación 24 hrs
- Evaporación 24 hrs
- Tormenta
- Granizo
- Niebla
- Cobertura del cielo

El programa ERIC III facilita la extracción rápida de la información; permite seleccionar la variable de interés y el intervalo de tiempo para una región determinada, que puede elegirse de distintas maneras.

ESTUDIO PARA EL PROYECTO HIDROLÓGICO PARA PROTEGER A LA POBLACIÓN DE INUNDACIONES Y APROVECHAR MEJOR EL AGUA (PROHTAB)

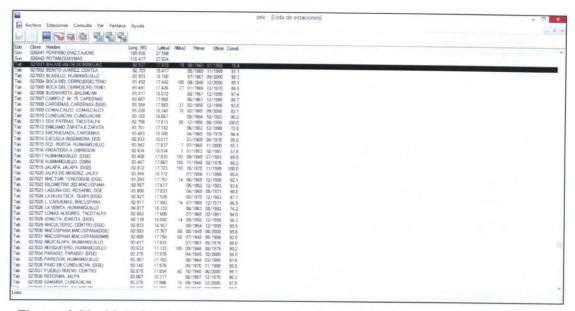


Figura 4.11.- Listado de estaciones para el estado de Tabasco consultadas en el software ERIC III (FUENTE: ERIC III-IMTA, 2014)

4.3 Inventario de la red de medición

El inventario de estaciones que a continuación se presenta es un recopilación de todas las estaciones que se muestran en las diferentes bases de datos de las dependencias, tales como: Servicio Meteorológico Nacional (SMN), Comisión Nacional del Agua (CONAGUA), Protección Civil de estado de Tabasco, Organismo de Cuenca Frontera Sur, CONAGUA Dirección Local Tabasco, Comisión Federal de Electricidad (CFE). Con este inventario se busca conocer el número de estaciones existentes, su situación actual, su ubicación y operador responsable. El listado correspondiente a esta actividad se encuentra en los anexos A.4.2.

4.3.1 Estaciones climatológicas

Para realizar el inventario de la red de medición climatológica, se consultó inicialmente la base de datos del CLICOM, después se revisaron las bases de datos de la Dirección Local de Tabasco y el Organismo de Cuenca Frontera Sur, para detallar y actualizar la información. A continuación se presentan las estaciones climatológicas del estado de Tabasco y Chiapas, respectivamente.

4.3.1.1 Estaciones climatológicas – Estado de Chiapas

El estado de Chiapas cuenta con la mayor parte de su territorio dentro de la región hidrológica No. 30: Grijalva-Usumacinta (RH No. 30) y el restante en la región hidrológica No. 23: Costa de Chiapas (RH No. 23), a continuación en la Tabla 4.5 se muestra el inventario de las estación climatológicas que se ubican dentro del estado de Chiapas.

Tabla 4.5.- Inventario de estaciones climatológicas-Chiapas (FUENTE: OCFS, 2014) (Continúa en la pág. 34 y termina en la pág. 46)

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO		ORGANISMO	ESTATUS	INICIO	FIN
7001	-92.217	16.833	ABASOLO CHIAPAS (CFE)	OCOSINGO		CFE	X	1970	2007
7002	-92.238	16.379	ABELARDO L. RODRIGUEZ	COMITAN	DE	CONAGUA	0	1944	2013

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
				DOMINGUEZ	-			
7003	-92.804	16.553	ACALA	ACALA	CONAGUA	0	1962	2013
7004	-90.917	16.783	AGUA AZUL	OCOSINGO	CONAGUA	Х	1961	1987
7005	-92.683	17.283	ALMANDRO (CFE)	HUITIUPAN	CFE	Х	1964	1987
7006	-92.038	16.739	ALTAMIRANO (SMN)	ALTAMIRANO	SMN	0	1942	2013
7007	-92.475	16.553	AMATENANGO DEL VALLE	TEOPISCA	CONAGUA	0	1964	2013
7008	-92.717	15.867	ANGEL ALBINO CORZO	ANGEL ALBINO CORZO	CONAGUA	X	1945	1983
7009	-91.920	15.794	AQUESPALA	FRONTERA COMALAPA	CONAGUA	X	1957	2010
7010	-92.667	16.200	ARCO DE PIEDRA	VENUSTIANO	CONAGUA	X	1949	1974
				CARRANZA				
7011	-92.367	15.883	ARGELIA	CHICOMUSELO	CONAGUA	X	1948	1975
7012	-92.299	15.127	FINCA ARGOVIA	TAPACHULA	CONAGUA	0	1955	2010
7014	-92.358	15.308	BELISARIO DOMINGUEZ I	MOTOZINTLA	CONAGUA	Х	1962	2002
7015	-92.891	16.986	BOCHIL	BOCHIL	CONAGUA	0	1944	2002
7016	-93.017	16.942	BOMBANA (CFE)	SOYALO	CFE	X	1945	1999
7017	-91.083	16.733	BONAMPAK	OCOSINGO	CONAGUA	X	1965	1981
7018	-92.164	14.988	CACAHOATAN	CACAHOATAN	CONAGUA	0	1944	2012
7019	-92.269	14.722	CAHUACAN	TAPACHULA	CONAGUA	X	1961	2007
7020	-93.734	17.221	VERTEDOR 1-2-3	TECPATAN	CONAGUA		1963	2006
7021	-92.483	15.903	CATARINITAS	LA CONCORDIA	CONAGUA	0	1967	2012
7022	-92.016	17.728	PLAYAS DE CATAZAJA	CATAZAJA	CONAGUA	o	1956	2012
7023	-93.717	16.700	CINTALAPA SMN	CINTALAPA	SMN	X	1922	1972
7024	-92.150	15.617	COMALAPA (CFE)	BELLAVISTA	CFE	-	1967	1999
7026	-92.001	15.665	CD. CUAUHTEMOC (CFE)	FRONTERA COMALAPA	CFE		1961	1999
7027	-93.217	17.083	COPAINALA	COPAINALA	CONAGUA	X	1927	1975
ontinúa en	la pág. 35							
7028	-91.708	17.473	CHACAMAX	PALENQUE	CONAGUA	0	1969	1983
					55, 11, 100, 1	~	1000	1303

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7029	-90.933	16.833	CHAJUL	OCOSINGO	CONAGUA	X	1967	1983
7030	-92.697	16.797	SAN JUAN CHAMULA	CHAMULA	CONAGUA	0	1956	2013
7031	-92.263	16.660	CHANAL	CHANAL	CONAGUA	0	1969	2013
7032	-93.100	17.333	CHAPULTENANGO	CHAPULTENANGO	CONAGUA	X	1952	1977
7033	-92.600	16.900	SAN PEDRO CHENALHO (SMN)	CHENALHO	SMN	Х	1939	1990
7034	-92.715	16.578	VILLA DE CHIAPILLA	CHIAPILLA	CONAGUA	0	1944	2013
7035	-93.099	16.942	CHICOASEN (CFE)	CHICOASEN	CFE	0	1961	1999
7036	-92.489	16.678	CHILIL	HUIXTAN	CONAGUA	0	1967	2013
7037	-92.969	15.729	FINCA CUXTEPEQUES	LA CONCORDIA	CONAGUA	0	1951	2013
7038	-92.558	15.203	DESPOBLADO	VILLA COMALTITLAN	CONAGUA	0	1964	2013
7039	-93.157	16.644	EL BOQUERON			1949	2005	
7040	-92.828	16.789	EL BURRERO	IXTAPA	CONAGUA	0	1951	2013
7041	-91.467	16.300	EL CALIENTE (CFE)	LAS MARGARITAS	CFE		1969	1980
7042	-91.617	16.767	EL CARMEN (CFE)	OCOSINGO	CFE		1969	1990
7043	-91.083	16.417	EL CEDRO	OCOSINGO	CONAGUA	- x -	1965	1994
7044	-91.150	16.150	EL COLORADO (CFE)	OCOSINGO	CFE		1970	1990
7045	-92.213	14.673	EL DORADO	SUCHIATE	CONAGUA	0	1951	2011
7046	-91.333	16.217	EL EUSEBA (CFE)	TENEJAPA	CFE	X	1967	1990
7047	-91.367	16.133	EL JABALI (CFE)	LAS MARGARITAS	CFE	X	1969	1990
7048	-92.549	15.348	FINCA EL TRIUNFO	ESCUINTLA	CONAGUA	X	1963	2008
7050	-93.403	16.709	EL PROGRESO	OCOZOCOAUTLA DE	CONAGUA	0	1954	2013
				ESPINOSA				
7051	-91.783	16.850	EL ROSARIO (CFE)	OCOSINGO	CFE	X	1965	1990
Continúa en	la pág. 36							
7052	-91.500	16.167	EL ZAPOTAL (CFE)	LAS MARGARITAS	CFE	1	1970	1990

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7053	-92.656	15.331	ESCUINTLA (DGE)	ESCUINTLA	DGE	0	1954	2011
7054	-92.794	15.732	FINCA A. PRUSIA	ANGEL ALBINO CORZO	CONAGUA	0	1954	2012
7055	-91.711	16.381	FINCA CHAYABE	LAS MARGARITAS	CONAGUA	0	1955	2013
7056	-92.300	15.167	FINCA CHIRIPA	TAPACHULA	CONAGUA	х	1954	2008
7057	-92.242	15.133	FINCA CHICHARRAS	TAPACHULA	CONAGUA	0	1961	2013
7058	-92.267	15.100	EL PERU	TAPACHULA	CONAGUA	X	1954	2009
7060	-92.317	15.167	FINCA GENOVA	TAPACHULA	CONAGUA	x	1955	1978
7061	-92.325	15.174	FINCA HAMBURGO	TAPACHULA	CONAGUA	0	1954	2012
7062	-91.863	16.388	FINCA LA SOLEDAD	LAS MARGARITAS	CONAGUA	0	1961	2013
7063	-92.733	15.783	FINCA LIQUIDAMBAR	ANGEL ALBINO CORZO	CONAGUA	Х	1954	1984
7064	-92.550	17.383	FINCA MORELIA	TILA	CONAGUA	Х	1954	1977
7065	-93.477	16.369	FINCA OCOTLAN	VILLAFLORES	CONAGUA	0	1961	2012
7066	-92.300	15.133	FINCA SAN ENRIQUE	TAPACHULA	CONAGUA	Х	1961	1978
7067	-92.114	15.434	FRONTERA AMATENANGO	AMATENANGO DE LA	CONAGUA	0	1961	2013
				FRONTERA				
7068	-92.176	14.777	FRONTERA HIDALGO	FRONTERA HIDALGO	CONAGUA	0	1944	2012
7069	-93.105	16.969	GRIJALVA	CHICOASEN	CONAGUA	0	1965	2003
7070	-92.161	15.694	GUADALUPE GRIJALVA	FRONTERA COMALAPA	CONAGUA	0	1961	2013
7071	-92.290	17.145	GUAQUITEPEC	CHILON	CONAGUA	0	1966	2002
7072	-92.283	15.100	HACIENDA LAS	TAPACHULA	CONAGUA	X	1954	1978
			MARAVILLAS					
7073	-93.717	15.983	HACIENDA SAN CRISTOBAL	TONALA	CONAGUA	X	1940	1971
7074	-93.606	15.955	HORCONES	TONALA	CONAGUA	X	1964	2010
7075	-92.400	15.002	HUEHUETAN	HUEHUETAN	CONAGUA	R	1964	2010
7076	-92.458	16.714	HUIXTAN (CFE)	HUIXTAN	CFE	X	1964	1999

7077	-92.486	15.141	HUIXTLA	HUIXTLA	CONAGUA	0	1954	2011
					<u> </u>		<u> </u>	

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7078	-92.185	14.618	IGNACIO LOPEZ RAYON	SUCHIATE	CONAGUA	0	1951	2011
7079	-92.155	14.974	ROSARIO IZAPA (I.M.P.A.)	TUXTLA CHICO	IMPA	X	1961	1990
7081	-91.067	16.833	IXCAN	OCOSINGO	CONAGUA	X	1965	1983
7082	-93.095	17.430	IXTACOMITAN	IXTACOMITAN	CONAGUA	-x	1968	1983
7083	-92.900	16.767	IXTAPA	IXTAPA	CONAGUA	X	1942	1978
7084	-93.358	15.808	JESUS CHIAPAS	PIJIJIAPAN	CONAGUA	$\frac{1}{x}$	1964	2003
7085	-91.982	17.509	PALENQUE (DGE)	PALENQUE	DGE	- 0 -	1948	2012
7086	-92.768	16.420	LA ANGOSTURA (CFE)	ACALA	CFE	0	1962	1999
7087	-92.629	16.714	LA CABAÑA	SAN CRISTOBAL DE	CONAGUA	0	1956	2011
				LAS CASAS	i	_	.555	2011
7088	-91.050	16.717	LA CANJA	OCOSINGO	CONAGUA	X	1962	1969
7089	-91.317	16.217	LA CATARATA (CFE)	TENEJAPA	CFE	X	1966	1996
7090	-92.667	16.083	LA CONCORDIA (DGE)	LA CONCORDIA	DGE	R	1951	1974
7091	-92.993	16.526	LA ESCALERA	CHIAPA DE CORZO	CONAGUA	X	1953	2007
7092	-92.417	15.300	LA ESPERANZA (CFE)	MOTOZINTLA	CFE	X	1962	1971
7093	-93.658	16.561	LA LIBERTAD	JIQUIPILAS	CONAGUA	_ x	1963	2007
7094	-92.288	16.184	LA MESILLA	TZIMOL	CONAGUA	0	1971	2013
7095	-92.383	15.217	LA NUEVA (CFE)	TUZANTAN	CFE	\overline{x}	1962	1972
7096	-91.783	16.317	LA PIMIENTA (CFE)	LAS MARGARITAS	CFE	$-{x}$	1964	1994
7097	-93.961	16.519	LA PROVIDENCIA	CINTALAPA	CONAGUA	0	1961	2011
7098	-93.517	15.883	LA TIGRERA	TONALA	CONAGUA	-x	1962	1975
7099	-92.089	16.036	ZAPALUTA	LA TRINITARIA	CONAGUA	<u> </u>	1946	1998
7100	-93.801	16.665	LA UNION	CINTALAPA	CONAGUA	0	1962	2013

Continua en la pag. 38

7101	-91.867	15.967	LAS DELICIAS (CFE)	LA TRINITARIA	CFE	X	1970	1977	l
					<u> </u>		L	ı ,	1

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7102	-93.563	16.692	LAS FLORES II	JIQUIPILAS	CONAGUA	Ö	1949	2012
7103	-93.358	16.578	LAS LIMAS (CFE)	OCOZOCOAUTLA DE	CFE		1970	1999
				ESPINOSA				,,,,,
7104	-91.975	16.311	LAS MARGARITAS	LAS MARGARITAS	CONAGUA	0	1962	2013
7105	-92.347	17.540	LAS NUBES	SALTO DE AGUA	CONAGUA	ō	1965	2006
7106	-93.450	17.401	LAS PEÑITAS	OSTUACAN	CONAGUA	Х	1968	2006
7107	-91.615	16.759	LAS TAZAS (CFE)	LAS MARGARITAS	CFE		1965	1993
7108	-92.050	16.767	LIVINGSTON (CFE)	ALTAMIRANO	CFE		1965	1994
7109	-92.617	16.700	LOS ARCOS	SAN CRISTOBAL DE	CONAGUA	X	1956	1975
				LAS CASAS	i			
7111	-92.550	16.033	LOS VADOS	LA CONCORDIA	CONAGUA	X	1962	1974
7112	-93.582	17.214	MALPASO	TECPATAN	CONAGUA	R	1954	2005
7113	-92.876	15.452	MAPASTEPEC	MAPASTEPEC	CONAGUA	0	1961	2011
7114	-91.730	16.909	YAQUINTELA	OCOSINGO	CONAGUA	0	1964	2013
7115	-93.061	15.589	MARGARITAS	PIJIJIAPAN	CONAGUA	X	1964	2005
7116	-92.191	14.915	MEDIO MONTE	TUXTLA CHICO	CONAGUA	0	1961	2013
7117	-92.192	14.831	METAPA DE DOMINGUEZ	METAPA	CONAGUA	0	1944	2013
7118	-91.583	16.383	MIRAMAR (CFE)	LAS MARGARITAS	CFE	X	1964	1976
7119	-92.248	15.364	MOTOZINTLA (SMN)	MOTOZINTLA	SMN	0	1922	2013
7120	-93.417	17.167	NEZAHUALCOYOTL (CFE)	TECPATAN	CFE		1969	1976
7121	-91.133	16.450	NUEVA ESPERANZA	OCOSINGO	CONAGUA	X	1957	1993
7122	-92.089	16.909	OCOSINGO	OCOSINGO	CONAGUA	X	1926	2006
7123	-93.374	16.751	OCOZOCOAUTLA	OCOZOCOAUTLA DE	CONAGUA	0	1939	2013
				ESPINOSA				2010
7124	-91.250	16.417	OSTIONAL	OCOSINGO	CONAGUA	X	1969	1983

OXCHUC

CONAGUA

0

1969

2013

7125

-92.343

16.786

OXCHUC

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7126	-91.983	17.567	PALENQUE (SMN)	PALENQUE	SMN	X	1927	1973
7127	-91.783	16.117	PASO DEL SOLDADO (CFE)	LA TRINITARIA	CFE		1963	1976
7128	-93.117	17.517	PICHUCALCO (SMN)	PICHUCALCO	SMN	0	1945	2009
7129	-93.211	15.698	PIJIJIAPAN	PIJIJIAPAN	CONAGUA	0	1959	2011
7130	-93.297	17.555	PLATANAR DE ARRIBA	PICHUCALCO	CONAGUA	Х	1964	2000
7132	-93.125	16.449	PORTACELI	VILLAFLORES	CONAGUA	0	1962	2012
7133	-93.400	17.183	PRESA NEZAHUALCOYOTL	TECPATAN	CFE		1965	1993
			(CFE)				i	
7134	-93.031	16.741	PUENTE COLGANTE	CHIAPA DE CORZO	CONAGUA	0	1951	2013
7135	-91.968	15.849	PUENTE CONCORDIA (CFE)	FRONTERA COMALAPA	CFE	0	1961	1999
7136	-92.386	14.701	PUERTO MADERO	TAPACHULA	CONAGUA	X	1944	1999
7137	-92.467	16.283	PUJILTIC	VENUSTIANO	CONAGUA	x	1956	1979
				CARRANZA				
7138	-93.133	17.867	REFORMA I	REFORMA	CONAGUA	X	1965	1997
7139	-92.517	16.217	RIO BLANCO (CFE)	VENUSTIANO	CFE	X	1963	1997
				CARRANZA				
7140	-92.217	17.400	SABANA	SALTO DE AGUA	CONAGUA	x	1954	1981
7141	-92.333	17.558	SALTO DE AGUA (DGE)	SALTO DE AGUA	DGE	0	1952	2012
7142	-93.433	16.550	SAN ANTONIO	OCOZOCOAUTLA DE	CONAGUA	Х	1964	1988
				ESPINOSA				
7143	-93.800	16.367	SAN CLEMENTE	JIQUIPILAS	CONAGUA	X	1972	1983
7145	-92.954	15.871	SAN FRANCISCO	LA CONCORDIA	CONAGUA	0	1950	2013
7146	-92.136	15.040	SAN JERONIMO	UNION JUAREZ	CONAGUA	0	1949	2012
7147	-93.108	17.558	SAN JOAQUIN	PICHUCALCO	CONAGUA	0	1962	1991
Continúa en	la pág. 40							
7148	-93.231	16.894	SAN JUAN	SAN FERNANDO	CONAGUA	x !	1961	1983

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7149	-92.626	16.894	SAN PEDRO CHENALHO	CHENALHO	DGE	X	1966	2009
	ļ		(DGE)					
7150	-93.083	16.050	SAN PEDRO CHIAPAS	VILLA CORZO	CONAGUA	X	1952	1979
7151	-91.346	16.406	SAN QUINTIN	OCOSINGO	CONAGUA	R	1964	1990
7152	-91.433	16.367	SANTA CECILIA (CFE)	LAS MARGARITAS	CFE		1964	1981
7153	-93.160	17.800	SANTA CRUZ	REFORMA	CONAGUA	0	1961	1985
7154	-91.483	16.117	SANTA ELENA (CFE)	LAS MARGARITAS	CFE		1969	1990
7155	-92.517	16.000	SANTA ISABEL	LA CONCORDIA	CONAGUA	X	1955	1974
7156	-93.821	16.939	SANTA MARIA	CINTALAPA	CONAGUA	0	1961	2001
7157	-92.104	15.028	SANTO DOMINGO	UNION JUAREZ	CONAGUA	0	1944	2012
7158	-93.417	17.383	SAYULA	OSTUACAN	CONAGUA	Х	1961	1982
7159	-92.323	15.557	SILTEPEC	SILTEPEC	CONAGUA	X	1969	1983
7160	-92.714	17.140	SIMOJOVEL (DGE)	SIMOJOVEL	DGE	0	1969	2013
7161	-92.351	16.244	SOCOLTENANGO (CFE)	SOCOLTENANGO	CFE	Х	1969	1990
7162	-92.924	16.890	SOYALO	SOYALO	CONAGUA	0	1961	2013
7163	-92.149	14.714	SUCHIATE	SUCHIATE	CONAGUA	R	1944	2008
7164	-92.250	14.921	TAPACHULA (OBS)	TAPACHULA	SMN	0	1981	2008
7165	-93.133	16.750	TUXTLA GUTIERREZ (OBS)	TUXTLA GUTIERREZ	SMN	0	1980	2010
7166	-92.147	14.963	TALISMAN I	TUXTLA CHICO	CONAGUA	0	1944	2010
7167	-93.013	17.249	TAPILULA	TAPILULA	CONAGUA	0	1965	2008
7168	-93.744	16.084	TONALA (DGE)	TONALA	DGE	0	1961	2009
7169	-92.300	17.267	TUMBALA	TUMBALA	CONAGUA	R	1961	1990
7170	-93.239	17.240	TZIMBAC	FRANCISCO LEON	CONAGUA	X	1962	1983
7171	-92.267	16.200	TZIMOL (CFE)	TZIMOL	CFE	X	1961	1982
7172	-92.081	15.063	UNION JUAREZ	UNION JUAREZ	CONAGUA	0	1951	2013
Continúa en	la pág. 41			<u> </u>				
7173	-92.564	16.338	VENUSTIANO CARRANZA	VENUSTIANO	CFE	0	1970	1980
						1		

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
			(CFE)	CARRANZA			<u>.</u>	
7174	-93.263	16.194	VILLA CORZO (CFE)	VILLA CORZO	CFE		1970	1996
7175	-93.263	16.229	VILLAFLORES (SMN)	VILLAFLORES	SMN	0	1933	2013
7176	-93.103	16.762	TUXTLA GUTIERREZ (CFE)	TUXTLA GUTIERREZ	CFE	0	1970	2008
7177	-92.317	17.167	YAJALON	YAJALON	CONAGUA	R	1942	1990
7178	-93.331	17.117	YAMONHO	TECPATAN	CONAGUA	Х	1967	2002
7179	-92.000	16.683	ALTAMIRANO (CFE)	ALTAMIRANO	CFE	X	1964	1994
7180	-92.724	15.871	JALTENANGO	ANGEL ALBINO CORZO	CONAGUA	0	1970	2011
7181	-92.633	16.183	ARCO DE PIEDRA (CFE)	VENUSTIANO	CFE		1969	1974
				CARRANZA				
7182	-93.908	16.242	ARRIAGA (DGE)	ARRIAGA	DGE	0	1961	2009
7183	-92.818	16.042	BENITO JUAREZ (CFE)	LA CONCORDIA	CFE		1972	199
7184	-92.720	16.569	VILLA DE CHIAPILLA (CFE)	CHIAPILLA	CFE	Х	1970	1990
7185	-92.667	15.317	ESCUINTLA (SMN)	ESCUINTLA	SMN	$\overline{}$	1945	1979
7186	-92.833	17.350	FINCA EL ESCALON	AMATAN	CONAGUA	0	1944	1986
7187	-92.232	15.115	FINCA LA PATRIA	TAPACHULA	CONAGUA	X	1961	2009
7188	-92.904	16.803	IXTAPA (CFE)	IXTAPA	CFE	X	1961	1999
7189	-92.633	16.083	LA CONCORDIA (SMN)	LA CONCORDIA	SMN	X	1961	1973
7190	-92.052	16.118	LA TRINITARIA	LA TRINITARIA	CONAGUA	0	1970	2013
7191	-92.257	14.920	MALPASO	TAPACHULA	CONAGUA	0	1961	2013
7192	-92.100	16.900	OCOSINGO (CFE)	OCOSINGO	CFE		1964	1989
7193	-93.120	17.509	PICHUCALCO (DGE)	PICHUCALCO	DGE	X	1983	2007
7194	-93.000	17.200	RAYON (CFE)	RAYON	CFE	X	1972	1981
7195	-92.553	17.286	SABANILLA	SABANILLA	CONAGUA	R	1972	1999
Continúa en	la pág. 42							
7196	-92.333	17.550	SALTO DE AGUA (SMN)	SALTO DE AGUA	SMN	x !	1945	2012

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7197	-92.867	16.250	SANTA ISABEL (CFE)	LA CONCORDIA	CFE	X	1969	1974
7198	-92.717	17.133	SIMOJOVEL (SMN)	SIMOJOVEL	SMN	0	1926	1968
7199	-92.283	14.833	TANQUE REGULADOR (CFE)	TAPACHULA	CFE		1966	1983
7200	-92.261	14.908	TAPACHULA (DGE)	TAPACHULA	DGE	0	1952	2008
7201	-93.733	16.083	TONALA (SMN)	TONALA	SMN	X	1922	2001
7202	-93.117	16.753	TUXTLA GUTIERREZ (DGE)	TUXTLA GUTIERREZ	DGE	0	1951	2010
7203	-92.564	16.337	VENUSTIANO CARRANZA	VENUSTIANO CARRANZA	CONAGUA	X	1944	2006
7204	-93.267	16.233	VILLAFLORES (DGE)	VILLAFLORES	DGE	X	1952	1983
7205	-92.134	16.251	COMITAN (DGE)	COMITAN DE DOMINGUEZ	DGE	0	1961	2013
7206	-93.671	15.852	BOCA DEL CIELO	TONALA	CONAGUA	X	1972	1979
7207	-92.716	16.887	LARRAINZAR	LARRAINZAR	CONAGUA		1972	2013
7208	-92.943	15.501	NOVILLERO	MAPASTEPEC	CONAGUA	0	1963	2011
7209	-91.867	17.033	AGUA VERDE	CHILON	CONAGUA	X	1964	1969
7210	-92.133	17.267	FINCA AGUA AZUL (CFE)	TUMBALA	CFE		1961	1968
7211	-92.617	16.067	LA MESILLA (CFE)	SOCOLTENANGO	CFE		1961	1969
7212	-92.680	16.792	ZINACANTAN	ZINACANTAN	CONAGUA	x	1966	1969
7215	-92.033	16.733	ALTAMIRANO (DGE)	ALTAMIRANO	DGE	x	1973	1986
7216	-92.261	17.701	BAJADA GRANDE	PALENQUE	CONAGUA	X	1973	1978
7217	-93.029	17.428	SOLOSUCHIAPA	SOLOSUCHIAPA	CONAGUA	0	1973	2006
7218	-92.550	16.350	E.T.A. 012 VENUSTIANO CARRANZA	VENUSTIANO CARRANZA	CONAGUA	х	1973	1978
7219	-93.650	16.667	JIQUIPILAS	JIQUIPILAS	CONAGUA	X	1956	1978
ontinúa en								
7220	-92.367	17.600	E.T.A. 259 SALTO DE AGUA	SALTO DE AGUA	CONAGUA	X	1973	1982

CONAGUA

X

1973

1982

	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7223	-93.067	16.633	SAN LUIS	SUCHIAPA	CONAGUA	Х	1974	1983
7224	-92.274	15.752	CHICOMUSELO	CHICOMUSELO	CONAGUA	0	1975	2007
7226	-92.933	15.900	REFORMA II (CFE)	LA CONCORDIA	CFE	0	1975	2008
7227	-92.168	14.959	TALISMAN II	TUXTLA CHICO	CONAGUA	X	1975	1983
7228	-93.546	15.875	TRES PICOS	TONALA	CONAGUA	0	1975	2007
7229	-93.056	16.454	SANTO DOMINGO (CFE)	CHIAPA DE CORZO	CFE	0	1976	2001
7230	-92.209	15.709	SAN MIGUEL (CFE)	CHICOMUSELO	CFE	0	1976	1999
7231	-91.667	16.083	TZISCAO (CFE)	LA TRINITARIA	CFE		1977	1996
7233	-93.868	16.394	TILTEPEC	JIQUIPILAS	CONAGUA	X	1977	1983
7234	-92.400	15.033	CAMPO AGR.EXP.LAS PALMAS	HUEHUETAN	CONAGUA		1977	1980
7236	-93.076	16.163	REVOLUCION MEXICANA	VILLA CORZO	CONAGUA	X	1977	2006
7237	-92.983	16.050	GUERRERO	VILLA CORZO	CONAGUA	Х	1977	1995
7238	-93.089	16.759	EL SABINAL	TUXTLA GUTIERREZ	CONAGUA	0	2005	2011
7239	-92.956	16.662	VILLA DE ACALA (CFE)	ACALA	CFE	0	1991	
7315	-92.124	17.246	PASO DEL CAYUCO (CFE)	CHILON	CFE		1977	1999
7316	-92.833	16.098	EL AMBAR DE ECHEVERRIA	LA CONCORDIA	CONAGUA	X	1980	1990
7318	-93.933	16.200	LA GLORIA	ARRIAGA	CONAGUA	-x	1978	1983
7319	-93.227	16.873	SAN FERNANDO	SAN FERNANDO	CONAGUA	0	1978	2013
7320	-92.701	15.144	SALVACION	VILLA COMALTITLAN	CONAGUA	0	1978	2012
7324	-92.333	16.933	CHACTE (CFE)	SAN JUAN CANCUC	CFE	- X	1978	1983
7325	-92.550	16.783	LAS OLLAS	CHAMULA	CONAGUA	X	1979	1982
7326	-92.454	14.886	MAZATAN	MAZATAN	CONAGUA	0	1980	2013
7327	-93.419	16.279	URSULO GALVAN	VILLAFLORES	CONAGUA	0	1980	2013
ontinúa en	a pág. 44							
7328	-92.768	15.318	PROVIDENCIA	ACAPETAHUA	CONAGUA	Х	1980	1982

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7329	-92.486	16.309	CASCAJAL	VENUSTIANO	CONAGUA	0	1980	2011
				CARRANZA				
7330	-92.428	16.289	SOYATITAN	VENUSTIANO	CONAGUA	0	1980	2013
				CARRANZA				
7331	-92.369	16.367	VILLA LAS ROSAS	LAS ROSAS	CONAGUA	0	1980	2013
7332	-93.444	16.430	CRISTOBAL OBREGON	VILLAFLORES	CONAGUA	0	1980	2013
7333	-92.268	15.333	BUENOS AIRES	MOTOZINTLA	CONAGUA	0	1980	2013
7334	-92.998	15.418	FRANCISCO SARABIA	MAPASTEPEC	CONAGUA	R	1980	2010
7335	-92.756	15.839	QUERETARO	ANGEL ALBINO CORZO	CONAGUA	0	1980	2013
7336	-92.504	14.959	PLAN DE IGUALA	HUEHUETAN	CONAGUA	0	1980	2013
7337	-90.702	16.581	LACANTUN (CFE)	OCOSINGO	CFE	0	1980	1999
7339	-92.281	15.457	EL PORVENIR	EL PORVENIR	CONAGUA	0	1980	2012
7342	-92.841	16.083	BENITO JUAREZ	LA CONCORDIA	CONAGUA	0	1980	2013
7343	-92.923	16.762	CUAUHTEMOC	IXTAPA	CONAGUA	0	1980	2013
7344	-92.952	15.334	EJIDO IBARRA	MAPASTEPEC	CONAGUA	0	1982	2012
7346	-92.487	15.969	FINCA NUEVA LINDA	LA CONCORDIA	CONAGUA	X	1981	
7347	-92.879	15.504	GUADALUPE VICTORIA	MAPASTEPEC	CONAGUA	R	1982	2005
7348	-92.578	15.348	INDEPENDENCIA	ESCUINTLA	CONAGUA	0	1981	2013
7349	-93.369	16.059	MONTERREY	VILLA CORZO	CONAGUA	0	1980	2013
7350	-92.250	15.367	MOTOZINTLA (DGE)	MOTOZINTLA	DGE	X	1961	2000
7351	-92.750	15.833	EL PARRAL	ANGEL ALBINO CORZO	CONAGUA	Х	1980	1983
7352	-93.300	15.742	SAN DIEGO	PIJIJIAPAN	CONAGUA	Х	1982	1996
7353	-93.348	16.786	SAN JOSE	OCOZOCUAUTLA DE	CONAGUA	Х	1981	
				ESPINOSA				
7355	-92.851	17.082	UNION ZARAGOZA	JITOTOL	CONAGUA	0	1982	2013
Continúa en	la pág. 45					<u>.</u>	l	
7356	-92.189	17.036	BACHAJON	CHILON	CONAGUA	X	1982	
				1		,		

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7358	-92.696	16.393	FLORES MAGON	VENUSTIANO	CONAGUA	0	1982	2012
				CARRANZA				į
7359	-93.367	16.573	GALEANA	OCOZOCOAUTLA DE	CONAGUA	R	1982	2004
				ESPINOSA				
7360	-93.424	17.148	LUIS ESPINOSA	TECPATAN	CONAGUA	0	1982	2012
7361	-92.007	15.684	PASO HONDO	FRONTERA COMALAPA	CONAGUA	R	1982	2006
7362	-94.004	16.471	ROSENDO SALAZAR	CINTALAPA	CONAGUA	ō	1982	2012
7363	-93.475	17.008	LA SELVA	OCOZOCOAUTLA DE	CONAGUA	X	1982	1999
				ESPINOSA				
7365	-93.174	17.223	OCOTEPEC	OCOTEPEC	CONAGUA	0	1983	2013
7366	-93.120	16.965	GRIJALVA (CFE)	CHICOASEN	CFE	0	1981	1999
7367	-93.383	17.417	SAYULA (CFE)	OSTUACAN	CFE	0	1987	1982
7368	-93.581	17.217	TORTUGUERO (CFE)	TECPATAN	CFE		1986	2000
7369	-93.250	17.250	TZINBAC (CFE)	FRANCISCO LEON	CFE	0	1988	1990
7370	-92.538	14.875	ADOLFO RUIZ	MAZATAN	CONAGUA	0	1984	2012
7371	-92.350	15.300	BELISARIO DOMINGUEZ II	MOTOZINTLA	CONAGUA	X	1990	1999
7372	-93.265	16.797	BERRIOZABAL	BERRIOZABAL	CONAGUA	0	1988	2012
7373	-92.580	16.834	TZONTEHUITZ	CHAMULA	CONAGUA	0	1987	2013
7374	-91.868	16.154	LA ESPERANZA	LA TRINITARIA	CONAGUA	0	1987	2013
7376	-93.755	16.803	FRANCISCO I. MADERO	CINTALAPA	CONAGUA	0	1988	2012
7380	-93.117	15.514	LAS BRISAS	PIJIJIAPAN	CONAGUA	0	2000	2012
7383	-93.632	16.494	NUEVA PALESTINA	JIQUIPILAS	CONAGUA	0	1984	2013
7385	-93.893	16.885	PUEBLO VIEJO	CINTALAPA	CONAGUA	0	2000	2013
7386	-93.351	15.743	SAN ISIDRO	PIJIJIAPAN	CONAGUA	0	2000	2012
Continúa er	la pág. 46		1	<u> </u>	 			
7388	-93.593	16.573	SANTA LUCIA	JIQUIPILAS	CONAGUA	0	2000	2013

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
7389	-92.307	17.022	SITALA	SITALA	CONAGUA	0	1984	2013
7390	-92.731	15.365	CACALUTA	ACACOYAGUA	CONAGUA	0	1984	2011
7391	-92.075	16.390	YASHA	LAS MARGARITAS	CONAGUA	0	2000	2013
7392	-93.015	16.723	ZOOLOGICO	TUXTLA GUTIERREZ	CONAGUA	0	2001	2013
7393	-92.476	15.347	FINCA LA PAZ	MOTOZINTLA	CONAGUA	0	1990	2013
7394	-92.363	15.184	FINCA SAN CRISTOBAL	TUZANTAN	CONAGUA	0	1976	2009
7395	-92.421	15.288	FINCA LA VICTORIA	MOTOZINTLA	CONAGUA	Х	1960	2009
7396	-92.346	15.194	FINCA GERMANIA	TUZANTAN	CONAGUA	×	1987	2009
7397	-92.756	16.000	PRESA PORTILLO	LA CONCORDIA	CONAGUA	0	2006	2012

Continuación de la tabla 4.5 pág. 33

O: estaciones en operación por CONAGUA

X: estaciones fuera de operación -CONAGUA

R: estaciones restituidas por CONAGUA

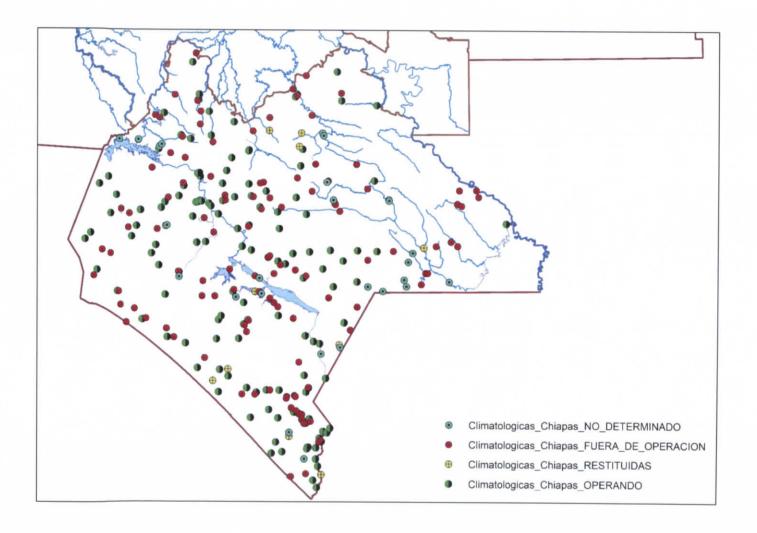


Figura 4.12.- Ubicación del sistema de estaciones climatológicas - Chiapas

En resumen y como se muestra en la figura anterior (Figura 4.12) el inventario de las estaciones climatológicas del estado de Chiapas (RH No. 23 y No. 30) se muestra en la Tabla 4.6

Tabla 4.6.- Resumen del inventario de estaciones climatológicas -Chiapas

ESTATUS	Número de estaciones
Operando por CONAGUA	136
Fuera de Operación -CONAGUA	114
Restituidas por CONAGUA	12
CFE	26
Total	288

Cabe mencionar que el análisis de consistencia solo se aplicó a las estaciones en operación por la CONAGUA (136 estaciones climatológicas operando)

4.3.1.2 Estaciones climatológicas - Estado de Tabasco

El estado de Tabasco cuenta con tres cuartas partes de su territorio dentro de la región hidrológica No. 30: Grijalva-Usumacinta (RH No. 30) y el restante en la región hidrológica No. 29: Coatzacoalcos (RH No. 29) colindante con el estado de Veracruz, a continuación en la Tabla 4.7 se muestra el inventario de las estación climatológicas que se ubican dentro del estado de Tabasco.

Tabla 4.7.- Inventario de estaciones climatológicas –Tabasco (FUENTE: DL Tabasco, 2014) (Continúa en la pág. 49 y termina en la pág. 52)

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
27001	-92.537	17.810	BALANCAN DE DOMINGUEZ		CONAGUA	X	1943	1980
27002	-92.703	18.417	BENITO JUAREZ	CENTLA	CONAGUA	0	1969	1999

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
27003	-93.933	18.100	BLASILLO	HUIMANGUILLO	CONAGUA	0	1967	2000
27004	-91.492	17.442	BOCA DEL CERRO(DGE)	TENOSIQUE	DGE	0	1948	2000
27005	-91.491	17.426	BOCA DEL CERRO(CFE)	TENOSIQUE	CFE	X	1969	1970
27006	-91.317	18.012	BUENAVISTA, BALANCAN	BALANCAN	CONAGUA	0	1967	1999
27007	-93.607	17.968	CAMPO E. W. 75, CARDENAS	CÁRDENAS	CONAGUA	0	1961	1999
27008	-93.384	17.983	CARDENAS, CARDENAS (DGE)	CÁRDENAS	DGE	0	1955	1999
27009	-93.220	18.242	COMALCALCO, COMALCALCO	COMALCALCO	CONAGUA	Ō	1965	2000
27010	-93.183	18.067	CUNDUACAN, CUNDUACAN	CUNDUAÇÁN	CONAGUA	X	1964	1983
27011	-92.798	17.613	DOS PATRIAS, TACOTALPA	TACOTALPA	CONAGUA	0	1950	1999
27012	-91.781	17.742	EMILIANO ZAPATA, E. ZAPATA	EMILIANO ZAPATA	CONAGUA	0	1963	1999
27013	-93.483	18.300	ENCRUCIJADA, CARDENAS	CÁRDENAS	CONAGUA	X	1965	1979
27014	-92.933	18.017	ESCUELA INGENIERIA, (DGE)	1	DGE	X	1969	1978
27015	-93.942	17.837	FCO. RUEDA, HUIMANGUILLO	HUIMANGUILLO	CONAGUA	0	1965	2000
27016	-92.634	18.534	FRONTERA A. OBREGON		CONAGUA	X	1953	1997
27017	-93.400	17.833	HUIMANGUILLO, (DGE)	HUIMANGUILLO	DGE	X	1949	1981
27018	-93.467	17.867	HUIMANGUILLÖ, (SMN)	HUIMANGUILLO	SMN	X	1948	1976
27019	-92.812	17.723	JALAPA, JALAPA (DGE)	JALAPA	DGE	0	1970	1999
27020	-93.045	18.172	JALPA DE MENDEZ, JALPA	JALPA	CONAGUA	0	1958	1999
27021	-91.293	17.757	MACTUM, TENOSIQUE (DGE)	TENOSIQUE	DGE	ō	1969	1999
27022	-92.567	17.617	KILOMETRO 262 MACUSPANA	MACUSPANA	CONAGUA	X	1962	1983
27023	-93.800	17.833	LAGUNA DEL ROSARIO, (DGE)	LAGUNA	DGE	X	1969	1971
27024	-92.927	17.520	LA HUASTECA, TEAPA (DGE)	LA	DGE	 	1970	1983
27025	-92.917	17.983	L. CARDENAS, MACUSPANA	MACUSPANA	CONAGUA	X	1969	1971
27026	-94.017	18.133	LA VENTA, HUIMANGUILLO	HUIMANGUILLO	CONAGUA	X	1963	1982
27027	-92.683	17.600	LOMAS ALEGRES, TACOTALPA	ALEGRES	CONAGUA			1981
Continúa en		17.600	LOMAS ALEGRES, TACOTALPA	ALEGRES	CONAGUA	X	1965	1

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
27028	-92.139	18.092	JONUTA, JONUTA (DGE)	JONUTA	DGE	0	1950	1999
27029	-92.833	18.167	MACULTEPEC, CENTRO (DGE)	CENTRO	DGE	X	1964	1999
27030	-92.583	17.767	MACUSPANA,MACUSPANA(DGE)	MACUSPANA	DGE	0	1948	2000
27031	-92.600	17.750	MACUSPANA,MACUSPANA(SMN)	MACUSPANA	SMN	X	1948	1998
27032	-93.417	17.633	MEZCALAPA, HUIMANGUILLO	MEZCALAPA	CONAGUA	X	1961	1979
27033	-93.633	17.733	MOSQUITERO, HUIMANGUILLO	HUIMANGUILLO	CONAGUA	X	1948	1979
27034	-93.215	17.970	PARAISO, PARAISO (DGE)	PARAISO	DGE	0	1949	2000
27035	-93.367	17.783	PAREDON, HUIMANGUILLO	PAREDON	CONAGUA	Х	1964	1985
27036	-93.145	17.970	PASO DE CUNDUACAN, (DGE)	PASO	DGE	0	1970	1999
27037	-92.879	17.854	PUEBLO NUEVO, CENTRO	NUEVO	CONAGUA	0	1948	2000
27038	-93.067	18.317	REFORMA, JALPA	REFORMA	CONAGUA	X	1967	1979
27039	-93.275	17.996	SAMARIA, CUNDUACAN	CUNDUACAN	CONAGUA	0	1948	2000
27040	-91.158	17.792	SAN PEDRO, BALANCAN	PEDRO	CONAGUA	0	1948	1999
27041	-92.533	18.100	SANTA ROSALIA, CARDENAS	ROSALIA	CONAGUA	Х	1969	1979
27042	-92.817	17.467	TAPIJULAPA, TACOTALPA	TACOTALPA	CONAGUA	0	1962	2000
27043	-92.817	17.600	TACOTALPA, TACOTALPA	TACOTALPA	CONAGUA	X	1961	1967
27044	-92.967	17.567	TEAPA, TEAPA (DGE)	TEAPA	DGE	0	1960	2000
27045	-92.950	17.550	TEAPA,TEAPA (SMN)	TEAPA	SMN	X	1962	1988
27046	-91.427	17.473	TENOSIQUE DE P. SUAREZ,	TENOSIQUE	CONAGUA	X	1954	1985
27047	-91.433	17.483	TENOSIQUE, TENOSIQUE	TENOSIQUE	CONAGUA	0	1921	2000
27048	-92.373	17.820	TEPETITAN, MACUSPANA	TEPETITAN	CONAGUA	0	1961	1985
27049	-92.755	17.893	TEQUILA, JALAPA (DGE)	JALAPA	DGE	0	1970	1999
27050	-92.635	18.403	TRES BRAZOS,CENTLA (DGE)		DGE	0	1948	2000
27051	-93.345	18.108	TULIPAN, CUNDUACAN	TULIPAN	CONAGUA	0	1967	1983
27052	-93.467	18.433	TUPILCO, COMALCALCO (DGE)	COMALCALCO	DGE	X	1964	1982

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
27053	-92.900	18.395	VICENTE GUERRERO, CENTLA	CENTLA	CONAGUA	0	1961	1985
27054	-92.928	17.997	VILLAHERMOSA,CENTRO (DGE)	CENTRO	DGE	0	1948	2000
27055	-92.917	17.983	VILLAHERMOSA,CENTRO (SMN)	CENTRO	SMN	×	1926	1974
27056	-91.550	17.817	BALANCAN DE DOMINGUEZ,		CONAGUA	X	1955	1999
27057	-93.217	18.267	COMALCALCO, COMALCALCO	COMALCALCO	CONAGUA	X	1942	1970
27058	-93.400	17.809	CARDENAS(SMN),CARDENAS	CARDENAS	SMN	X	1961	1961
27059	-91.177	17.937	EL TRIUNFO, BALANCAN	BALANCÁN	CONAGUA	0	1972	1999
27060	-93.768	17.974	GONZALEZ, CENTRO (DGE)	CENTRO	DGE	0	1972	1999
27061	-92.931	17.713	PUYACATENGO, TEAPA (DGE)	TEAPA	DGE	0	1972	2000
27062	-92.983	18.000	VILLAHERMOSA(CMA)	CENTRO	CMA	Х	1961	1961
27063	-91.067	17.600	APATZINGAN, BALANCAN	BALANCÁN	CONAGUA	X	1973	1979
27064	-91.017	17.833	CUAUHTEMOC, BALANCAN	BALANCÁN	CONAGUA	-x	1973	1974
27065	-92.767	17.978	DOS MONTES, CENTRO (DGE)	CENTRO	DGE	X	1973	1999
27066	-91.017	17.283	EL MARTILLO, TENOSIQUE	TENOSIQUE	CONAGUA	X	1973	1976
27067	-91.433	17.483	BENITO JUAREZ E.T.A. 63		CONAGUA	X	1973	1977
27068	-92.920	17.513	CAMPO EXP. PUYACATENGO	PUYACATENGO	CONAGUA	-x	1974	1999
27069	-91.767	17.867	CHABLE, E. ZAPATA (DGE)	EMILIANO ZAPATA	DGE	X	1974	1984
27070	-92.750	17.383	OXOLOTAN, TACOTALPA (DGE)	TACOTALPA	DGE	0	1974	2000
27071	-92.713	17.800	AQUILES SERDAN SAN FDO		CONAGUA	0	1976	1999
27072	-93.400	17.833	E.T.A. 429, HUIMANGUILLO	HUIMANGUILLO	CONAGUA	X	1976	1976
27073	-92.500	18.177	POBLADO C-09, CARDENAS	CÁRDENAS	CONAGUA	0	1972	1998
27074	-93.550	18.300	POBLADO C-11, CARDENAS	CARDENAS	CONAGUA	0	1972	1986
27075	-93.573	18.117	POBLADO C-15, CARDENAS	CARDENAS	CONAGUA	0	1972	1986
27076	-93.505	18.117	POBLADO C-16, CARDENAS	CARDENAS	CONAGUA	0	1972	1999
27077	-93.633	18.073	POBLADO C-22, CARDENAS	CARDENAS	CONAGUA	0	1972	1999

ESTACION	LONGITUD	LATITUD	NOMBRE	MUNICIPIO	ORGANISMO	ESTATUS	INICIO	FIN
27078	-93.503	18.023	POBLADO C-28, CARDENAS	CARDENAS	CONAGUA	0	1972	1999
27079	-93.445	18.052	POBLADO C-29, CARDENAS	CARDENAS	CONAGUA	X	1972	1999
27080	-93.512	17.972	P. C-32, HUIMANGUILLO	HUIMANGUILLO	CONAGUA	0	1972	1999
27081	-92.683	17.783	PRESIDENTE V. GOMEZ F.		CONAGUA	X	1976	1977
27082	-91.022	17.289	EJIDO CORTIJO, TENOSIQUE	TENOSIQUE	CONAGUA	X	1977	1978
27083	-92.933	17.983	VILLAHERMOSA, TABASCO	CENTRO	CONAGUA	Х		
27084	-92.922	18.213	NACAJUCA, NACAJUCA (DGE)	NACAJUCA	DGE	0	1979	2000
27085	-92.750	18.500	MIRAMAR, CENTLA (DGE)	CENTLA	DGE	X	1979	1981
27086	-91.033	17.717	CHALCO GANADERO,BALANCAN	BALANCAN	CONAGUA	X	1983	1983
27087	-91.388	17.988	HULERIA, BALANCAN	BALANCÁN	CONAGUA	0	1983	1999
27088	-91.540	17.597	LA T, BALANCAN	BALANCÁN	CONAGUA	0	1983	1999
27089	-92.467	17.933	JOSE COLOMO, MACUSPANA	MACUSPANA	CONAGUA	Х	1983	1983
27090	-91.600	17.968	EL PIPILA, BALANCAN	BALANCÁN	CONAGUA	0	1983	1983
27091	-91.810	17.938	PLAYA LARGA, JONUTA	JONUTA	CONAGUA	0	1983	1999
27092	-92.930	17.854	PLAYAS DEL ROSARIO		CONAGUA	0	1983	1983
27093	-91.567	18.013	SAN ELPIDIO, BALANCAN	BALANCÁN	CONAGUA	0	1983	1999
27094	-92.443	17.232	OXOLOTAN (CFE)		CFE	Х	1985	2010
27095	-93.230	17.510	INIFAP		INIFAP	0	2003	2010
27096	-92.523	18.003	PORVENIR	CENTRO	CONAGUA	0	2000	2010

Continuación de la tabla 4.7 pág. 48

O: estaciones en operación por CONAGUA

X: estaciones fuera de operación -CONAGUA

R: estaciones restituidas por CONAGUA

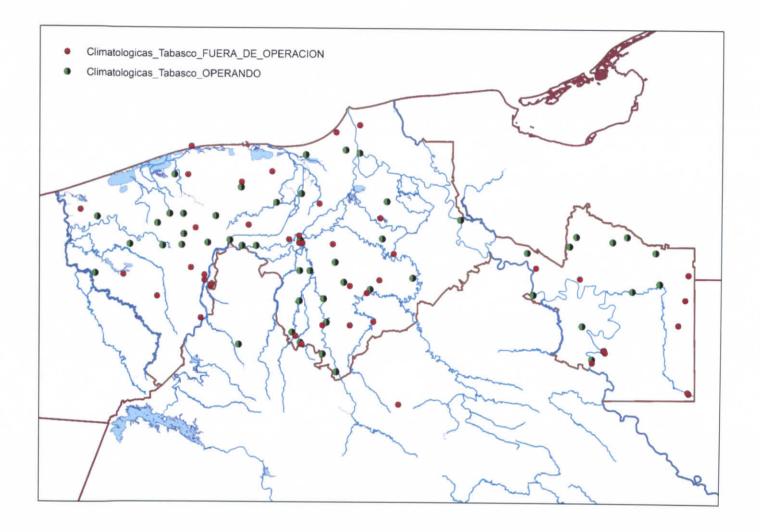


Figura 4.13.- Ubicación del sistema de estaciones climatológicas - Tabasco

En resumen y como se muestra en la figura anterior (Figura 4.13) el inventario de las estaciones climatológicas del Estado de Tabasco (RH No. 29 y No. 30) se muestra en la Tabla 4.6

Tabla 4.8.- Resumen del inventario de estaciones climatológicas -Tabasco

ESTATUS	Número de estaciones
Operando por CONAGUA	51
Fuera de Operación -CONAGUA	43
Restituidas por CONAGUA	0
CFE	2
Total	96

Cabe mencionar que el análisis de consistencia solo se aplicó a las estaciones en operación por la CONAGUA (51 estaciones climatológicas operando)

4.3.2 Estaciones hidrométricas

Para realizar el inventario de la red de medición hidrométrica, se consultó inicialmente la base de datos del BANDAS, después se revisaron las bases de datos de la Dirección Local de Tabasco y el Organismo de Cuenca Frontera Sur, para detallar y actualizar la información. A continuación se presentan las estaciones hidrométricas del estado de Tabasco y Chiapas, respectivamente.

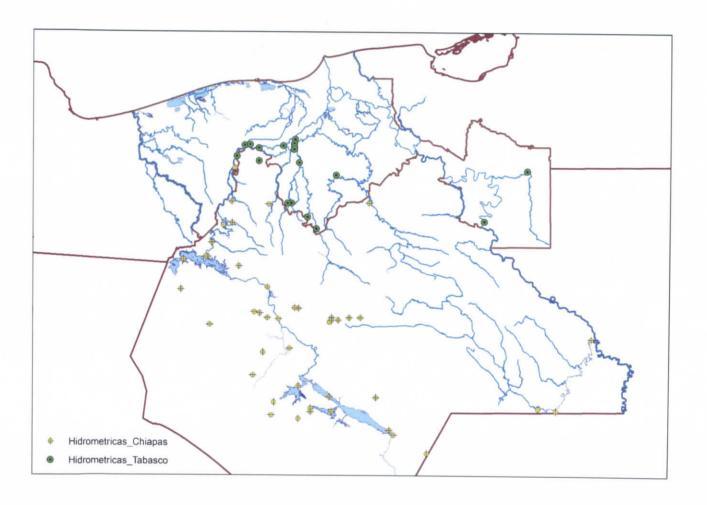


Figura 4.14.- Ubicación de las estaciones hidrométricas de la cuenca Grijalva-Usumacinta

4.3.2.1 Estaciones hidrométricas – Estado de Chiapas

Las estaciones hidrométricas son aquellos que registran las variables de: nivel (escala) y gasto el cual se obtiene por medio de la práctica de aforo. Las estaciones hidrométricas enlistadas en la Tabla 4.9 se obtuvieron del boletín hidrometeorológico de 24 horas publicado por el Organismo de Cuenca Frontera Sur (OCFS).

Tabla 4.9.- Inventario de estaciones hidrométricas - Chiapas (Continúa en la pág. 56 y termina en la pág. 60)

ID	ESTACIÓN	TIPO	DEPENDENCIA	ESTADO	FUENTE
1A-CFE	PUENTE CONCORDIA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
2A-CNA	CASCAJAL	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
3A-CNA	CHICOMUSELO	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
4A-CNA	JALTENANGO	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
5A-CNA	EL PORTILLO	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
6A-CFE	REVOLUCIÓN MEXICANA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
7A-CFE	REFORMA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
8A-CFE	SAN MIGUEL	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
9A-CFE	C. H. ANGOSTURA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
10A-CNA/A	MOTOZINTLA	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
11A-CNA/A	ZAPALUTA	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
12A-CNA/A	FINCA CUXTEPEQUES	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
13A-CNA	SOYATITÁN	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
14A-CNA	MOZOTAL	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
15A-CNA/A	AQUESPALA	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
16A-CNA/O	COMITÁN O. M.	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS

ID	ESTACIÓN	TIPO	DEPENDENCIA	ESTADO	FUENTE
1C-CFE	ACALA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
2C-CFE	BOQUERÓN	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
3C-CFE	SANTO DOMINGO	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
4C-CNA	TUXTLA ORIENTE	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
5C-CNA/O	TUXTLA GUTIÉRREZ O. M	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
6C-CNA	TUXTLA GUTIÉRREZ ZOOMAT	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
7C-CNA	VILLAFLORES	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
8C-CFE	C. H. CHICOASÉN	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
9C-CNA/A	LA ESCALERA	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
10C-CNA/A	VILLA DE CHIAPILLA	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
11C-CNA/A	EL BURRERO	AUTOMÁTICA	CONAGUA	CHIAPAS	
12C-CNA1/A	C. DEL SUMIDERO	AUTOMÁTICA	CONAGUA		BOLETIN OCFS
13C-CNA	PUENTE MORELOS			CHIAPAS	BOLETIN OCFS
		CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
14C-CNA/O	S. CRISTOBAL O. M.	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
15C-CFE/A	C. DEL SUMIDERO	AUTOMÁTICA	CFE	CHIAPAS	BOLETIN OCFS
1M-CFE	GRIJALVA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
2M-CFE	STA. MARIA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
3M-CFE	LAS FLORES II	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
4M-CFE	YAMONHÓ	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
5M-CFE	C. H. MALPASO	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
6M-CNA	LAS FLORES II	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
7M-CNA/A	BOCHIL	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
Continúa en la	nág 58			0.1	

ID	ESTACIÓN	TIPO	DEPENDENCIA	ESTADO	FUENTE
8M-CNA/A	BOMBANÁ	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
9M-CNA1/A	UNIV. LINDAVISTA	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
1P-CFE	OCOTEPEC	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
2P-CFE	SAYULA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
3P-CFE	C. H. PEÑITAS	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
4P-CFE	RÓMULO CALZADA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
5P-CFE	JUAN DE GRIJALVA	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
1S-PCCH/A	A. BOMBANÓ	AUTOMÁTICA	PROTECCIÓN CIVIL	CHIAPAS	BOLETIN OCFS
2S-PCCH/A	SOLIDARIDAD	AUTOMÁTICA	PROTECCIÓN CIVIL	CHIAPAS	BOLETIN OCFS
3S-PCCH/A	BERRIOZÁBAL	AUTOMÁTICA	PROTECCIÓN CIVIL	CHIAPAS	BOLETIN OCFS
4S-PCCH/A	CARIDAD	AUTOMÁTICA	PROTECCIÓN CIVIL	CHIAPAS	BOLETIN OCFS
5S-PCCH/A	VISTA HERMOSA	AUTOMÁTICA	PROTECCIÓN CIVIL	CHIAPAS	BOLETIN OCFS
6S-PCCH/A	VIVA CÁRDENAS	AUTOMÁTICA	PROTECCIÓN CIVIL	CHIAPAS	BOLETIN OCFS
7S-PCCH/A	MIRADOR	AUTOMÁTICA	PROTECCIÓN CIVIL	CHIAPAS	BOLETIN OCFS
8S-CNA/A	SEC. TEC. 59	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
9S-CNA/A	CRISTAL	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
10S-CNA/A	CENTRO 2a. PTE	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
11S-CNA/A	MÓDULO 5	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
12S-CNA/A	MUCH	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
13S-CNA/A	CLUB CAMPESTRE	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
14S-CNA/A	PARQUE ORIENTE	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
15S-CNA/A	SAN JUAN	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
16S-CNA/A	SEC. TEC. 103	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS

Continúa en la pág. 59

D	ESTACIÓN	TIPO	DEPENDENCIA	ESTADO	FUENTE
17S-CNA/A	TRABAJO SOCIAL	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
18S-CNA/A	UNICACH	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
1U-CNA/A	YAXCHILÁN	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
7U-CNA1/A	C. DEL USUMACINTA	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
9U-CNA/A	GUACAMAYAS	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
10U-CFE	LACANTÚN	CONVENCIONAL	CFE	CHIAPAS	BOLETIN OCFS
11U-CNA/A	FINCA CHAYABÉ	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
12U-CNA/A	AGUA AZUL	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
13U-CNA	OCOSINGO	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
14U-CNA1/A	MONTES AZULES	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
15U-CNA1/A	L. DE MONTEBELLO	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
16U-CNA1/A	CRED OCOSINGO	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
17-U-CNA1/A	PLAYA CATAZAJÁ	AUTOMÁTICA	CONAGUA	CHIAPAS	
1K-CNA/O	ARRIAGA O. M.	CONVENCIONAL	CONAGUA		BOLETIN OCFS
2K-CNA/A	TONALÁ	AUTOMÁTICA		CHIAPAS	BOLETIN OCFS
			CONAGUÃ	CHIAPAS	BOLETIN OCFS
3K-CNA	TRES PICOS	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
4K-CNA	PIJIJIAPAN	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
5K-CNA	NOVILLERO	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
6K-CNA	MAPASTEPEC	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
7K-CNA/A	LA ENCRUCIJADA	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
8K-CNA1/A	EL TRIUNFO	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
9K-CNA1/A	EL VERGEL	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS

Continúa en la pág. 60

ID	ESTACIÓN	TIPO	DEPENDENCIA	ESTADO	FUENTE
1H-CNA	ARGOVIA	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
2H-CNA	HAMBURGO	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
3H-CNA	LA PAZ	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
4H-CNA	SAN ANTONIO CHICHARRAS	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
1J-CNA	CACALUTA	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
2J-CNA	ESCUINTLA	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
3J-CNA	DESPOBLADO	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
4J-CNA	HUIXTLA	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
5J-CNA/O	TAPACHULA	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
6J-CNA	MALPASO II	CONVENCIONAL	CONAGUA	CHIAPAS	BOLETIN OCFS
7J-CNA/A	SAN JERÓNIMO	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
8J-CNA/A	SUCHIATE	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
9J-CNA/A	I. LÓPEZ RAYÓN	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS
10J-CNA/A	TALISMÁN	AUTOMÁTICA	CONAGUA	CHIAPAS	BOLETIN OCFS

Continuación de la tabla 4.9 pág. 56

4.3.2.2 Estaciones hidrométricas - Estado de Tabasco

Las estaciones hidrométricas son aquellos que registran las variables de: nivel (escala) y gasto el cual se obtiene por medio de la práctica de aforo. Las estaciones hidrométricas enlistadas en la Tabla 4.10 se obtuvieron del boletín hidrometeorológico de 24 horas publicado por el Organismo de Cuenca Frontera Sur (OCFS) y de la Dirección Local Tabasco –Subdirección Técnica en su boletín hidroclimatológico y de presas de las 08:00 hrs.

Tabla 4.10.- Inventario de estaciones hidrométricas –Tabasco (Continúa en la pág. 61)

ID	ESTACIÓN	TIPO	DEPENDENCIA	ESTADO	FUENTE
1T-CNA/A	SÁNCHEZ MAGALLANES	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
2T-CNA/A	PARAÍSO	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
1V-CNA2	GAVIOTAS II	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
2V-CNA2	VILLAHERMOSA MUELLE	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
3V-CNA2	PORVENIR	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
4V-CNA2/A	POSTA	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
5V-CNA2/A	PIGUA	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
1B-CNA/A	DOS PATRIAS	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
2B-CNA2	TEAPA	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
3B-CNA2	PUYACATENGO	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
4B-CNA2	SAN JOAQUÍN	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
5B-CNA2	PUEBLO NUEVO	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
6B-CNA/A	TAPILULA	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
7B-CNA	PICHUCALCO	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
1D-CNA2	TAPIJULAPA	CONVENCIONAL	CONAGUA	TABASCO	
2D-CNA/A	EL ESCALÓN				BOLETIN OCFS
		AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
3D-CNA/A	ARROYO GRANDE	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
4D-CNA/A	LARRAINZAR	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
5D-CNA/A	SITALÁ	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
6D-CNA/A	CANCUC	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
7D-CNA2	OXOLOTÁN	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
8D-CNA/A	EL REFUGIO	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS

ID	ESTACIÓN	TIPO	DEPENDENCIA	ESTADO	FUENTE
1E-CNA2	SALTO DEL AGUA	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
2E-CNA2	MACUSPANA	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
1L-CNA2/A	PUENTE SOLIDARIDAD	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
2L-CNA2	CÁRDENAS	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
3L-CNA2	SAMARIA	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
4L-CNA2	GONZÁLEZ	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
5L-CNA2/A	MEZCALAPA	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
6L-CNA2/A	REFORMA	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
7L-CNA/A	HUIMANGUILLO	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
2U-CNA2	BOCA DEL CERRO	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
3U-CNA2	SAN PEDRO	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
4U-CNA2/A	EMILIANO ZAPATA	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
5U-CNA/A	JONUTA	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
6U-CNA/A	TRES BRAZOS	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
8U-CNA1/A	PANTANOS DE CENTLA	AUTOMÁTICA	CONAGUA	TABASCO	BOLETIN OCFS
1E-CNA2	SALTO DEL AGUA	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS
2E-CNA2	MACUSPANA	CONVENCIONAL	CONAGUA	TABASCO	BOLETIN OCFS

Continuación de la tabla 4.10 pág. 61

4.4 Análisis de la red de medición de la cuenca del río Grijalva

El análisis y valoración correcta de una red de medición hidrométrica y climatológica puede dar una visión clara del recurso hídrico en la cuenca Grijalva-Usumacinta, de tal manera que permita elaborar una óptima planeación y gestión del recurso: agua.

México cuenta con una red de medición hidrométrica y climatológica amplia y de registro continuo, ya que, por lo menos en cada entidad federativa hay cerca de 100 estaciones hidrométricas, con excepción del Estado de Yucatán, donde no existen corrientes perennes superficiales.

Sin embargo, al momento de utilizar los datos estadísticos de las estaciones de medición para pronósticos hidrológicos o cálculos de balance, se presentan dificultades desde la distribución irregular de las estaciones por el territorio, diferentes periodos de observación, disminución en la cantidad de estaciones e inconsistencia en los registros.

Es por ello, que el objetivo principal de este análisis es el de definir si el número de estaciones que se encuentran actualmente en operación y sus periodos de observación son suficientes para presentar un diagnóstico confiable sobre el recurso hídrico superficial.

4.4.1 Elaboración de mapas de isoyetas

Después de recopilar información respecto a la red de medición de la cuenca Grijalva-Usumacinta, y de tener acceso a los datos estadísticos sobre las características hidrológicas de las estaciones registradas, se decidió elaborar mapas de isoyetas, con el fin de ver la distribución de la lluvia con base en las estaciones existentes y su registro.

Con los datos completos de precipitación de las estaciones, se realizaron mapas de isoyetas con los valores de precipitación máximos anuales de cada estación para los años de 1999, 2007, 2008, 2009, 2010, 2011 y 2012. Para esto se utilizó un sistema de información geográfica para hacer la interpolación, en este caso Kriging.

El **método de Kriging** es un estimador lineal insesgado que busca generar superficies continuas a partir de puntos discretos. Asume que la media, aunque desconocida, es constante y que las variables son estacionarias y no tienen tendencias. Permite transformación de los datos, eliminación de tendencias y proporciona medidas de error.

Para determinar la autocorrelación se usan semi-variogramas y vecindades obtenidos a partir de un análisis exploratorio de los datos. El semi-variograma permite a partir de la covarianza entre los puntos, representar la variabilidad de los mismos y su dependencia en función de la distancia y la dirección.

La fórmula general es:
$$Z(S_0) = \sum_{i=1}^{N} \lambda_i Z(S_i)$$

En el cual Z (S) es la variable de interés, μ (S) es una constante desconocida, ϵ (S) son errores aleatorios de estimación y S son coordenadas espaciales (x, y). La predicción de un punto está dada por:

En el cual (S_0) es el valor predicho, λi es el peso de cada valor observado y Z (Si) es el valor medido en un lugar. Además:

Para que los valores pronosticados no estén sesgados la suma de los pesos debe ser igual a 1. Para minimizar el error se agrega el multiplicador de LaGrange (Γ), obteniendo:

En el cual Γ es la matriz de valores del semivariograma teórico, λ es el vector de pesos a encontrar y g es el vector de semivarianza teórica en cada punto.



Figura 4.15.- Isoyetas generadas a partir de lluvias máximas del año 1999 (precipitación expresa en mm)

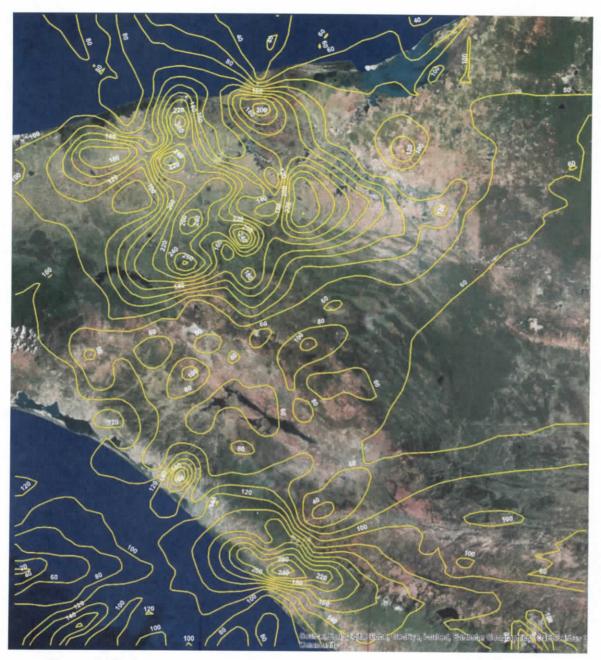


Figura 4.16.- Isoyetas generadas a partir de lluvias máximas del año 2007 (precipitación expresa en mm)

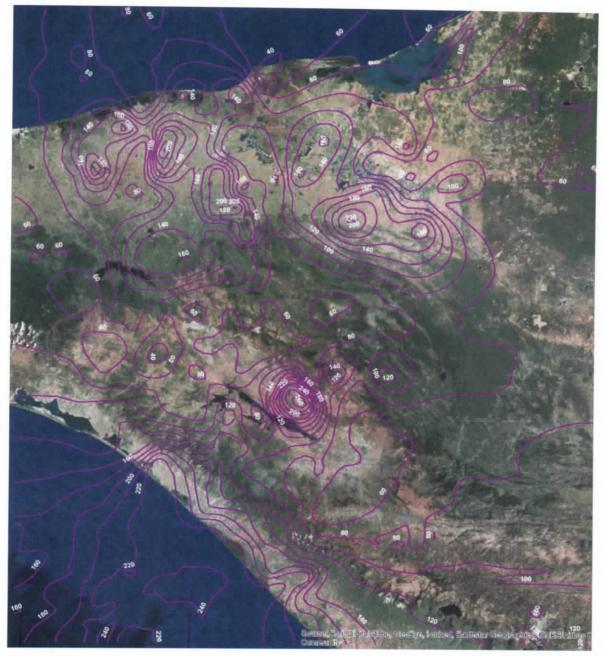


Figura 4.17.- Isoyetas generadas a partir de Iluvias máximas del año 2008 (precipitación expresa en mm)

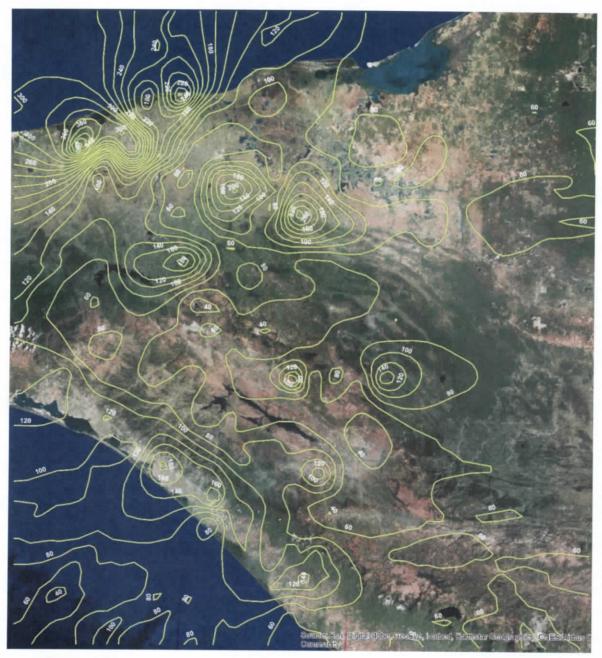


Figura 4.18.- Isoyetas generadas a partir de Iluvias máximas del año 2009 (precipitación expresa en mm)

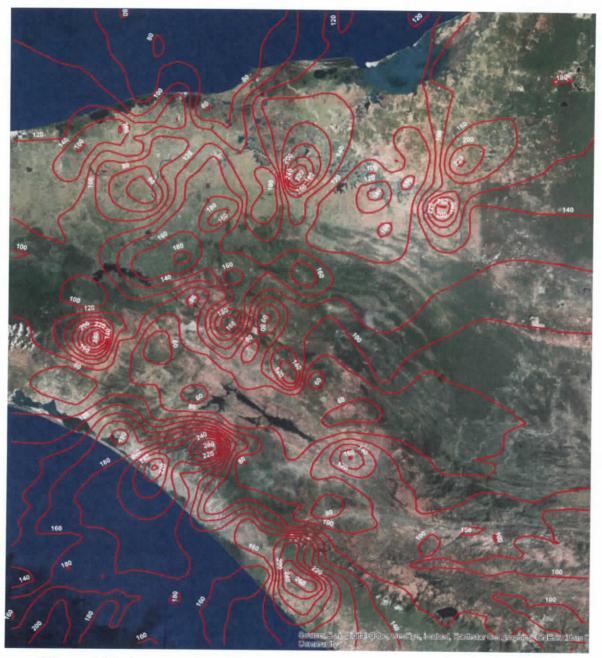


Figura 4.19.- Isoyetas generadas a partir de Iluvias máximas del año 2010 (precipitación expresa en mm)

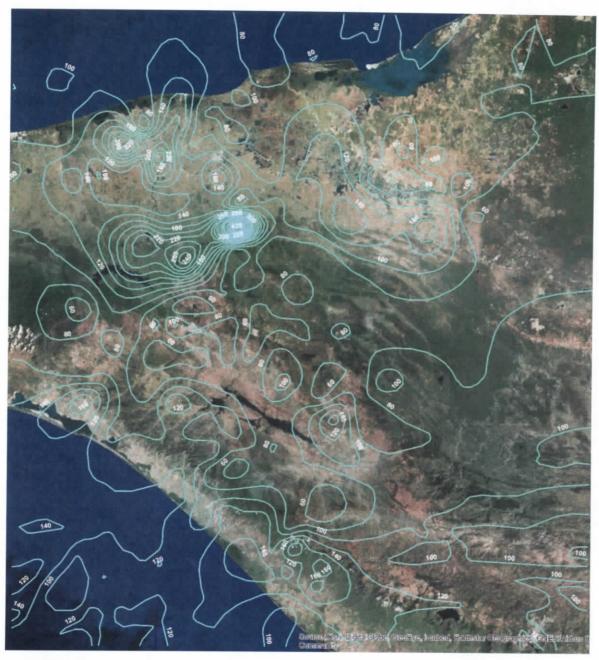


Figura 4.20.- Isoyetas generadas a partir de lluvias máximas del año 2011 (precipitación expresa en mm)

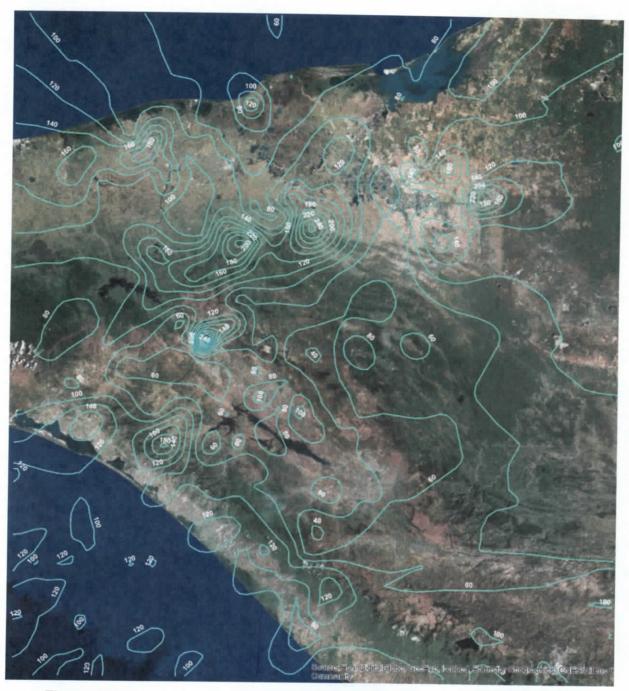


Figura 4.21.- Isoyetas generadas a partir de lluvias máximas del año 2012 (precipitación expresa en mm)

Las memorias de cálculo resultantes de las isoyetas pueden consultarse en el anexo A.4.3 Mapas de isoyetas.

4.4.2 Análisis de la red hidrométrica

El análisis a la red de medición hidrométrica consistió en graficar las variables de gasto y nivel de cada una de las estaciones convencionales ubicadas dentro del estado de Tabasco.

A continuación se presentan las gráficas de las variables gasto y nivel para el periodo de registro de 1999-2014. En círculos amarillos se marcan los periodos faltantes de información, mientras que los círculos de color verde indican registros fuera de orden. (los gráficos que a continuación se presentan así como los gráficos anuales se pueden consultar en el Anexo A.4.4 Gráficos Red Hidrométrica.

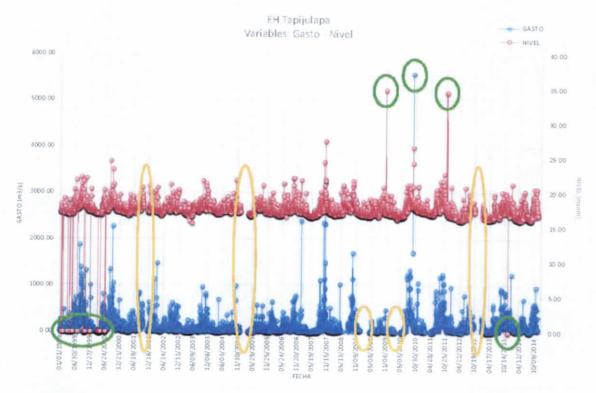


Figura 4.22.- Estación hidrométrica Tapijulapa – registro 1999-2014

En la estación hidrométrica Tapijulapa se cuenta con 5 periodos de datos faltantes y 5 periodos con datos fuera de orden.

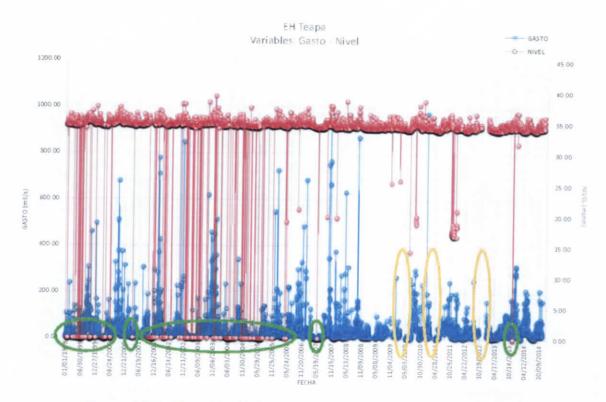


Figura 4.23.- Estación hidrométrica Teapa – registro 1999-2014

En la estación hidrométrica Teapa se cuenta con 3 periodos de datos faltantes y 5 periodos con datos fuera de orden.

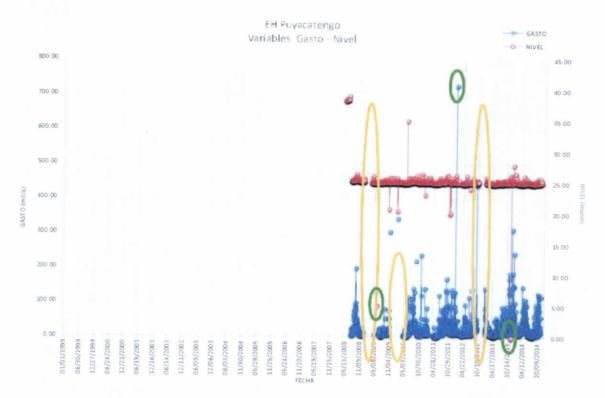


Figura 4.24.- Estación hidrométrica Puyacatengo – registro 1999-2014

En la estación hidrométrica Puyacatengo se cuenta con 3 periodos de datos faltantes y 3 periodos con datos fuera de orden.

Las estaciones hidrométricas Tapijulapa. Teapa y Puyacatengo, no se ven afectadas por la construcción de infraestructura después del año 2007, ya que dichas obras se construyeron aguas debajo de la estación hidrométrica Pueblo Nuevo, por lo que se concluye que los registros de gasto y nivel son consistentes entre ellos.

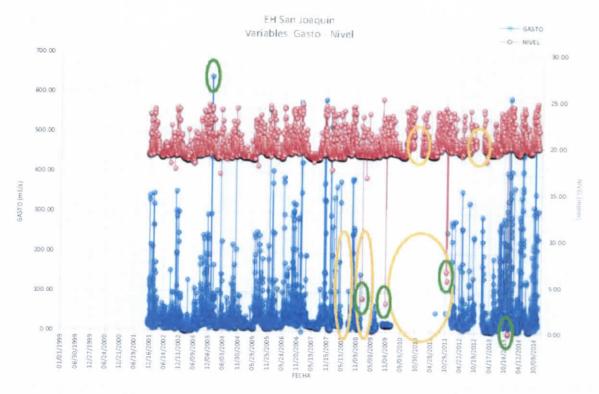


Figura 4.25.- Estación hidrométrica San Joaquín – registro 1999-2014

En la estación hidrométrica San Joaquín se cuenta con 5 periodos de datos faltantes y 5 periodos con datos fuera de orden. La estación San Joaquín está ubicada sobre el río Pichucalco en la colindancia del estado de Tabasco y el estado de Chiapas. Hacia aguas abajo el río se junta con la laguna Parrilla la cual colinda por la margen izquierda del río de la Sierra, sin embargo entra la estación San Joaquín y su entronque con el río de la Sierra no se cuenta con estación hidrométrica, por lo que los registros de la estación no se ven afectados por la construcción de infraestructura.

Los datos faltantes de la variable de gasto del año 2010, se debió a que se rompió la guía de la cual se sostiene la canastilla. Este incidente provocó que no se pudieran realizar aforos en este periodo.

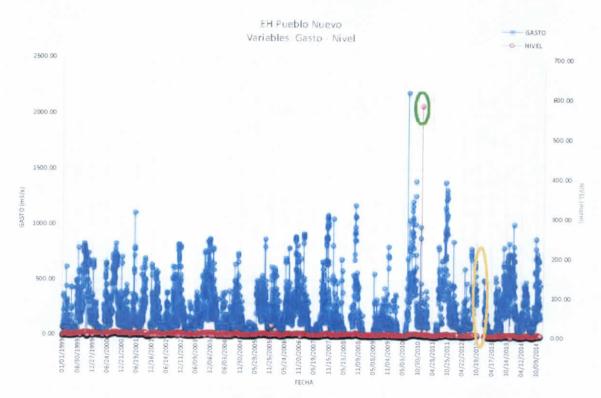


Figura 4.26.- Estación hidrométrica Pueblo Nuevo - registro 1999-2014

En la estación hidrométrica Pueblo Nuevo se cuenta con un periodo de datos faltantes y un periodo con datos fuera de orden. La estación Pueblo Nuevo, se comporta de manera consistente entre sus variables de gasto y nivel, el dato fuera de orden de la variable de nivel puede ser un error de transcripción, ya que a partir del año 2008 aguas debajo de este sitio se construyeron dos escotaduras –El Censo y Sabanilla- las cuales tienen como objetivo derivar agua hacia la zona lagunar (laguna Zapotes) y dejar pasar por el río de la Sierra hacia la ciudad de Villahermosa aproximadamente 800 m³/s, lo que representa que en la estación Pueblo Nuevo se registren niveles por debajo de la cota 8 msnm en promedio.

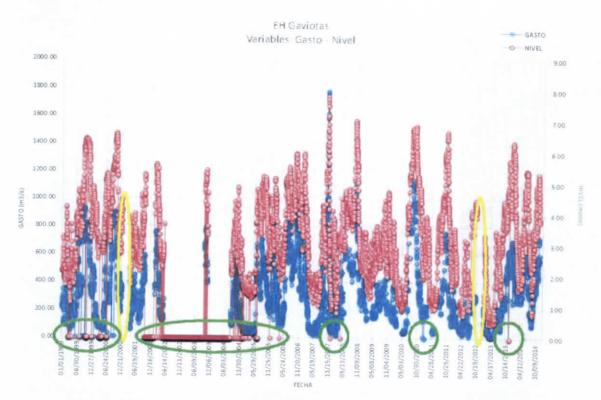


Figura 4.27.- Estación hidrométrica Gaviotas - registro 1999-2014

En la estación hidrométrica Gaviotas se cuenta con 2 periodos de datos faltantes y 5 periodos con datos fuera de orden. La estación Gaviotas se encuentra ubicada en el río de la Sierra, a un costado de la ciudad de Villahermosa, en el Malecón por lo que es una estación importante para determinar la seguridad de la ciudad. Los datos registrados en la estación son consistentes entre las variables de gasto y nivel. La estación después del año 2007 se vio afectada por infraestructura por la elevación de los muros de protección, sin embargo este aumento la capacidad hidráulica del río y mitiga los daños por desbordamiento en la zona.

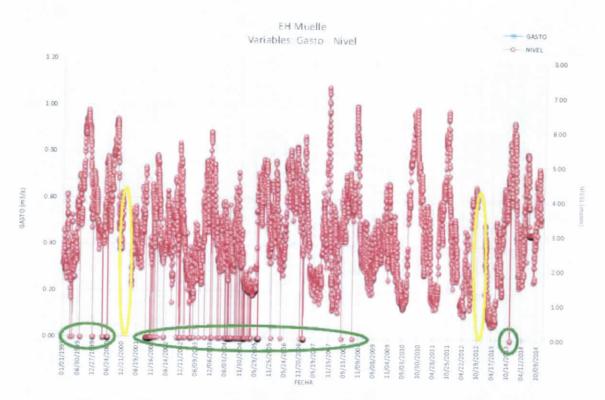


Figura 4.28.- Estación hidrométrica Muelle – registro 1999-2014

En la estación hidrométrica Muelle se cuenta con 2 periodos de datos faltantes y 3 periodos con datos fuera de orden. La estación Muelle, solo registra niveles por medio de una escala.

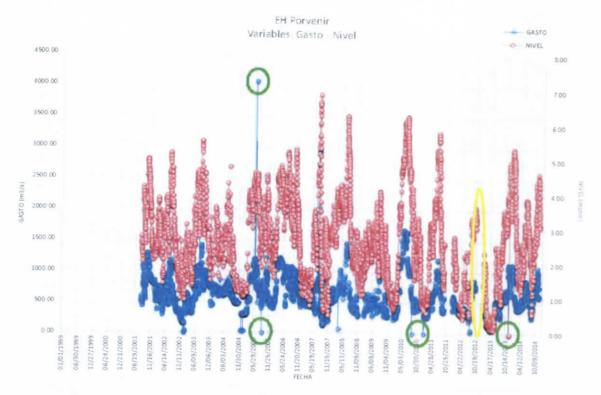


Figura 4.29.- Estación hidrométrica Porvenir – registro 1999-2014

En la estación hidrométrica Porvenir se cuenta con 2 periodos de datos faltantes y 3 periodos con datos fuera de orden. La estación Porvenir se ubica aguas debajo de la intersección de los ríos Carrizal y La Sierra. Es considerada una de las estaciones hidrométricas más importantes del sistema por su ubicación y la medición de variables que reporta, sin embargo es la estación que se ha visto más afectada por la construcción de infraestructura a partir del 2007, ya que ha cambiado su condición de sección de control.

Las variables que se miden en la estación se ven afectadas debido a que el flujo que pasa depende de los siguientes factores: operación de la estructura de control "El Macayo" ya que regula el flujo proveniente del río Carrizal, las escotaduras ubicadas en el Bajo Grijalva (Tintillo I, Tintillo II, Acachapan 3ª, Acachapan 4ª y Buenavista) ya que estas escotaduras derivan agua hacia las zonas lagunares Maluco y Don Julián abatiendo los niveles hacia aguas arriba afectando a la estación, mientras que por el río de la Sierra las escotaduras El Censo y Sabanilla disminuyen el gasto que el río de la Sierra aporta al bajo Grijalva.

